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Conventions:

We use conventions as in lectures. In particular we take (−, +, +, +) signature.

You may find the following formulae useful:

The Christoffel symbol is defined as,

Γµ αβ ≡
1
2

gµν
(
∂αgνβ + ∂βgαν − ∂νgαβ

)
The covariant derivative of a vector field is,

∇µvν ≡ ∂µvν + Γν µαvα

and for a covector field is,

∇µwν ≡ ∂µwν − Γ
α
µνwα

For a Lagrangian of a curve xµ(λ) of the form,

L =
∫

dλL(xµ,
dxµ

dλ
)

the Euler-Lagrange equations are,

d
dλ

 ∂L

∂(dxµ
dλ )

 =
∂L

∂xµ
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Section A

Answer all of section A.
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SECTION A

1. This question concerns the covariant derivative.

(i) State how the components of a (1, 0) tensor vµ and a (0, 1) tensor wµ transform
under a coordinate transformation x → x ′.

ANSWER:

v ′µ
′

= Mµ′

µv
µ , w ′µ′ = Mµ

µ′wµ

where,

Mµ′

µ =
∂x ′µ

′

∂xµ
, Mµ

µ′ =
∂xµ

∂x ′µ′

[4 marks]

(ii) Use your previous answer to show that vµwµ transforms as a scalar under a
coordinate transformation x → x ′.

ANSWER:

v ′µ
′

w ′µ′ = vµMµ′

µM
ν
µ′wν = vµwµ

as,

Mµ′

µM
ν
µ′ =

∂x ′µ
′

∂xµ
∂xν

∂x ′µ′
=
∂xν

∂xµ
= δνµ

[4 marks]

(iii) Under a coordinate transformation the Christoffel symbol transforms as;

Γ′µ
′

α′β′ = Γµ αβ
∂x ′µ

′

∂xµ
∂xα

∂x ′α′
∂xβ

∂x ′β′
−

(
∂2x ′µ

′

∂xα∂xβ

)
∂xα

∂x ′α′
∂xβ

∂x ′β′

Does the Christoffel symbol transform as a tensor?

ANSWER: No. If it were a tensor it would transform as;

Γ′µ
′

α′β′ = Γµ αβ
∂x ′µ

′

∂xµ
∂xα

∂x ′α′
∂xβ

∂x ′β′

ie. missing the second term above. This remaining term is not that of a tensor
transformation

[4 marks]
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(iv) Show that ∂µwν, the partial derivative of a covector field wµ, does not transform
as a tensor.

ANSWER:

∂µ′w ′ν′ =
∂

∂x ′µ′

(
∂xν

∂x ′ν′
wν

)
Using chain rule,

∂

∂x ′µ′
=
∂xµ

∂x ′µ′
∂

∂xµ

then,

∂µ′w ′ν′ =
∂xµ

∂x ′µ′
∂

∂xµ

(
∂xν

∂x ′ν′
wν

)
=

∂xµ

∂x ′µ′
∂xν

∂x ′ν′
∂µwν + wν

∂xµ

∂x ′µ′
∂

∂xµ

(
∂xν

∂x ′ν′

)
The first term is the usual tensor transformation for a (0, 2) tensor. However,
in addition to this, there is also the second term which is not part of the usual
tensor transformation.

[4 marks]

(v) Starting from the identity,

δµν =
∂xµ

∂xν
=
∂xµ

∂x ′ν′
∂x ′ν

′

∂xν
(1)

take an appropriate partial derivative of this to derive,

∂x ′ν
′

∂xν
∂x ′α

∂xα
∂xµ

∂x ′α∂x ′ν′
= −

∂xµ

∂x ′ν′
∂x ′ν

′

∂xα∂xν
(2)

ANSWER: Taking a derivative ∂α;

