# Imperial College London MSci EXAMINATION May 2014

This paper is also taken for the relevant Examination for the Associateship

## GENERAL RELATIVITY

### For 4th-Year Physics Students

Monday 19<sup>th</sup> May 2014: 14:00 to 16:00

The paper consists of two sections: A and B Section A contains one question [40 marks total]. Section B contains four questions [30 marks each].

Candidates are required to: Answer **ALL** parts of Section A and **TWO QUESTIONS** from Section B.

Marks shown on this paper are indicative of those the Examiners anticipate assigning.

#### **General Instructions**

Complete the front cover of each of the 3 answer books provided.

If an electronic calculator is used, write its serial number at the top of the front cover of each answer book.

USE ONE ANSWER BOOK FOR EACH QUESTION.

Enter the number of each question attempted in the box on the front cover of its corresponding answer book.

Hand in 3 answer books even if they have not all been used.

You are reminded that Examiners attach great importance to legibility, accuracy and clarity of expression.

#### **Conventions:**

We use conventions as in lectures. In particular we take (-, +, +, +) signature.

#### You may find the following formulae useful:

The Christoffel symbol is defined as,

$$\Gamma^{\mu}_{\ \alpha\beta} \equiv \frac{1}{2} g^{\mu\nu} \left( \partial_{\alpha} g_{\nu\beta} + \partial_{\beta} g_{\alpha\nu} - \partial_{\nu} g_{\alpha\beta} \right)$$

The covariant derivative of a vector field is,

$$\nabla_{\mu} \mathbf{v}^{\nu} \equiv \partial_{\mu} \mathbf{v}^{\nu} + \Gamma^{\nu}{}_{\mu\alpha} \mathbf{v}^{\alpha}$$

and for a covector field is,

$$\nabla_{\mu} \mathbf{W}_{\nu} \equiv \partial_{\mu} \mathbf{W}_{\nu} - \Gamma^{\alpha}{}_{\mu\nu} \mathbf{W}_{\alpha}$$

For a Lagrangian of a curve  $x^{\mu}(\lambda)$  of the form,

$$L = \int d\lambda \, \mathcal{L}(x^{\mu}, \frac{dx^{\mu}}{d\lambda})$$

the Euler-Lagrange equations are,

$$\frac{d}{d\lambda}\left(\frac{\partial \mathcal{L}}{\partial(\frac{dx^{\mu}}{d\lambda})}\right) = \frac{\partial \mathcal{L}}{\partial x^{\mu}}$$

## **Section A**

Answer all of section A.

#### **SECTION A**

- 1. This question concerns the covariant derivative.
  - (i) State how the components of a (1, 0) tensor  $v^{\mu}$  and a (0, 1) tensor  $w_{\mu}$  transform under a coordinate transformation  $x \to x'$ .

**ANSWER:** Testing material given in lectures.

$$v'^{\mu'} = M^{\mu'}_{\ \mu} v^{\mu} , \quad w'_{\mu'} = M^{\mu}_{\ \mu'} w_{\mu}$$

where,

$$M^{\mu'}_{\ \mu} = \frac{\partial x'^{\mu'}}{\partial x^{\mu}}, \quad M^{\mu}_{\ \mu'} = \frac{\partial x^{\mu}}{\partial x'^{\mu'}}$$

[8 marks]

(ii) Use your previous answer to show that  $v^{\mu}w_{\mu}$  transforms as a scalar under a coordinate transformation  $x \to x'$ .

**ANSWER:** Testing material given in lectures.

$$v'^{\mu'}w'_{\mu'} = v^{\mu}M^{\mu'}{}_{\mu}M^{\nu}{}_{\mu'}w_{\nu} = v^{\mu}w_{\mu}$$

as,

$$M^{\mu'}_{\ \mu}M^{\nu}_{\ \mu'} = \frac{\partial x'^{\mu'}}{\partial x^{\mu}}\frac{\partial x^{\nu}}{\partial x'^{\mu'}} = \frac{\partial x^{\nu}}{\partial x^{\mu}} = \delta^{\nu}_{\mu}$$

[8 marks]

(iii) Under a coordinate transformation the Christoffel symbol transforms as;

$$\Gamma^{\prime\mu^{\prime}}_{\ \alpha^{\prime}\beta^{\prime}} = \Gamma^{\mu}_{\ \alpha\beta} \frac{\partial x^{\prime\mu^{\prime}}}{\partial x^{\mu}} \frac{\partial x^{\alpha}}{\partial x^{\prime\alpha^{\prime}}} \frac{\partial x^{\beta}}{\partial x^{\prime\beta^{\prime}}} - \left(\frac{\partial^{2} x^{\prime\mu^{\prime}}}{\partial x^{\alpha} \partial x^{\beta}}\right) \frac{\partial x^{\alpha}}{\partial x^{\prime\alpha^{\prime}}} \frac{\partial x^{\beta}}{\partial x^{\prime\beta^{\prime}}} \ .$$

Show that the Christoffel symbol does not transform as a tensor.

**ANSWER:** Testing material given in lectures.

#### **ANSWERS** 4

If it were a tensor it would transform as;

$$\Gamma^{\prime\mu'}_{\ \alpha'\beta'} = \Gamma^{\mu}_{\ \alpha\beta} \frac{\partial x^{\prime\mu'}}{\partial x^{\mu}} \frac{\partial x^{\alpha}}{\partial x^{\prime\alpha'}} \frac{\partial x^{\beta}}{\partial x^{\prime\beta'}}$$

ie. missing the second term above. This remaining term is not that of a tensor transformation

[2 marks]

(iv) Show that  $\partial_{\mu}w_{\nu}$ , the partial derivative of a covector field  $w_{\mu}$ , does *not* transform as a tensor.

