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Conventions:

We use conventions as in lectures. In particular we take (—, +, +, +) signature.

You may find the following formulae useful:

The Christoffel symbol is defined as,

r B = %QHV (5(zgvﬂ + 0pQav — 31/90/5)
The covariant derivative of a vector field is,
Vv =0V 4T v
and for a covector field is,
vuw, =0,w, - T

We

ot
ng

For a Lagrangian of a curve x#(A1) of the form,
ax*
L= | d1L(x, —
f L(x i )

the Euler-Lagrange equations are,
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Section A

Answer all of section A.
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SECTION A

1. This question concerns the covariant derivative.

(i)

(ii)

(i)

PT4.2

State how the components of a (1, 0) tensor v and a (0, 1) tensor w,, transform
under a coordinate transformation x — x’.

ANSWER:
vE = MV W, = MY,
where,
, oxH OxH
T T
M = oxr M”'_c’)x’ﬂ’

[4 marks]

Use your previous answer to show that vw, transforms as a scalar under a
coordinate transformation x — x’.

ANSWER:
viEw, = vEME MY w, = Vi,

as,

X oxr ax”
HOTgxn gxe T oxe A

M M

[4 marks]
Under a coordinate transformation the Christoffel symbol transforms as;

i L OXH Bx OxP [ 0PxM | Ox” OXP
BB gxm gx Ix'F | Ox*OxB | Ox'Y Ox'F

Does the Christoffel symbol transform as a tensor?

ANSWER: No. If it were a tensor it would transform as;

I—/// u aXI’UI ox® 8Xﬁ

o T B gy oxr xE

ie. missing the second term above. This remaining term is not that of a tensor
transformation

[4 marks]

[This question continues on the
ANSWERS 4 next page ...]
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(iv) Show that d,w,, the partial derivative of a covector field w,, does not transform

as a tensor.

ANSWER:

Using chain rule,

e
XM OXM OxH

then,
P ox* 0 (9XVW
YT ax gxe \ axr

ox* ox” "

oxH oxr vt

ox* o0

W -
" OXH QxH

ox"
ava’

The first term is the usual tensor transformation for a (0, 2) tensor. However,
in addition to this, there is also the second term which is not part of the usual

tensor transformation.

Starting from the identity,

5 ox* ox* ox"”
YT OxY T axY OxY

take an appropriate partial derivative of this to derive,

[4 marks]

(1)

X" ax'®  Ox* o ox ox"’
ox” Ox® 9x’eox" X" Ox¥ox”
(2)
ANSWER: Taking a derivative d,;
ax* ax™\  axY _ Ix*  Ox* _ ox"
# = =
99, 0”(6x’”’ ox” ) ax” " ax T ax “ax 3
Now 4,6, = 0 and so,
0 - ox” o oxt  Ix* ox"
0x” 0x® ox" * ox" OxX¥oxv
ox” ox'®* o oxt  Ix* ox

oxY 0x« 9x'@ ox”’ * X" Oxoxv

(4)

[This question continues on the
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So that,

ox” ox'®  Ox* ox*  ox"

OX” Ox® OX'®Ox”” —  OX" XX’

(5)

[4 marks]

(vi) Show that the covariant derivative of a covector field w,, defined as V,w, =
duw, —T* ,W,, does transform as a tensor.

ANSWER: From the previous parts;

’ ’ ra’ ’
Vow, = 0pw, =T, W,
ox* o0x” ox* 0 [ ox¥
= ——Oo W, +W,—— | ——
Ox"H 6x’V’ H Vax’ﬂ’ ox+ \ oxv

XY Oxt OX”
(9 ra’ ’” 6Xﬁ ox" ox'™

Px'™ \ IxP Ox”
ox'® | \\ OxPdxe | Ox'™ ox’
ox* Ox” X' Ix® )

_ _ B
T ox 9x” (a"wv Wl o8 axw

" 0P x“ XY\ OxP IxT Ox®
Wl axax T\ axeaxe ) ox ax ox

From previous part;

ox'®  9Px“ _ Px™ \ OxP Ox”
x> Oxox”” — \OxPOxT | Ox'H Ox"
and hence
0P x“ _ X\ OxP OxT Ox“
X ox” — \9xroxe | Ox' ax Ox'

Using this we have;

, ox* 0x” (,
VW, = X' AX" (6# Wy = wol W)
ox* ox”

= oxw oxv Y

as required for a tensor.
[4 marks]

[Total 24 marks]
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Section B

Answer 2 out of the 4 questions in the following section.