∂αδ
µ
ν = ∂α

(
∂xµ

∂x ′ν′
∂x ′ν

′

∂xν

)
=
∂x ′ν

′

∂xν
∂α

∂xµ

∂x ′ν′
+
∂xµ

∂x ′ν′
∂α
∂x ′ν

′

∂xν
(3)

Now ∂αδ
µ
ν = 0 and so,

0 =
∂x ′ν

′

∂xν
∂

∂xα
∂xµ

∂x ′ν′
+
∂xµ

∂x ′ν′
∂x ′ν

′

∂xα∂xν

=
∂x ′ν

′

∂xν
∂x ′α

∂xα
∂

∂x ′α
∂xµ

∂x ′ν′
+
∂xµ

∂x ′ν′
∂x ′ν

′

∂xα∂xν
(4)
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So that,

∂x ′ν
′

∂xν
∂x ′α

∂xα
∂xµ

∂x ′α∂x ′ν′
= −

∂xµ

∂x ′ν′
∂x ′ν

′

∂xα∂xν
(5)

[4 marks]

(vi) Show that the covariant derivative of a covector field wµ, defined as ∇µwν =
∂µwν − Γα µνwα, does transform as a tensor.

ANSWER: From the previous parts;

∇µ′w ′ν′ = ∂µ′w ′ν′ − Γ
′α′

µ′ν′w
′
α′

=
∂xµ

∂x ′µ′
∂xν

∂x ′ν′
∂µwν + wν

∂xµ

∂x ′µ′
∂

∂xµ

(
∂xν

∂x ′ν′

)
−

(
wα

∂xα

∂x ′α′

) (
Γβ µν

∂x ′α
′

∂xβ
∂xµ

∂x ′ν′
∂xν

∂x ′µ′

)
+
(
wα

∂xα

∂x ′α′

) ((
∂2x ′α

′

∂xρ∂xσ

)
∂xρ

∂x ′µ′
∂xσ

∂x ′ν′

)
=

∂xµ

∂x ′µ′
∂xν

∂x ′ν′

(
∂µwν − wαΓ

β
µν

∂x ′α
′

∂xβ
∂xα

∂x ′α′

)
+wα

(
∂2xα

∂x ′µ′∂x ′ν′
+

(
∂2x ′α

′

∂xρ∂xσ

)
∂xρ

∂x ′µ′
∂xσ

∂x ′ν′
∂xα

∂x ′α′

)
From previous part;

∂x ′α
′

∂xα
∂2xα

∂x ′µ′∂x ′ν′
= −

(
∂2x ′α

′

∂xρ∂xσ

)
∂xρ

∂x ′µ′
∂xσ

∂x ′ν′

and hence

∂2xα

∂x ′µ′∂x ′ν′
= −

(
∂2x ′α

′

∂xρ∂xσ

)
∂xρ

∂x ′µ′
∂xσ

∂x ′ν′
∂xα

∂x ′α′

Using this we have;

∇µ′w ′ν′ =
∂xµ

∂x ′µ′
∂xν

∂x ′ν′
(
∂µwν − wαΓ

α
µν

)
=

∂xµ

∂x ′µ′
∂xν

∂x ′ν′
∇µwν

as required for a tensor.
[4 marks]

[Total 24 marks]
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Section B

Answer 2 out of the 4 questions in the following section.
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SECTION B

2. This question concerns the Newtonian spacetime, which we write using coordinates
xµ = (t , x i) with i = 1, 2, 3 as,

ds2 =
(
ηµν − 2εΦ(x)δµν

)
dxµdxν

where εΦ is the Newtonian potential, and we are interested in the Newtonian limit
ε → 0 so that |εΦ| � 1 .

(i) State the stress tensor for a perfect fluid in a general spacetime in terms of its
energy density ρ, pressure P and local 4-velocity uµ (where uµuµ = −1).