ANSWER: Testing material given in lectures.

$$\partial_{\mu'} W_{\nu'}' = \frac{\partial}{\partial x'^{\mu'}} \left( \frac{\partial x^{\nu}}{\partial x'^{\nu'}} W_{\nu} \right)$$

Using chain rule,

$$\frac{\partial}{\partial x'^{\mu'}} = \frac{\partial x^{\mu}}{\partial x'^{\mu'}} \frac{\partial}{\partial x^{\mu}}$$

then,

$$\partial_{\mu'} W_{\nu'}' = \frac{\partial x^{\mu}}{\partial x'^{\mu'}} \frac{\partial}{\partial x^{\mu}} \left( \frac{\partial x^{\nu}}{\partial x'^{\nu'}} W_{\nu} \right)$$
$$= \frac{\partial x^{\mu}}{\partial x'^{\mu'}} \frac{\partial x^{\nu}}{\partial x'^{\nu'}} \partial_{\mu} W_{\nu} + W_{\nu} \frac{\partial x^{\mu}}{\partial x'^{\mu'}} \frac{\partial}{\partial x^{\mu}} \left( \frac{\partial x^{\nu}}{\partial x'^{\nu'}} \right)$$

The first term is the usual tensor transformation for a (0, 2) tensor. However, in addition to this, there is also the second term which is not part of the usual tensor transformation.

[8 marks]

(v) Starting from the relations,

$$\delta^{\mu}_{\nu} = \frac{\partial x^{\mu}}{\partial x^{\nu}} = \frac{\partial x^{\mu}}{\partial x'^{\nu'}} \frac{\partial x'^{\nu'}}{\partial x^{\nu}}$$

take an appropriate partial derivative of this to derive,

$$\frac{\partial x^{\prime \alpha}}{\partial x^{\alpha}} \frac{\partial x^{\prime \beta^{\prime}}}{\partial x^{\beta}} \frac{\partial^{2} x^{\mu}}{\partial x^{\prime \alpha} \partial x^{\prime \beta^{\prime}}} = -\frac{\partial x^{\mu}}{\partial x^{\prime \mu^{\prime}}} \frac{\partial^{2} x^{\prime \mu^{\prime}}}{\partial x^{\alpha} \partial x^{\beta}}$$

**ANSWER:** Testing material seen as part of harder example sheet equation.

**ANSWERS** 5

Taking a derivative  $\partial_{\alpha}$ ;

$$\partial_{\alpha}\delta^{\mu}_{\nu} = \partial_{\alpha}\left(\frac{\partial x^{\mu}}{\partial x'^{\nu'}}\frac{\partial x'^{\nu'}}{\partial x^{\nu}}\right) = \frac{\partial x'^{\nu'}}{\partial x^{\nu}}\partial_{\alpha}\frac{\partial x^{\mu}}{\partial x'^{\nu'}} + \frac{\partial x^{\mu}}{\partial x'^{\nu'}}\partial_{\alpha}\frac{\partial x'^{\nu'}}{\partial x^{\nu}} \tag{1}$$

Now  $\partial_{\alpha}\delta^{\mu}_{\nu} = 0$  and so,

$$0 = \frac{\partial x^{\prime\nu'}}{\partial x^{\nu}} \frac{\partial}{\partial x^{\alpha}} \frac{\partial x^{\mu}}{\partial x^{\prime\nu'}} + \frac{\partial x^{\mu}}{\partial x^{\prime\nu'}} \frac{\partial x^{\prime\nu'}}{\partial x^{\alpha} \partial x^{\nu}}$$
$$= \frac{\partial x^{\prime\nu'}}{\partial x^{\nu}} \frac{\partial x^{\prime\alpha}}{\partial x^{\alpha}} \frac{\partial}{\partial x^{\prime\alpha}} \frac{\partial x^{\mu}}{\partial x^{\prime\nu'}} + \frac{\partial x^{\mu}}{\partial x^{\prime\nu'}} \frac{\partial x^{\prime\nu'}}{\partial x^{\alpha} \partial x^{\nu}}$$
(2)

So that,

$$\frac{\partial x^{\prime\nu'}}{\partial x^{\nu}} \frac{\partial x^{\prime\alpha}}{\partial x^{\alpha}} \frac{\partial x^{\mu}}{\partial x^{\prime\alpha} \partial x^{\prime\nu'}} = -\frac{\partial x^{\mu}}{\partial x^{\prime\nu'}} \frac{\partial x^{\prime\nu'}}{\partial x^{\alpha} \partial x^{\nu}}$$
(3)

[6 marks]

(vi) Show that the covariant derivative of a covector field  $w_{\mu}$ , defined as  $\nabla_{\mu}w_{\nu} = \partial_{\mu}w_{\nu} - \Gamma^{\alpha}{}_{\mu\nu}w_{\alpha}$ , does transform as a tensor.