PT4.2 ANSWERS 7 Please go to the next page
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SECTION B

2. This question concerns the Newtonian spacetime, which we write using coordinates
x* = (t,x)withi=1,2,3as,

ds? = (1 — 26D(x)3, ) dx¥ dx”

where €® is the Newtonian potential, and we are interested in the Newtonian limit
€ —» 0sothat|ed| < 1.

PT4.2

(i)

(ii)

State the stress tensor for a perfect fluid in a general spacetime in terms of its
energy density p, pressure P and local 4-velocity u* (where v“u, = —1).

ANSWER:
T =(+P)u,u, +Pgy

[1 mark]
In the limit e — 0 the components of the Ricci tensor to leading order in € are;
Rn = 6(5,](9,6,(1)
Ri = 0

R,'j = E(s,'j (6ab6a6b<b)

Use these to compute the components of the stress tensor that satisfies the
Einstein equations for this spacetime. Show that this is the stress tensor for a
dust fluid (ie. fluid with zero pressure), and determine the 4-velocity and energy
density of this dust in terms of the Newtonian potential e®.

ANSWER: Then G, = R,, — 1g,,R. The trace,
R = ¢g"R, = 9" Ry + 2QﬁRﬁ + QURij
Since R,, is already O(e), then to leading order O(e) then,

R nttRﬁ + UURI]
= —Rn + 5’JR’]
= - (E 5,,-(9,-8,-(1)) + 0jj (6 0jj (5abaaab¢))

= € (—5,](9,0/‘(]) + 5ij5ij (5abaaab¢))

Now recall that 6;0; = 3, then,

R = €(=0j0,0/® +3 (6ar0205P))

€ (202p020p (D)

[This question continues on the
ANSWERS 8 next page ...]



General Relativity May 2013 ANSWERS DRAFT February 13, 2014

Then,

1
Gy = Rtt_égttR

1
= RTT+§R

1
= eé,-ﬁ,-@,-cb + 56 (26abaaab¢)
= € (25ab6a6b¢)
to leading order.

The off diagonal terms vansh; G; = Ry — %gt,-R =0
The spatial components;

Gj

1
Rj— 59iR
1
= Rj- §5UR
1
=0
also vanish to leading order O(e).
The Einstein equations (¢ = 1) are,

Gﬂy = 87TGN T/_W (1)

so then the stress tensor that must satisfy the Einstein equation is;

1 1
Gy =
8r GN ﬁ 8r GN

1
md,,@,@, (Eq))

Tl‘t

€ (2620020, D)

with Ty = Tj; = 0 to leading order.

A dust fluid has P = 0 and so, T,, = pu,u,. Taking the fluid to be static (to
leading order) so that v* = (1,0,0,0) and hence, u, = (-1,0,0,0) to leading
order, then,

Ty = puy=p
to leading order, and T; = T; = 0.
Thus equating these, we find;

1
P = FGN&,'(?;@,-(ECD)

[This question continues on the
PT4.2 ANSWERS 9 next page ...]
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PT4.2

(i)

and hence recover the Newton law for gravity,
5,'/'(9,'(9]‘ (ECD) = 47TGNP

for Newtonian potential e®.
[1 mark]

By calculation, show that to leading order in e,
M, = +e0,®

Using this, show that a non-accelerated particle that is slowly moving obeys (to
leading order in € — 0),

a?x’
F=_ai(6¢)
ANSWER: So,
i 1 iu
My = Eg (8t9m+5tgtu— ugtt)
1
= _Eguajgtt
1
= —Eguajgtt

Now the inverse metric is g** = (7" + 2ed*) to leading order.
Then,

, 1, . .
M, = -5 (17’/ + 26@(5") 9; (Nt — 2ePéy)
e (67 + 2ed67) 20,0
= & ;
= E5ij0j¢
= e0;®
Consider geodesic equation;
dx* . dx®dxP
+ _— =
ar? % dr dr
and so taking the spatial component;
oPx o dx*dxf
a2 T Bgr dr

. . t i .
Now for slow motion we consider % ~ 1 and ‘j’j—’; ~ 0 to leading order. Then,

a?x
F + r’ it = 0
[This question continues on the
ANSWERS 10 next page ...]
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and hence,

d?x!