ANSWER:

Tµν = (ρ + P) uµuν + P gµν

[1 mark]

(ii) In the limit ε → 0 the components of the Ricci tensor to leading order in ε are;

Rtt = ε δij∂i∂jΦ

Rti = 0
Rij = ε δij (δab∂a∂bΦ)

Use these to compute the components of the stress tensor that satisfies the
Einstein equations for this spacetime. Show that this is the stress tensor for a
dust fluid (ie. fluid with zero pressure), and determine the 4-velocity and energy
density of this dust in terms of the Newtonian potential εΦ.

ANSWER: Then Gµν = Rµν −
1
2gµνR. The trace,

R = gµνRµν = gttRtt + 2gtiRti + gijRij

Since Rµν is already O(ε), then to leading order O(ε) then,

R = ηttRtt + ηijRij

= −Rtt + δijRij

= −
(
ε δij∂i∂jΦ

)
+ δij

(
ε δij (δab∂a∂bΦ)

)
= ε

(
−δij∂i∂jΦ + δijδij (δab∂a∂bΦ)

)
Now recall that δijδij = 3, then,

R = ε
(
−δij∂i∂jΦ + 3 (δab∂a∂bΦ)

)
= ε (2δab∂a∂bΦ)

PT4.2 ANSWERS 8
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Then,

Gtt = Rtt −
1
2

gttR

= Rtt +
1
2

R

= ε δij∂i∂jΦ +
1
2
ε (2δab∂a∂bΦ)

= ε (2δab∂a∂bΦ)

to leading order.
The off diagonal terms vansh; Gti = Rti −

1
2gtiR = 0

The spatial components;

Gij = Rij −
1
2

gijR

= Rij −
1
2
δijR

= ε δij (δab∂a∂bΦ) −
1
2
δijε (2δab∂a∂bΦ)

= 0

also vanish to leading order O(ε).
The Einstein equations (c = 1) are,

Gµν = 8πGNTµν (1)

so then the stress tensor that must satisfy the Einstein equation is;

Ttt =
1

8πGN
Gtt =

1
8πGN

ε (2δab∂a∂bΦ)

=
1

4πGN
δij∂i∂j (εΦ)

with Tti = Tij = 0 to leading order.
A dust fluid has P = 0 and so, Tµν = ρuµuν. Taking the fluid to be static (to
leading order) so that uµ = (1, 0, 0, 0) and hence, uµ = (−1, 0, 0, 0) to leading
order, then,

Ttt = ρutut = ρ

to leading order, and Tti = Tij = 0.
Thus equating these, we find;

ρ =
1

4πGN
δij∂i∂j (εΦ)

PT4.2 ANSWERS 9
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and hence recover the Newton law for gravity,

δij∂i∂j (εΦ) = 4πGNρ

for Newtonian potential εΦ.
[1 mark]

(iii) By calculation, show that to leading order in ε,

Γi
tt = +ε∂iΦ

Using this, show that a non-accelerated particle that is slowly moving obeys (to
leading order in ε → 0),

d2x i

dt2
= −∂i (εΦ)

ANSWER: So,

Γi
tt =

1
2

giµ
(
∂tgµt + ∂tgtµ − ∂µgtt

)
= −

1
2

gij∂jgtt

= −
1
2

gij∂jgtt

Now the inverse metric is gµν = (ηµν + 2εΦδµν) to leading order.
Then,

Γi
tt = −

1
2

(
ηij + 2εΦδij

)
∂j (ηtt − 2εΦδtt )

= ε
1
2

(
δij + 2εΦδij

)
2∂jΦ

= εδij∂jΦ

= ε∂iΦ

Consider geodesic equation;

d2xµ

dτ2
+ Γµ αβ

dxα

dτ
dxβ

dτ
= 0

and so taking the spatial component;

d2x i

dτ2
+ Γi

αβ

dxα

dτ
dxβ

dτ
= 0

Now for slow motion we consider dx t

dτ ' 1 and dx i

dτ ' 0 to leading order. Then,

d2x i

dτ2
+ Γi

tt = 0

PT4.2 ANSWERS 10
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and hence,

d2x i

dτ2
= −Γi

tt = −∂i (εΦ)

[1 mark]

[Total 3 marks]
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3. This question concerns the Schwarschild metric, which we write using coordinates
xµ = (t , r , θ, φ) as,

ds2 = −
(
1 −

2G M
r

)
dt2 +

(
1 −

2G M
r

)−1

dr2 + r2
(
dθ2 + sin2 θdφ2

)
for a mass M, with G the Newton constant.