**ANSWER:** Testing material given in lectures, although not directly in this form (i.e. having to use relation above).

From the previous parts;

$$\begin{aligned} \nabla_{\mu'} W_{\nu'}' &= \partial_{\mu'} W_{\nu'}' - \Gamma_{\mu'\nu'}'^{\alpha'} W_{\alpha'}' \\ &= \frac{\partial x^{\mu}}{\partial x'^{\mu'}} \frac{\partial x^{\nu}}{\partial x'^{\nu'}} \partial_{\mu} W_{\nu} + W_{\nu} \frac{\partial x^{\mu}}{\partial x'^{\mu'}} \frac{\partial}{\partial x^{\mu}} \left( \frac{\partial x^{\nu}}{\partial x'^{\nu'}} \right) \\ &- \left( W_{\alpha} \frac{\partial x^{\alpha}}{\partial x'^{\alpha'}} \right) \left( \Gamma^{\beta}_{\mu\nu} \frac{\partial x'^{\alpha'}}{\partial x^{\beta}} \frac{\partial x^{\mu}}{\partial x'^{\nu'}} \frac{\partial x^{\nu}}{\partial x'^{\mu'}} \right) \\ &+ \left( W_{\alpha} \frac{\partial x^{\alpha}}{\partial x'^{\alpha'}} \right) \left( \left( \frac{\partial^{2} x'^{\alpha'}}{\partial x^{\rho} \partial x^{\sigma}} \right) \frac{\partial x^{\rho}}{\partial x'^{\mu'}} \frac{\partial x^{\sigma}}{\partial x'^{\nu'}} \right) \\ &= \frac{\partial x^{\mu}}{\partial x'^{\mu'}} \frac{\partial x^{\nu}}{\partial x'^{\nu'}} \left( \partial_{\mu} W_{\nu} - W_{\alpha} \Gamma^{\beta}_{\mu\nu} \frac{\partial x'^{\alpha'}}{\partial x^{\beta}} \frac{\partial x^{\alpha}}{\partial x'^{\alpha'}} \right) \\ &+ W_{\alpha} \left( \frac{\partial^{2} x^{\alpha}}{\partial x'^{\mu'} \partial x'^{\nu'}} + \left( \frac{\partial^{2} x'^{\alpha'}}{\partial x^{\rho} \partial x^{\sigma}} \right) \frac{\partial x^{\rho}}{\partial x'^{\mu'}} \frac{\partial x^{\sigma}}{\partial x'^{\nu'}} \frac{\partial x^{\alpha}}{\partial x'^{\alpha'}} \right) \end{aligned}$$

From previous part;

$$\frac{\partial x^{\prime \alpha^{\prime}}}{\partial x^{\alpha}} \frac{\partial^2 x^{\alpha}}{\partial x^{\prime \mu^{\prime}} \partial x^{\prime \nu^{\prime}}} = -\left(\frac{\partial^2 x^{\prime \alpha^{\prime}}}{\partial x^{\rho} \partial x^{\sigma}}\right) \frac{\partial x^{\rho}}{\partial x^{\prime \mu^{\prime}}} \frac{\partial x^{\sigma}}{\partial x^{\prime \nu^{\prime}}}$$

[This question continues on the next page ...]

**ANSWERS** 6

and hence

$$\frac{\partial^2 x^\alpha}{\partial x'^{\mu'} \partial x'^{\nu'}} = -\left(\frac{\partial^2 x'^{\alpha'}}{\partial x^\rho \partial x^\sigma}\right) \frac{\partial x^\rho}{\partial x'^{\mu'}} \frac{\partial x^\sigma}{\partial x'^{\nu'}} \frac{\partial x^\alpha}{\partial x'^{\alpha'}}$$

Using this we have;

$$\nabla_{\mu'} \mathbf{w}_{\nu'}' = \frac{\partial x^{\mu}}{\partial x'^{\mu'}} \frac{\partial x^{\nu}}{\partial x'^{\nu'}} \left( \partial_{\mu} \mathbf{w}_{\nu} - \mathbf{w}_{\alpha} \Gamma^{\alpha}{}_{\mu\nu} \right)$$
$$= \frac{\partial x^{\mu}}{\partial x'^{\mu'}} \frac{\partial x^{\nu}}{\partial x'^{\nu'}} \nabla_{\mu} \mathbf{w}_{\nu}$$

as required for a tensor.

[8 marks]

[Total 40 marks]

General Relativity May 2014 ANSWERS

DRAFT

## **Section B**

Answer 2 out of the 4 questions in the following section.

ANSWERS DRAFT

#### **SECTION B**

**2.** This question concerns the Newtonian spacetime, which we write using coordinates  $x^{\mu} = (t, x^{i})$  with i = 1, 2, 3 as,

$$ds^{2} = \left(\eta_{\mu\nu} - 2\epsilon \Phi(x^{i})\delta_{\mu\nu}\right) dx^{\mu} dx^{\nu}$$

where  $\epsilon \Phi$  is the Newtonian potential, and we are interested in the Newtonian limit  $\epsilon \to 0$ . We take  $\Phi$  to be static, and hence only a function of the  $x^i$ .

(i) State the stress tensor for a perfect fluid in a general spacetime in terms of its energy density  $\rho$ , pressure *P* and local 4-velocity  $u^{\mu}$  (where  $u^{\mu}u_{\mu} = -1$ ). What conservation equation does the stress tensor obey?

**ANSWER:** Testing material given in lectures.

$$T_{\mu\nu} = (\rho + P) u_{\mu}u_{\nu} + P g_{\mu\nu}$$

Energy momentum conservation;

$$\nabla^{\mu}T_{\mu\nu}=0$$

[6 marks]

(ii) In the limit  $\epsilon \to 0$  the Ricci tensor to leading order  $O(\epsilon)$  is;

$$R_{tt} = \epsilon \delta_{ij} \partial_i \partial_j \Phi$$
  

$$R_{ti} = 0$$
  

$$R_{ij} = \epsilon \delta_{ij} (\delta_{kl} \partial_k \partial_l \Phi)$$

Use this to compute the components of the stress tensor that satisfies the Einstein equations for this spacetime. Show that this is the stress tensor for a dust fluid (ie. fluid with zero pressure), and determine the 4-velocity and energy density of this dust in terms of the Newtonian potential  $\epsilon \Phi$ .

