Exam

M.Sc. in Quantum Fields and Fundamental Forces

2:00-5:00, Monday 30 April, 2012

Answer THREE out of the four questions. Use a separate booklet for each question. Make sure that each booklet carries your name, the course title, and the number of the question attempted.
$* *$

Question (1)

(1.i). Consider the Lie group $G L(n, \mathbb{R})$ so that $g \in G L(n, \mathbb{R})$ is an $n \times n$ matrix (with nonzero determinant). We may take the matrix components $\left\{x^{i j}(g)\right\}$ as coordinates. Using such coordinates show that the vector field

$$
V=v^{i j} x^{k i}(g) \frac{\partial}{\partial x^{k j}(g)}
$$

is left invariant, where $v^{i j}$ are components of an $n \times n$ matrix. Use this to give a basis for the left invariant vector fields.
(1.ii). Use your answer to compute the Lie bracket of two left invariant vector fields, V and W in $G L(n, \mathbb{R})$, giving the components of $[V, W]$ in the above basis.
(1.iii). Consider a matrix group G embedded into $G L(n, \mathbb{R})$ by an embedding $f: G \rightarrow$ $G L(n, \mathbb{R})$. The embedding is chosen so that the left action L obeys $f \cdot L_{g}=L_{f \cdot g} \cdot f$ for $g \in G$ so that the group structure of G is faithfully embedded into $G L$. Hence show that for $V \in T_{e} G$ then $f_{\star}\left(X_{V}\right)=X_{f_{\star} V}$.
(1.iv). Show that under a map $f: \mathcal{M} \rightarrow \mathcal{N}$ the push-forward of the Lie bracket of two vector fields A, B on \mathcal{M} is given by the Lie bracket of their push-forwards $f_{\star} A, f_{\star} B$, ie. show $f_{\star}[A, B]=\left[f_{\star} A, f_{\star} B\right]$.
[4 marks]
(1.v). Use your answers above to show how to compute the structure constants of a matrix group G that may be embedded in $G L(n, \mathbb{R})$ using the Lie bracket of $G L(n, \mathbb{R})$.
[3 marks]

Question (2)

(2.i). Define cycle and boundary chains? What is homology?
(2.ii). Give a simplicial complex that triangulates the 2 -sphere.
(Hint: you may find a complex containing only four 2 -simplices.)
[3 marks]
(2.iii). Construct the boundary operators ∂_{2} and ∂_{1} as matrices for your triangulation of S^{2}. Use these to confirm that the boundary operator is nilpotent.
(2.iv). Explicitly compute the Betti numbers b_{0}, b_{1} and b_{2} of S^{2} using your triangulation and the matrices ∂_{2} and ∂_{1} you have constructed. Give a basis for the homology vector spaces.
[7 marks]
[Total 20 marks]

Question (3)

(3.i). Give the definition of a real manifold.
[3 marks]
(3.ii). Use Stereographic projection to give an Atlas on the n-sphere, S^{n}. Check this satisfies the definition of a manifold you gave above.
[5 marks]
(3.iii). Let a Lie group G have a transitive action on a compact manifold \mathcal{M}. Take a point $p_{0} \in \mathcal{M}$, and its stabilizer subgroup $H_{p_{0}}$. Construct a smooth map from the coset manifold $G / H_{p_{0}}$ to \mathcal{M} which is invertible. Be sure to explain why it is invertible. What is the relationship between \mathcal{M} and the coset $G / H_{p_{0}}$?
(3.iv). Show that the matrix group $U(n+1)$ has a transitive group action on $S^{2 n+1}$. (Hint: You may assume the fact that for vectors \mathbf{u}, \mathbf{v} in \mathbb{C}^{n+1} such that $\mathbf{v}^{\dagger} \cdot \mathbf{v}=\mathbf{u}^{\dagger} \cdot \mathbf{u}$ one may always find a matrix $\mathbf{M} \in U(n+1)$ so that $\mathbf{v}=\mathbf{M} \cdot \mathbf{u}$.)
[3 marks]
(3.v). Use this group action to write the manifold $S^{2 n+1}$ as a coset G / H where you should determine G and H.

Question (4)

(4.i). Using a coordinate basis define the exterior derivative d of an r-form ω. Show explicitly that d is nilpotent.
[4 marks]
(4.ii). Take \mathcal{M} to be an m-dimensional Riemannian manifold. Using a coordinate basis define the Hodge star, $\star \omega$, of an r-form ω. Show that $\star \star \omega= \pm \omega$ where you should determine the sign \pm in terms of m and r.
(Hint: $\left(\operatorname{det} g_{\mu \nu}\right) \epsilon^{\alpha_{1} \ldots \alpha_{r} \alpha_{r+1} \ldots \alpha_{m}} \epsilon_{\alpha_{1} \ldots \alpha_{r} \beta_{r+1} \ldots \beta_{m}}=r!(m-r)!\delta_{\beta_{1+r}}^{\left[\alpha_{r+1}\right.} \delta_{\beta_{r+2}}^{\alpha_{r+2}} \ldots \delta_{\beta_{m}}^{\left.\alpha_{m}\right]}$)
[5 marks]
(4.iii). Use differential forms to write the equations of electromagnetism (EM) in terms of the field strength 2-form F and current 1-form j. Show these equations imply the current is co-closed - what does this imply physically?
[3 marks]
(4.iv). Given an $(m-2)$-chain b on the manifold \mathcal{M} we may define a quantity $Q \equiv \int_{b} \star F$ in terms of the EM field strength F. Suppose b is a boundary chain and that Q vanishes. Then what condition is placed on the current j ?
[3 marks]
(4.v). Given a 2-chain c we may define a quantity $Q^{\prime} \equiv \int_{c} F$ in terms of the EM field strength F. Suppose we take $\mathcal{M}=\mathbb{R}^{m}$, a general field strength F obeying the EM equations, and c to be a cycle chain. Then show that Q^{\prime} always vanishes.
Suppose now we remove the origin point so that $\mathcal{M}=\mathbb{R}^{m}-\{0\}$. Then for which dimensions m does Q^{\prime} still vanish for a general F solving the EM equations and for all choices of cycle c ?

Blank page