(i) Consider a timelike geodesic xµ(τ) = (T (τ), R(τ),Θ(τ),Φ(τ)) in the
Schwarzschild metric where τ is proper time. Write a Lagrangian that we may
vary to determine the geodesic. Deduce the Euler-Lagrange equations for Θ
and Φ. Show these are consistent with a geodesic that lies in the plane θ = π/2.
We now restrict our attention to such geodesics. Show then that,

R2 dΦ
dτ

= J

where J is a constant.

ANSWER:

L =
∫

dτL

where

L = gµνẋµẋν

= −

(
1 −

2GM
R

)
Ṫ2 +

(
1 −

2GM
R

)−1

Ṙ2 + R2
(
Θ̇2 + sin2ΘΦ̇2

)
with˙= d/dτ.
Euler-Lagrange (E-L) equation for Θ:

d
dτ

(
2R2Θ̇

)
= 2R2 sinΘ cosΘΦ̇2

E-L equation for Φ:

d
dτ

(
2R2 sin2ΘΦ̇

)
= 0

Taking Θ = π/2 then the first of these above is satisfied as Θ̇ = 0 and cosΘ = 0.
The second becomes;

d
dτ

(
2R2Φ̇

)
= 0

Hence, R2Φ̇ =constant.
[1 mark]
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(ii) Further deduce the equations that govern T and R. Show that,(
1 −

2G M
r

)
dT
dτ

= k

were k is a constant. Hence show the equation governing the radial motion
in the plane θ = π/2 looks like that of one dimensional motion for a unit mass
particle in a potential V (R) with constant energy E so,

E =
1
2

(
dR
dτ

)2

+ V (R) , V (R) = −
G M
R

+
J2

2R2
+
αJ2

R3

where α is a constant depending on the mass M and Newton constant G that
you should determine.

ANSWER:
E-L equation for T :

d
dτ

(
−2

(
1 −

2G M
r

)
dT
dτ

)
= 0

Hence, (
1 −

2G M
r

)
dT
dτ

= k

for constant of integration k .
The remaining equation is best derived from condition L = −1 since the param-
eter τ is proper time. Then (recalling Φ = pi/2),

−1 = −

(
1 −

2G M
R

)
Ṫ2 +

(
1 −

2G M
R

)−1

Ṙ2 + R2Φ̇2

= −
k 2(

1 − 2G M
R

) +
1

1 − 2G M
R

Ṙ2 +
R2

J2

So,

0 = 1 −
k 2(

1 − 2G M
R

) +
1

1 − 2G M
R

Ṙ2 +
J2

R2

then,

1
2

k 2 =
1
2

Ṙ2 +
1
2

(
1 −

2G M
R

) (
1 +

J2

R2

)
=

1
2

Ṙ2 +
1
2
−

G M
R

+
J2

2R2
−

G MJ2

R3

PT4.2 ANSWERS 13
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and so,

E =
1
2

k 2 −
1
2

=
1
2

Ṙ2 −
G M
R

+
J2

2R2
−

G MJ2

R3

So,

V (R) = −
G M
R

+
J2

2R2
−

G MJ2

R3

so α = −G M. For Newtonian gravity α = 0.
[1 mark]

(iii) Show that for a circular orbit, with constant radius R = R0, then,

V ′′(R0) =
J2

R4
0

(
1 +

6α
R0

)
(1)