**ANSWER:** Testing material given in lectures and in example sheets.

Then  $G_{\mu\nu} = R_{\mu\nu} - \frac{1}{2}g_{\mu\nu}R$ . The trace,

$$R = g^{\mu\nu}R_{\mu\nu} = g^{tt}R_{tt} + 2g^{ti}R_{ti} + g^{ij}R_{ij}$$

PT4.2

Since  $R_{\mu\nu}$  is already  $O(\epsilon)$ , then to leading order  $O(\epsilon)$  then,

$$R = \eta^{tt} R_{tt} + \eta^{tj} R_{ij}$$
  
=  $-R_{tt} + \delta_{ij} R_{ij}$   
=  $-(\epsilon \delta_{ij} \partial_i \partial_j \Phi) + \delta_{ij} (\epsilon \delta_{ij} (\delta_{ab} \partial_a \partial_b \Phi))$   
=  $\epsilon (-\delta_{ij} \partial_i \partial_j \Phi + \delta_{ij} \delta_{ij} (\delta_{ab} \partial_a \partial_b \Phi))$ 

Now recall that  $\delta_{ij}\delta_{ij} = 3$ , then,

$$R = \epsilon \left( -\delta_{ij}\partial_i\partial_j\Phi + 3\left(\delta_{ab}\partial_a\partial_b\Phi\right) \right)$$
$$= \epsilon \left( 2\delta_{ab}\partial_a\partial_b\Phi \right)$$

Then,

$$G_{tt} = R_{tt} - \frac{1}{2}g_{tt}R$$
  
=  $R_{tt} + \frac{1}{2}R$   
=  $\epsilon \delta_{ij}\partial_i\partial_j\Phi + \frac{1}{2}\epsilon (2\delta_{ab}\partial_a\partial_b\Phi)$   
=  $\epsilon (2\delta_{ab}\partial_a\partial_b\Phi)$ 

to leading order.

The off diagonal terms vansh;  $G_{ti} = R_{ti} - \frac{1}{2}g_{ti}R = 0$ The spatial components;

$$G_{ij} = R_{ij} - \frac{1}{2}g_{ij}R$$
  
=  $R_{ij} - \frac{1}{2}\delta_{ij}R$   
=  $\epsilon \delta_{ij} (\delta_{ab}\partial_a\partial_b\Phi) - \frac{1}{2}\delta_{ij}\epsilon (2\delta_{ab}\partial_a\partial_b\Phi)$   
= 0

also vanish to leading order  $O(\epsilon)$ .

The Einstein equations (c = 1) are,

$$G_{\mu\nu} = 8\pi G_N T_{\mu\nu} \tag{1}$$

so then the stress tensor that must satisfy the Einstein equation is;

$$T_{tt} = \frac{1}{8\pi G_N} G_{tt} = \frac{1}{8\pi G_N} \epsilon \left( 2\delta_{ab} \partial_a \partial_b \Phi \right)$$
$$= \frac{1}{4\pi G_N} \delta_{ij} \partial_i \partial_j \left( \epsilon \Phi \right)$$

[This question continues on the next page ...]

PT4.2

with  $T_{ti} = T_{ij} = 0$  to leading order.

A dust fluid has P = 0 and so,  $T_{\mu\nu} = \rho u_{\mu}u_{\nu}$ . Taking the fluid to be static (to leading order) so that  $u^{\mu} = (1, 0, 0, 0)$  and hence,  $u_{\mu} = (-1, 0, 0, 0)$  to leading order, then,

$$T_{tt} = \rho u_t u_t = \rho$$

to leading order, and  $T_{ti} = T_{ij} = 0$ . Thus equating these, we find;

$$\rho = \frac{1}{4\pi G_N} \delta_{ij} \partial_i \partial_j (\epsilon \Phi)$$

and hence recover the Newton law for gravity,

$$\delta_{ij}\partial_i\partial_j(\epsilon\Phi) = 4\pi G_N\rho$$

for Newtonian potential  $\epsilon \Phi$ .

[12 marks]

(iii) By calculation, show that to leading order in  $\epsilon$ ,

$$\Gamma^i_{\ tt} = \epsilon \partial_i \Phi$$
.

Using this, show that a non-accelerated particle with proper time  $\tau$  that is *slowly moving* obeys (to leading order),

$$\frac{d^2 x^i}{d\tau^2} = -\partial_i \left(\epsilon \Phi\right) \; .$$

**ANSWER:** Testing material given in lectures and in example sheets.

So,

$$\begin{aligned} \Gamma^{i}_{tt} &= \frac{1}{2} g^{i\mu} \left( \partial_{t} g_{\mu t} + \partial_{t} g_{t\mu} - \partial_{\mu} g_{tt} \right) \\ &= -\frac{1}{2} g^{ij} \partial_{j} g_{tt} \\ &= -\frac{1}{2} g^{ij} \partial_{j} g_{tt} \end{aligned}$$

Now the inverse metric is  $g^{\mu\nu} = (\eta^{\mu\nu} + 2\epsilon\Phi\delta^{\mu\nu})$  to leading order. Then,

$$\begin{aligned} \Gamma^{i}_{tt} &= -\frac{1}{2} \left( \eta^{ij} + 2\epsilon \Phi \delta^{ij} \right) \partial_{j} \left( \eta_{tt} - 2\epsilon \Phi \delta_{tt} \right) \\ &= \epsilon \frac{1}{2} \left( \delta^{ij} + 2\epsilon \Phi \delta^{ij} \right) 2 \partial_{j} \Phi \\ &= \epsilon \delta^{ij} \partial_{j} \Phi \\ &= \epsilon \partial_{i} \Phi \end{aligned}$$

[This question continues on the next page ...]