57 = —" = —0; (ed)

[1 mark]

[Total 3 marks]

PT4.2 ANSWERS 11 Please go to the next page
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3. This question concerns the Schwarschild metric, which we write using coordinates
xt = (t,r,0,¢)as,

-
ds? = — (1 _ ﬂ) a2 + (1 - ﬂ) ar? + r? (d92 + sin? 0d¢2)

for a mass M, with G the Newton constant.

PT4.2

(i) Consider a timelike geodesic x“(r) = (T(7),R(7),0(r),d(r)) in the

Schwarzschild metric where 7 is proper time. Write a Lagrangian that we may
vary to determine the geodesic. Deduce the Euler-Lagrange equations for ©
and @. Show these are consistent with a geodesic that lies in the plane 6 = r/2.
We now restrict our attention to such geodesics. Show then that,

do
R?— =
dr
where J is a constant.

ANSWER:
L =fd7£
where
L = g,x'x"
2GM) ., 2GM\ ™" Ly olme o ia

= —(1—T)T +(1_T) R? + R? (6% +sin® © $?)
with "= d/dr.
Euler-Lagrange (E-L) equation for ©:

i(21%'26) = 2R?sin © cos 02
ar

E-L equation for ®:
d op2ai20d
= (2R?sin?0d) = 0

Taking © = 71/2 then the first of these above is satisfied as © = 0 and cos © = 0.
The second becomes;

d 2 H
Hence, R2® =constant.
[1 mark]

[This question continues on the
ANSWERS 12 next page ...]
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(i) Further deduce the equations that govern T and R. Show that,

(1 _2GM)dT

kK
r |dr

were K is a constant. Hence show the equation governing the radial motion
in the plane 6 = n/2 looks like that of one dimensional motion for a unit mass
particle in a potential V(R) with constant energy E so,

GM P o
R "2R?" R

dR\’
_ %(E) +V(R), V(R)=

where « is a constant depending on the mass M and Newton constant G that
you should determine.

ANSWER:
E-L equation for T:

222 -
r ar

Hence,

’ 2GM\ dT
r dr
for constant of integration k.

The remaining equation is best derived from condition £ = —1 since the param-
eter 7 is proper time. Then (recalling ® = pi/2),

2G M) ., 2GM\ ™' ., ois
- ~-1-== -==") R®*+R
| (1 . )T+(1 . ) + RP

BCEE T M
So,
K2 1 ., P
0 = 1_(1_M) 1 2GMR +ﬁ
R
then,
1 1., 1 2G M S
K2 = R [1-22M 1+ 2
2 2 +2( R )( +R2)
100, 1_GM 2 GMF
2" Y37 R "o T ps

[This question continues on the
PT4.2 ANSWERS 13 next page ...]
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and so,
J? _GMJ2
2 2 2 R  2R? R3

So,

GM S GMA
"R "2m2 RO
so @ = —G M. For Newtonian gravity a = 0.

[1 mark]
(iii) Show that for a circular orbit, with constant radius R = Ry, then,
J? b6a
V'(Ry) = — |1+ =— 1
(Ro) Rg( + RO) (1)
ANSWER:
For a unit mass particle in a potential V(R),
R=-V'(R) (2)
and for a circular orbit R =constant, so R = 0 so V'(R) = 0.
So,
GM FP af
V(R) = - r tom T R
then,
, GM J 3af
VIR) = R TR R
and,
. 2GM 32 12aJ?
VR =g Rt TRe
For a circular orbit R = R, then,
J? 3a
—1+=] = M
Ro( ¥ RO) G
so that,
2GM 12
ViR = —2SM, J?(% . _;’)
RO RO RO
2J2 12
= —%(1 +3—a)+J2(i4+—a)
R, Ro R, RS
J? 3a 12a
= — |21+ =|+3+—
Ré( ( +F"0)+ ' RO)
_ J_2(1 . G_a)
Ry Ro
[1 mark]

[This question continues on the
PT4.2 ANSWERS 14 next page ...]
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(iv) Compute the proper time T4 required for @ to traverse an angle 2. Show that
for a circular orbit radius R = R, that is perturbed a little, so R(r) ~ Ry + 6R(7),
the motion approximately performs simple harmonic oscillation with period,

o

Trad = ——
V”(Ry)

Comment on the relation between T,,g and 4.