ANSWER:
For a unit mass particle in a potential V (R),

R̈ = −V ′(R) (2)

and for a circular orbit R =constant, so R̈ = 0 so V ′(R) = 0.
So,

V (R) = −
G M
R

+
J2

2R2
+
αJ2

R3

then,

V ′(R) = +
G M
R2
−

J2

R3
−

3αJ2

R4

and,

V ′′(R) = −
2G M

R3
+

3J2

R4
+

12αJ2

R5

For a circular orbit R = R0 then,

J2

R0

(
1 +

3α
R0

)
= G M

so that,

V ′′(R0) = −
2G M

R3
0

+ J2

(
3

R4
0

+
12α
R5

0

)
= −

2J2

R4
0

(
1 +

3α
R0

)
+ J2

(
3

R4
0

+
12α
R5

0

)
=

J2

R4
0

(
−2

(
1 +

3α
R0

)
+ 3 +

12α
R0

)
=

J2

R4
0

(
1 +

6α
R0

)
[1 mark]
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(iv) Compute the proper time Tang required for Φ to traverse an angle 2π. Show that
for a circular orbit radius R = R0 that is perturbed a little, so R(τ) ' R0 + δR(τ),
the motion approximately performs simple harmonic oscillation with period,

Trad =
2π√

V ′′(R0)

Comment on the relation between Tang and Trad .

ANSWER:
From,

R2 dΦ
dτ

= J

the proper time for a circular orbit, Tang, is;

Tang =
2πR2

0

J

as R = R0 =constant.
For a unit mass particle in a potential V (R),

R̈ = −V ′(R)

If R(τ) ' R0 + δR(τ) for R0 a circular orbit V ′(R0) = 0, then we can expand,

V ′(R) = V ′(R0 + δR(τ)) = V ′(R0) + δR(τ)V ′′(R0) + ...
= δR(τ)V ′′(R0)

so that,

R̈ = ¨δR(τ) ' −δR(τ)V ′′(R0)

This is SHO with period,

Trad =
2π√

V ′′(R)

so,

Trad =
2πR2

J
1√

1 + 6α
R

Trad = Tang for Newton theory α = 0, and hence have closed orbits when per-
turbed from circularity. However for GR they are not the same, so the orbit does
not close, hence the perihelion precesses.

[1 mark]

[Total 4 marks]
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4. (i) Consider a particle following a timelike curve xµ(τ) in a general spacetime,
where τ is the particle’s proper time. The 4-velocity vµ = dxµ/dτ. Give the
expression for the 4-acceleration aµ in terms of vµ and its covariant derivative.

ANSWER:

aµ = vν∇νvµ

[1 mark]

(ii) Show that for the case of Minkowski spacetime in Minkowski coordinates xµ =
(t , x i) so that ds2 = ηµνdxµdxν then this reduces to the Special Relativity result,

aµ =
d2xµ

dτ2
(1)

ANSWER:
In Minkowski spacetime in canonical coordinates so that gµν = ηµν then Γµ αβ = 0.
Then,

aµ = vν∇νvµ = vν∂νvµ + vνvαΓµ να = vν∂νvµ

=
dxν

dτ
∂

∂xν
vµ =

d
dτ

vµ =
d2

dτ2
xµ (2)

[1 mark]

(iii) By carefully varying the action,

L =
∫

dτ
(
gµν

dxµ

dτ
dxν

dτ

)
(3)

show that the Euler-Lagrange equations are related to the geodesic condition
vµ∇µvν = 0 as,

2vµ∇µvα =
d
dτ

 ∂L
∂dxα

dτ

 − ∂L

∂xα
(4)

ANSWER:
The geodesic condition,

vµ∇µvν =
dxµ

dτ

(
∂µvν + Γν µαvα

)
=

dxµ

dτ
∂

∂xµ
vν + Γν µα

dxµ

dτ
dxα

dτ

=
dvν

dτ
+ Γν µα

dxµ

dτ
dxα

dτ

=
d2xν

dτ2
+ Γν µα

dxµ

dτ
dxα

dτ
(5)
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Now,

L =
∫

dτL , L = gµν(x)
dxµ

dτ
dxν

dτ

Firstly;