PT4.2

Consider geodesic equation;

$$\frac{d^2 x^{\mu}}{d\tau^2} + \Gamma^{\mu}_{\alpha\beta} \frac{dx^{\alpha}}{d\tau} \frac{dx^{\beta}}{d\tau} = 0$$

and so taking the spatial component;

$$\frac{d^2x^i}{d\tau^2} + \Gamma^i_{\ \alpha\beta} \frac{dx^\alpha}{d\tau} \frac{dx^\beta}{d\tau} = 0$$

Now for slow motion we consider  $\frac{dx^i}{d\tau} \simeq 1$  and  $\frac{dx^i}{d\tau} \simeq 0$  to leading order. Then,

$$\frac{d^2 x^i}{d\tau^2} + \Gamma^i_{tt} = 0$$

and hence,

$$\frac{d^2 x^i}{d\tau^2} = -\Gamma^i_{tt} = -\partial_i \left(\epsilon \Phi\right)$$

[10 marks]

(iv) Use these answers to *briefly* explain how Newton's force law of gravity arises in General Relativity.

**ANSWER:** Testing ideas discussed in lectures.

In the Newtonian limit, with slow moving matter, the Newton laws

$$\frac{d^2x^i}{d\tau^2} \simeq \frac{d^2x^i}{dt^2} = -\partial_i \left(\epsilon \Phi\right)$$

and

$$\delta_{ij}\partial_i\partial_j(\epsilon\Phi) = 4\pi G_N\rho$$

are recovered due to geodesic motion in a curved spacetime. Gravity arises as a fictitious force, seen by observers who believe they are in flat spacetime (time times Euclidean space).

[2 marks]

[Total 30 marks]

**3.** This question concerns the Schwarzschild metric, which we write using coordinates  $x^{\mu} = (t, r, \theta, \phi)$  as,

$$ds^{2} = -\left(1 - \frac{2GM}{r}\right)dt^{2} + \left(1 - \frac{2GM}{r}\right)^{-1}dr^{2} + r^{2}\left(d\theta^{2} + \sin^{2}\theta d\phi^{2}\right)$$

for a mass *M*, with *G* the Newton constant.

(i) Consider a timelike geodesic  $x^{\mu}(\tau) = (T(\tau), R(\tau), \Theta(\tau), \Phi(\tau))$  in the Schwarzschild metric where  $\tau$  is proper time. Write a Lagrangian that we may vary to determine the geodesic. Deduce the Euler-Lagrange equations for  $\Theta$  and  $\Phi$  and show these are consistent with a geodesic that lies in the plane  $\theta = \pi/2$ . We now restrict our attention to such geodesics. Show then that,

$$R^2 \frac{d\Phi}{d\tau} = J$$

where J is a constant.

**ANSWER:** Testing material covered in example sheets, but not explicitly in lectures for Schwarzschild.

$$L=\int d\tau \mathcal{L}$$

where

$$\mathcal{L} = g_{\mu\nu}\dot{x}^{\mu}\dot{x}^{\nu}$$
$$= -\left(1 - \frac{2GM}{R}\right)\dot{T}^{2} + \left(1 - \frac{2GM}{R}\right)^{-1}\dot{R}^{2} + R^{2}\left(\dot{\Theta}^{2} + \sin^{2}\Theta\dot{\Phi}^{2}\right)$$

with  $= d/d\tau$ .

Euler-Lagrange (E-L) equation for  $\Theta$ :

$$\frac{d}{d\tau} \left( 2R^2 \dot{\Theta} \right) = 2R^2 \sin \Theta \cos \Theta \dot{\Phi}^2$$

E-L equation for  $\Phi$ :

$$\frac{d}{d\tau} \left( 2R^2 \sin^2 \Theta \dot{\Phi} \right) = 0$$

Taking  $\Theta = \pi/2$  then the first of these above is satisfied as  $\dot{\Theta} = 0$  and  $\cos \Theta = 0$ . The second becomes;

$$\frac{d}{d\tau}\left(2R^{2}\dot{\Phi}\right)=0$$

**ANSWERS** 13

Hence,  $R^2\dot{\Phi}$  =constant.

[8 marks]

[This question continues on the next page ...]

(ii) Further deduce the equations that govern T and R. Show that,

$$\left(1 - \frac{2GM}{r}\right)\frac{dT}{d\tau} = k$$

where k is a constant. Hence show the equation governing the radial motion in the plane  $\theta = \pi/2$  looks like that of one dimensional motion for a unit mass particle in a potential V(R) with constant energy E so,

$$E = \frac{1}{2} \left( \frac{dR}{d\tau} \right)^2 + V(R) , \qquad V(R) = -\frac{GM}{R} + \frac{J^2}{2R^2} + \frac{\alpha J^2}{R^3}$$

where  $\alpha$  is a constant depending on the mass *M* and Newton constant *G* that you should determine.

**ANSWER:** Testing material covered in example sheets, but not explicitly in lectures for Schwarzschild.

E-L equation for T:

$$\frac{d}{d\tau} \left( -2\left(1 - \frac{2GM}{r}\right)\frac{dT}{d\tau} \right) = 0$$

Hence,

$$\left(1 - \frac{2GM}{r}\right)\frac{dT}{d\tau} = k$$

for constant of integration k.