ANSWER:
From,

do
R?— =
ar

the proper time for a circular orbit, T, is;

as R = Ry =constant.
For a unit mass particle in a potential V(R),

5 VIR)

If R(t) ~ Ry + 6R(7) for Ry a circular orbit V’(R,) = 0, then we can expand,

V(R)

so that,

V/(Ro + 6R(7)) = V'(Ro) + SR(T)V"(Ro) + ...
6R(7)V”(Ro)

R = 6R(1) ~ —6R(1) V" (Ro)

This is SHO with period,

SO,

2n
V// ( R)

Trad =

21 R? 1
J

Trad =
1+ b6a

R

Trad = Tang for Newton theory « = 0, and hence have closed orbits when per-
turbed from circularity. However for GR they are not the same, so the orbit does
not close, hence the perihelion precesses.

PT4.2

[1 mark]

[Total 4 marks]
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4. (i) Consider a particle following a timelike curve x*(tr) in a general spacetime,
where 7 is the particle’s proper time. The 4-velocity v# = dx*/dr. Give the
expression for the 4-acceleration a* in terms of v* and its covariant derivative.

ANSWER:

a" = v'Vv,v*

[1 mark]

(i) Show that for the case of Minkowski spacetime in Minkowski coordinates x* =
(t,x') so that ds? = n,,dx*dx” then this reduces to the Special Relativity result,

ANSWER:

d?x

ﬂ =
ar?

(1)

In Minkowski spacetime in canonical coordinates so that g, = 7,, then ", = 0.

Then,

a,u

(i)

By carefully varying the action,

dx* dx”
L =de(gWFE)

V'V V= vio v+ vIVETHE = vio, Vv
dx” o
dr ox”

d a?

u VA

T dr

= a2 @

show that the Euler-Lagrange equations are related to the geodesic condition

ViV, v =0 as,

d (oL 0L
2VEV vy = — | — | - — 4
V /lva dT (a%) aXQ ( )
ANSWER:
The geodesic condition,
4 dXﬂ v 24 Q
VIV, v = E(aﬂv +I7 .V )
_oaxt e o, adxtadx?
~ dr ax+ " dr dr
_oav ax* dx®
~ o dr T e dr dr
a?x” dx* dx®
— —_— I_V _—
dr? T ke dr dr ©)
[This question continues on the
PT4.2 ANSWERS 16 next page ...]



General Relativity May 2013 ANSWERS DRAFT February 13, 2014

Now,
o o
dr dr

L=fdr£, L =g (x)

Firstly;
oL ax* dx” 0

ox* ~ dr dr ox=

(x)

and secondly,

oL ax”
8@ = ZEQIWO()
dr
Then,
d 0L d?x” dx’ d
e = 2— v 2 - Yav
dr o2 a2 9 00 + dr dar? %)
ad?x” dx” dx? d
= 2— v 2 — G a2Yav
gz 9o \X) + 25~ g Jor(X)
Then;
doL oL 2d2xV (X)+2dxvdxﬁ d . _dxtdx” 0 )
dr 9o~ oxe = T IO TG e G 9 T e e axe
_ 2d2xV . dx” dx® d dx* dx” 0
= g Yt g ar a9 T Tt dr oxe
N AL IR Y-
= g g 9 T a9 Gr ar
_ d?x” d d 0 dx* dx”
= g Yt eI T g9 T gxa 9 | ar ar
d?x” dx* dx”
= 20— + 2l ——
Garv ar? *Gapl” v dr dr
ad?xB dx* dx”
= 20| —% 4P
gaﬁ( ar? MR ar dT)
So comparing equations (5) and (6) we obtain,
d?xP dx* dx”
2VIJV#V(I = ZgaﬁV'uV'uVB=zgaﬁ(F+ ﬂﬂVF d‘[')
_ do9L oL
B dr g gxe
as required.
[1 mark]

[This question continues on the
PT4.2 ANSWERS 17 next page ...]
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(iv) Consider now a particle coupled to a vector field A,(x) in a general spacetime
so that its Lagrangian is modified to,

ax* dx” ax*
fdr( d o +A (X)F (6)

Show that the 4-acceleration of the particle is

1 v
a'=—-F"yv,, F.=V,A -V,A,

ANSWER:
Let us split the action up into Lyee and Liy;
ax* dx” ax*
L = deLfree + Lint Liree = gﬂv(X)E ar Lint = AN(X)F (8)
The E-L equations are now;