∂L

∂xα
=

dxµ

dτ
dxν

dτ
∂

∂xα
gµν(x)

and secondly,

∂L

∂dxα
dτ

= 2
dxν

dτ
gαν(x)

Then,

d
dτ

∂L

∂dxα
dτ

= 2
d2xν

dτ2
gαν(x) + 2

dxν

dτ
d
dτ

gαν(x)

= 2
d2xν

dτ2
gαν(x) + 2

dxν

dτ
dxβ

dτ
d

dxβ
gαν(x)

Then;

d
dτ

∂L

∂dxα
dτ

−
∂L

∂xα
= 2

d2xν

dτ2
gαν(x) + 2

dxν

dτ
dxβ

dτ
d

dxβ
gαν(x) −

dxµ

dτ
dxν

dτ
∂

∂xα
gµν(x)

= 2
d2xν

dτ2
gαν + 2

dxν

dτ
dxβ

dτ
d

dxβ
gαν −

dxµ

dτ
dxν

dτ
∂

∂xα
gµν

= 2
d2xν

dτ2
gαν +

(
2

d
dxµ

gαν −
∂

∂xα
gµν

)
dxµ

dτ
dxν

dτ

= 2
d2xν

dτ2
gαν +

(
d

dxµ
gαν +

d
dxν

gαµ −
∂

∂xα
gµν

)
dxµ

dτ
dxν

dτ

= 2gαν
d2xν

dτ2
+ 2gαβΓβ µν

dxµ

dτ
dxν

dτ

= 2gαβ

(
d2xβ

dτ2
+ Γβ µν

dxµ

dτ
dxν

dτ

)
So comparing equations (5) and (6) we obtain,

2vµ∇µvα = 2gαβvµ∇µvβ = 2gαβ

(
d2xβ

dτ2
+ Γβ µν

dxµ

dτ
dxν

dτ

)
=

d
dτ

∂L

∂dxα
dτ

−
∂L

∂xα

as required.
[1 mark]
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(iv) Consider now a particle coupled to a vector field Aµ(x) in a general spacetime
so that its Lagrangian is modified to,

L =
∫

dτ
(
gµν(x)

dxµ

dτ
dxν

dτ
+ Aµ(x)

dxµ

dτ

)
(6)

Show that the 4-acceleration of the particle is;

aµ =
1
2

Fµνvν , Fµν = ∇µAν − ∇νAµ (7)

ANSWER:
Let us split the action up into Lfree and Lint ;

L =
∫

dτLfree +Lint , Lfree = gµν(x)
dxµ

dτ
dxν

dτ
, Lint = Aµ(x)

dxµ

dτ
(8)

The E-L equations are now;

0 =
 d
dτ

∂Lfree

∂dxα
dτ

−
∂Lfree

∂xα

 +
 d
dτ

∂Lint

∂dxα
dτ

−
∂Lint

∂xα


= 2vµ∇µvα +

 d
dτ

∂Lint

∂dxα
dτ

−
∂Lint

∂xα


= 2aα +

 d
dτ

∂Lint

∂dxα
dτ

−
∂Lint

∂xα


Hence we obtain the acceleration from the variation;

aα = −
1
2

 d
dτ

∂Lint

∂dxα
dτ

−
∂Lint

∂xα


For Lint = Aµ(x)dxµ

dτ we have,

∂Lint

∂dxα
dτ

= Aα(x) ,
∂Lint

∂xα
=

dxµ

dτ
∂αAµ(x)

and so,

d
dτ

∂Lint

∂dxα
dτ

=
d
dτ

Aα(x) =
dxµ

dτ
∂µAα(x)

Then,

aα = −
1
2

(
dxµ

dτ
∂µAα(x) −

dxµ

dτ
∂αAµ(x)