The remaining equation is best derived from condition  $\mathcal{L} = -1$  since the parameter  $\tau$  is proper time. Then (recalling  $\Phi = pi/2$ ),

$$-1 = -\left(1 - \frac{2GM}{R}\right)\dot{T}^{2} + \left(1 - \frac{2GM}{R}\right)^{-1}\dot{R}^{2} + R^{2}\dot{\Phi}^{2}$$
$$= -\frac{k^{2}}{\left(1 - \frac{2GM}{R}\right)} + \frac{1}{1 - \frac{2GM}{R}}\dot{R}^{2} + \frac{R^{2}}{J^{2}}$$

So,

$$0 = 1 - \frac{k^2}{\left(1 - \frac{2GM}{R}\right)} + \frac{1}{1 - \frac{2GM}{R}}\dot{R}^2 + \frac{J^2}{R^2}$$

then,

$$\frac{1}{2}k^{2} = \frac{1}{2}\dot{R}^{2} + \frac{1}{2}\left(1 - \frac{2GM}{R}\right)\left(1 + \frac{J^{2}}{R^{2}}\right)$$
$$= \frac{1}{2}\dot{R}^{2} + \frac{1}{2} - \frac{GM}{R} + \frac{J^{2}}{2R^{2}} - \frac{GMJ^{2}}{R^{3}}$$

[This question continues on the next page ...]

PT4.2

and so,

$$E = \frac{1}{2}k^2 - \frac{1}{2} = \frac{1}{2}\dot{R}^2 - \frac{GM}{R} + \frac{J^2}{2R^2} - \frac{GMJ^2}{R^3}$$

So,

$$V(R) = -\frac{GM}{R} + \frac{J^2}{2R^2} - \frac{GMJ^2}{R^3}$$

so  $\alpha = -G M$ . For Newtonian gravity  $\alpha = 0$ .

[8 marks]

(iii) Show that for a circular orbit, with constant radius  $R = R_0$ , then,

$$V''(R_0) = \frac{J^2}{R_0^4} \left( 1 + \frac{6\alpha}{R_0} \right) \,. \tag{1}$$

**ANSWER:** Problem not seen before in this form.

For a unit mass particle in a potential V(R),

$$\ddot{R} = -V'(R) \tag{2}$$

and for a circular orbit R =constant, so  $\ddot{R} = 0$  so V'(R) = 0. So,

$$V(R) = -\frac{GM}{R} + \frac{J^2}{2R^2} + \frac{\alpha J^2}{R^3}$$

then,

$$V'(R) = +\frac{GM}{R^2} - \frac{J^2}{R^3} - \frac{3\alpha J^2}{R^4}$$

and,

$$V''(R) = -\frac{2GM}{R^3} + \frac{3J^2}{R^4} + \frac{12\alpha J^2}{R^5}$$

For a circular orbit  $R = R_0$  then,

$$\frac{J^2}{R_0} \left( 1 + \frac{3\alpha}{R_0} \right) = G M$$

so that,

$$V''(R_0) = -\frac{2GM}{R_0^3} + J^2 \left(\frac{3}{R_0^4} + \frac{12\alpha}{R_0^5}\right)$$
  
=  $-\frac{2J^2}{R_0^4} \left(1 + \frac{3\alpha}{R_0}\right) + J^2 \left(\frac{3}{R_0^4} + \frac{12\alpha}{R_0^5}\right)$   
=  $\frac{J^2}{R_0^4} \left(-2\left(1 + \frac{3\alpha}{R_0}\right) + 3 + \frac{12\alpha}{R_0}\right)$   
=  $\frac{J^2}{R_0^4} \left(1 + \frac{6\alpha}{R_0}\right)$ 

[This question continues on the next page ...]

PT4.2

[8 marks]

(iv) Compute the proper time  $T_{ang}$  required for  $\Phi$  to traverse an angle  $2\pi$ . Show that for a circular orbit radius  $R = R_0$  that is perturbed a little, so  $R(\tau) \simeq R_0 + \delta R(\tau)$ , the motion approximately performs simple harmonic oscillation with period,

$$T_{rad} = \frac{2\pi}{\sqrt{V^{\prime\prime}(R_0)}}$$

Comment on the relation between  $T_{ang}$  and  $T_{rad}$ .

**ANSWER:** Testing material covered in example sheets, but not explicitly in lectures for Schwarzschild. Testing idea of perihelion advance discussed in lectures.

From,

$$R^2 \frac{d\Phi}{d\tau} = J$$

the proper time for a circular orbit,  $T_{ang}$ , is;

$$T_{ang} = \frac{2\pi R_0^2}{J}$$

as  $R = R_0$  =constant.

For a unit mass particle in a potential V(R),

$$\ddot{R} = -V'(R)$$

If  $R(\tau) \simeq R_0 + \delta R(\tau)$  for  $R_0$  a circular orbit  $V'(R_0) = 0$ , then we can expand,

$$V'(R) = V'(R_0 + \delta R(\tau)) = V'(R_0) + \delta R(\tau)V''(R_0) + \dots$$
  
=  $\delta R(\tau)V''(R_0)$ 

so that,

$$\ddot{R} = \delta \vec{R(\tau)} \simeq -\delta R(\tau) V^{\prime\prime}(R_0)$$

This is SHO with period,

$$T_{rad} = \frac{2\pi}{\sqrt{V^{\prime\prime}(R)}}$$

S0,

$$T_{rad} = \frac{2\pi R^2}{J} \frac{1}{\sqrt{1 + \frac{6\alpha}{R}}}$$

 $T_{rad} = T_{ang}$  for Newton theory  $\alpha = 0$ , and hence have closed orbits when perturbed from circularity. However for GR they are not the same, so the orbit does not close, hence the perihelion precesses.