0

dr a% ox«
d a~£mt a~£int
2vVv+(d 6"’(“ ax“)

d 6~£lnt 6~£int
= 2
Ao + (d 8dx“ ox@ )

ox«

d aLfree 0-£free d aLint a-Eint
— — +|—

Hence we obtain the acceleration from the variation

a _ d 6-£mt 6-£int
T dr 0‘2;” Ox®

For Lint = A,(x) 2= we have,

aLint
=

0Ly dx#
=A =—30,A
oX), = —BaAX)
and so,

iaLInt B i (x) = 2%
dra% T odr T

Then,

1 (dx* ax*
ay _5 (Ea,uAa(X) - FaaAu(X))

;CZ( (BaAu(X) = 3,A0(X))

[This question continues on the
PT4.2 ANSWERS 18

next page ...]
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Finally, note that,

F., = V,A -V,A,
= OA-T" A, -0,A+T" A,
= 9,A —0,A,
and hence we see,
1 dx* 1
a, = - (0aAu(x) = 3,A0(X)) = 5 FouV"

as required.
[1 mark]

[Total 4 marks]
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5. (i)

PT4.2

Show that the Christoffel symbol is related to partial derivatives of the metric as,

aozg,uv = gﬂﬁrﬁav"'gvﬁrﬁay

ANSWER:
Now,
1
g,uﬁr’B av = g,uﬂ (égﬁa' (avgcw' + 6090‘1/ - aa'gav))
1
= 3 (aygc,ﬂ + 000y — 6ﬂgm)
So,

1 1
g,uﬁrﬁ av T gvﬁrﬁ au E (avgay + 6(19;11/ - aug(w) + 5 (8;19(11/ + awgvp - avg(zp)
1 1
Eaag/w + éaagm = 6049/41/

as required.
The Lie derivative of a (0, 2) tensor A,, with respect to a vector field w* is,

(Lie)(w, A)y = WIO0,A, + Aud,W* + A, 0,W*

Suppose we consider the Lie derivative of the metric g,,. Show that this can
also be written in terms of the covariant derivative as,

(Lie)(w, 9)u = VuW, + V, W,

If this vanishes, we say w* is a Killing vector field.

ANSWER:

(Lie)(w,9)y = W 0,0u + GuaOyW* + 9o 0, W*
= w® (gﬂﬁrﬁ o+ Oyl W) + QuaOyW" + 9oy O, W*
N (gﬂaayw" + Wogysl av) + (gm’au W+ WG, au)
= 9 (0w + WP ) + gs (0, W8 + W)
= gyﬁVVWﬁ + gVBV#Wﬁ
= V,w,+V,w,

[1 mark]

[This question continues on the
ANSWERS 20 next page ...]
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PT4.2

(iif)

(iv)

Consider a timelike particle with velocity v* = dx*/dt for proper time 7. Suppose
it follows a geodesic in a spacetime with a Killing vector field w*. Show that the
quantity,

_ M
¢ =—-w'y,

is constant along the particle’s trajectory.

ANSWER:
If constant along the particle’s trajectory, then,

0 _ i¢_dxa
T dr’ dr

= —v'V, (w“v,l)

aa¢ = Vava(p

= —-w (v“V(,v,l) - V'V, w,

The first term vanishes by geodesic condition v*V,v, = 0, the second since w*
is Killing, so,

0 = vv'Lie(w, g),y = VV" (V#WV + VVWH) =2vVv'V,w,

[1 mark]
Consider the spacetime with coordinates x* = (t, x')

ds® = —N(x)dt? + g;(x)dx'dx’ (1)

where N and g; only depend on the spatial coordinates x' and not time t.
Show that there is a Killing vector w* for this spacetime and explicitly check
that Lie(w, g) = 0. Write down the conserved quantity ¢ for a non-accelerated
particle’s motion. Is this the energy of the particle as measured by observers
sitting at constant spatial position?

ANSWER:
[1 mark]

In the spacetime in equation (1) above write down a Lagrangian that may be
varied to deduce geodesic motion in the spacetime. Show using the Euler-
Lagrange equations that the quantity ¢ is indeed conserved.

ANSWER:
[1 mark]

[Total 4 marks]
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