)
=

1
2

dxµ

dτ

(
∂αAµ(x) − ∂µAα(x)

)
PT4.2 ANSWERS 18
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Finally, note that,

Fµν = ∇µAν − ∇νAµ

= ∂µAν − Γ
α
µνAα − ∂νAµ + Γα νµAα

= ∂µAν − ∂νAµ

and hence we see,

aα =
1
2

dxµ

dτ

(
∂αAµ(x) − ∂µAα(x)

)
=

1
2

Fαµvµ

as required.
[1 mark]

[Total 4 marks]
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5. (i) Show that the Christoffel symbol is related to partial derivatives of the metric as,

∂αgµν = gµβΓβ αν + gνβΓβ αµ

ANSWER:
Now,

gµβΓβ αν = gµβ

(
1
2

gβσ (∂νgασ + ∂αgσν − ∂σgαν)
)

=
1
2

(
∂νgαµ + ∂αgµν − ∂µgαν

)
So,

gµβΓβ αν + gνβΓβ αµ =
1
2

(
∂νgαµ + ∂αgµν − ∂µgαν

)
+

1
2

(
∂µgαν + ∂αgνµ − ∂νgαµ

)
=

1
2
∂αgµν +

1
2
∂αgνµ = ∂αgµν

as required.

(ii) The Lie derivative of a (0, 2) tensor Aµν with respect to a vector field wµ is,

(Lie)(w, A )µν = wα∂αAµν + Aµα∂νwα + Aαν∂µwα

Suppose we consider the Lie derivative of the metric gµν. Show that this can
also be written in terms of the covariant derivative as,

(Lie)(w, g)µν = ∇µwν + ∇νwµ

If this vanishes, we say wµ is a Killing vector field.

ANSWER:

(Lie)(w, g)µν = wα∂αgµν + gµα∂νwα + gαν∂µwα

= wα
(
gµβΓβ αν + gνβΓβ αµ

)
+ gµα∂νwα + gαν∂µwα

=
(
gµα∂νwα + wαgµβΓβ αν

)
+

(
gαν∂µwα + wαgνβΓβ αµ

)
= gµβ

(
∂νwβ + wαΓβ αν

)
+ gνβ

(
∂µwβ + wαΓβ αµ

)
= gµβ∇νwβ + gνβ∇µwβ

= ∇νwµ + ∇µwν

[1 mark]
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(iii) Consider a timelike particle with velocity vµ = dxµ/dτ for proper time τ. Suppose
it follows a geodesic in a spacetime with a Killing vector field wµ. Show that the
quantity,

φ = −wµvµ

is constant along the particle’s trajectory.

ANSWER:
If constant along the particle’s trajectory, then,

0 =
d
dτ
φ =

dxα

dτ
∂αφ = vα∇αφ

= −vα∇α
(
wµvµ

)
= −wµ

(
vα∇αvµ

)
− vαvµ∇αwµ

The first term vanishes by geodesic condition vα∇αvµ = 0, the second since wµ

is Killing, so,

0 = vµvνLie(w, g)µν = vµvν
(
∇µwν + ∇νwµ

)
= 2vµvν∇µwν

[1 mark]

(iv) Consider the spacetime with coordinates xµ = (t , x i)

ds2 = −N(x)dt2 + gij(x)dx idx j (1)

where N and gij only depend on the spatial coordinates x i and not time t .
Show that there is a Killing vector wµ for this spacetime and explicitly check
that Lie(w, g) = 0. Write down the conserved quantity φ for a non-accelerated
particle’s motion. Is this the energy of the particle as measured by observers
sitting at constant spatial position?

ANSWER:
[1 mark]

(v) In the spacetime in equation (1) above write down a Lagrangian that may be
varied to deduce geodesic motion in the spacetime. Show using the Euler-
Lagrange equations that the quantity φ is indeed conserved.

ANSWER:
[1 mark]

[Total 4 marks]
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