[6 marks]

[Total 30 marks]

4. (i) Consider a particle following a timelike curve  $x^{\mu}(\tau)$  in a general spacetime, where  $\tau$  is the particle's proper time and  $v^{\mu}$  is its 4-velocity. Give the expression for the 4-acceleration  $a^{\mu}$  in terms of  $v^{\mu}$ . Show that for the case of Minkowski spacetime in Minkowski coordinates  $x^{\mu} = (t, x^{i})$  so that  $ds^{2} = \eta_{\mu\nu} dx^{\mu} dx^{\nu}$  then this reduces to the Special Relativity result,

$$a^{\mu}=\frac{d^2x^{\mu}}{d\tau^2}\;.$$

**ANSWER:** Testing material covered in lectures.

$$a^{\mu} = v^{\nu} \nabla_{\nu} v^{\mu}$$

In Minkowski spacetime in canonical coordinates so that  $g_{\mu\nu} = \eta_{\mu\nu}$  then  $\Gamma^{\mu}_{\ \alpha\beta} = 0$ . Then,

$$a^{\mu} = v^{\nu} \nabla_{\nu} v^{\mu} = v^{\nu} \partial_{\nu} v^{\mu} + v^{\nu} v^{\alpha} \Gamma^{\mu}{}_{\nu\alpha} = v^{\nu} \partial_{\nu} v^{\mu}$$
$$= \frac{dx^{\nu}}{d\tau} \frac{\partial}{\partial x^{\nu}} v^{\mu} = \frac{d}{d\tau} v^{\mu} = \frac{d^2}{d\tau^2} x^{\mu}$$
(1)

[6 marks]

(ii) By carefully varying the action,

$$L = \int d\tau \mathcal{L}\left(x^{\mu}, \frac{dx^{\nu}}{d\tau}\right) , \qquad \mathcal{L} = g_{\mu\nu} \frac{dx^{\mu}}{d\tau} \frac{dx^{\nu}}{d\tau}$$

show that the Euler-Lagrange equations are related to the geodesic condition  $v^{\mu}\nabla_{\mu}v^{\nu} = 0$  as,

$$2\mathbf{v}^{\mu}\nabla_{\mu}\mathbf{v}_{\alpha} = \frac{d}{d\tau}\left(\frac{\partial\mathcal{L}}{\partial\frac{dx^{\alpha}}{d\tau}}\right) - \frac{\partial\mathcal{L}}{\partial x^{\alpha}} \ .$$

**ANSWER:** New problem not covered in lectures of example sheets.

The geodesic condition,

$$v^{\mu}\nabla_{\mu}v^{\nu} = \frac{dx^{\mu}}{d\tau} \left(\partial_{\mu}v^{\nu} + \Gamma^{\nu}{}_{\mu\alpha}v^{\alpha}\right)$$
  
$$= \frac{dx^{\mu}}{d\tau} \frac{\partial}{\partial x^{\mu}}v^{\nu} + \Gamma^{\nu}{}_{\mu\alpha}\frac{dx^{\mu}}{d\tau}\frac{dx^{\alpha}}{d\tau}$$
  
$$= \frac{dv^{\nu}}{d\tau} + \Gamma^{\nu}{}_{\mu\alpha}\frac{dx^{\mu}}{d\tau}\frac{dx^{\alpha}}{d\tau}$$
  
$$= \frac{d^{2}x^{\nu}}{d\tau^{2}} + \Gamma^{\nu}{}_{\mu\alpha}\frac{dx^{\mu}}{d\tau}\frac{dx^{\alpha}}{d\tau}$$
(2)

[This question continues on the next page ...]

PT4.2

Now,

$$L = \int d\tau \mathcal{L} , \qquad \mathcal{L} = g_{\mu\nu}(x) \frac{dx^{\mu}}{d\tau} \frac{dx^{\nu}}{d\tau}$$

DRAFT

Firstly;

$$\frac{\partial \mathcal{L}}{\partial x^{\alpha}} = \frac{dx^{\mu}}{d\tau} \frac{dx^{\nu}}{d\tau} \frac{\partial}{\partial x^{\alpha}} g_{\mu\nu}(x)$$

and secondly,

$$\frac{\partial \mathcal{L}}{\partial \frac{dx^{\alpha}}{d\tau}} = 2 \frac{dx^{\nu}}{d\tau} g_{\alpha\nu}(x)$$

Then,

$$\frac{d}{d\tau}\frac{\partial \mathcal{L}}{\partial \frac{dx^{\alpha}}{d\tau}} = 2\frac{d^{2}x^{\nu}}{d\tau^{2}}g_{\alpha\nu}(x) + 2\frac{dx^{\nu}}{d\tau}\frac{d}{d\tau}g_{\alpha\nu}(x)$$
$$= 2\frac{d^{2}x^{\nu}}{d\tau^{2}}g_{\alpha\nu}(x) + 2\frac{dx^{\nu}}{d\tau}\frac{dx^{\beta}}{d\tau}\frac{d}{d\tau}g_{\alpha\nu}(x)$$

Then;

$$\begin{aligned} \frac{d}{d\tau} \frac{\partial \mathcal{L}}{\partial \frac{dx^{\alpha}}{d\tau}} &- \frac{\partial \mathcal{L}}{\partial x^{\alpha}} &= 2 \frac{d^{2} x^{\nu}}{d\tau^{2}} g_{\alpha\nu}(x) + 2 \frac{dx^{\nu}}{d\tau} \frac{dx^{\beta}}{d\tau} \frac{d}{d\tau} \frac{d}{dx^{\beta}} g_{\alpha\nu}(x) - \frac{dx^{\mu}}{d\tau} \frac{dx^{\nu}}{d\tau} \frac{\partial}{\partial x^{\alpha}} g_{\mu\nu}(x) \\ &= 2 \frac{d^{2} x^{\nu}}{d\tau^{2}} g_{\alpha\nu} + 2 \frac{dx^{\nu}}{d\tau} \frac{dx^{\beta}}{d\tau} \frac{d}{d\tau} \frac{d}{dx^{\beta}} g_{\alpha\nu} - \frac{dx^{\mu}}{d\tau} \frac{dx^{\nu}}{d\tau} \frac{\partial}{\partial x^{\alpha}} g_{\mu\nu} \\ &= 2 \frac{d^{2} x^{\nu}}{d\tau^{2}} g_{\alpha\nu} + \left( 2 \frac{d}{dx^{\mu}} g_{\alpha\nu} - \frac{\partial}{\partial x^{\alpha}} g_{\mu\nu} \right) \frac{dx^{\mu}}{d\tau} \frac{dx^{\nu}}{d\tau} \\ &= 2 \frac{d^{2} x^{\nu}}{d\tau^{2}} g_{\alpha\nu} + \left( \frac{d}{dx^{\mu}} g_{\alpha\nu} + \frac{d}{dx^{\nu}} g_{\alpha\mu} - \frac{\partial}{\partial x^{\alpha}} g_{\mu\nu} \right) \frac{dx^{\mu}}{d\tau} \frac{dx^{\nu}}{d\tau} \\ &= 2 g_{\alpha\nu} \frac{d^{2} x^{\nu}}{d\tau^{2}} + 2 g_{\alpha\beta} \Gamma^{\beta}_{\mu\nu} \frac{dx^{\mu}}{d\tau} \frac{dx^{\nu}}{d\tau} \\ &= 2 g_{\alpha\beta} \left( \frac{d^{2} x^{\beta}}{d\tau^{2}} + \Gamma^{\beta}_{\mu\nu} \frac{dx^{\mu}}{d\tau} \frac{dx^{\nu}}{d\tau} \right) \end{aligned}$$

So comparing equations (2) and (3) we obtain,

$$2v^{\mu}\nabla_{\mu}v_{\alpha} = 2g_{\alpha\beta}v^{\mu}\nabla_{\mu}v^{\beta} = 2g_{\alpha\beta}\left(\frac{d^{2}x^{\beta}}{d\tau^{2}} + \Gamma^{\beta}_{\mu\nu}\frac{dx^{\mu}}{d\tau}\frac{dx^{\nu}}{d\tau}\right)$$
$$= \frac{d}{d\tau}\frac{\partial\mathcal{L}}{\partial\frac{dx^{\alpha}}{d\tau}} - \frac{\partial\mathcal{L}}{\partial x^{\alpha}}$$

as required.

[12 marks]

[This question continues on the next page ...]

**ANSWERS** 18

(iii) Consider now a particle coupled to a vector field  $A_{\mu}(x)$  in a general spacetime so that its Lagrangian is modified to,

$$L = \int d\tau \left( g_{\mu\nu}(x) \frac{dx^{\mu}}{d\tau} \frac{dx^{\nu}}{d\tau} + A_{\mu}(x) \frac{dx^{\mu}}{d\tau} \right) \, .$$

Show that the 4-acceleration of the particle is;

$$a^{\mu}=\frac{1}{2}F^{\mu\nu}v_{\nu}, \qquad F_{\mu\nu}=\nabla_{\mu}A_{\nu}-\nabla_{\nu}A_{\mu}.$$

**ANSWER:** New problem not covered in lectures of example sheets.

Let us split the action up into  $\mathcal{L}_{\text{free}}$  and  $\mathcal{L}_{\text{int}}$ ;

$$L = \int d\tau \mathcal{L}_{free} + \mathcal{L}_{int} , \qquad \mathcal{L}_{free} = g_{\mu\nu}(x) \frac{dx^{\mu}}{d\tau} \frac{dx^{\nu}}{d\tau} , \qquad \mathcal{L}_{int} = A_{\mu}(x) \frac{dx^{\mu}}{d\tau}$$
(3)

The E-L equations are now;

$$0 = \left(\frac{d}{d\tau}\frac{\partial \mathcal{L}_{free}}{\partial \frac{dx^{\alpha}}{d\tau}} - \frac{\partial \mathcal{L}_{free}}{\partial x^{\alpha}}\right) + \left(\frac{d}{d\tau}\frac{\partial \mathcal{L}_{int}}{\partial \frac{dx^{\alpha}}{d\tau}} - \frac{\partial \mathcal{L}_{int}}{\partial x^{\alpha}}\right)$$
$$= 2v^{\mu}\nabla_{\mu}v_{\alpha} + \left(\frac{d}{d\tau}\frac{\partial \mathcal{L}_{int}}{\partial \frac{dx^{\alpha}}{d\tau}} - \frac{\partial \mathcal{L}_{int}}{\partial x^{\alpha}}\right)$$
$$= 2a_{\alpha} + \left(\frac{d}{d\tau}\frac{\partial \mathcal{L}_{int}}{\partial \frac{dx^{\alpha}}{d\tau}} - \frac{\partial \mathcal{L}_{int}}{\partial x^{\alpha}}\right)$$

Hence we obtain the acceleration from the variation;

$$a_{\alpha} = -\frac{1}{2} \left( \frac{d}{d\tau} \frac{\partial \mathcal{L}_{int}}{\partial \frac{dx^{\alpha}}{d\tau}} - \frac{\partial \mathcal{L}_{int}}{\partial x^{\alpha}} \right)$$

For  $\mathcal{L}_{int} = A_{\mu}(x) \frac{dx^{\mu}}{d\tau}$  we have,

$$\frac{\partial \mathcal{L}_{int}}{\partial \frac{dx^{\alpha}}{d\tau}} = A_{\alpha}(x) , \quad \frac{\partial \mathcal{L}_{int}}{\partial x^{\alpha}} = \frac{dx^{\mu}}{d\tau} \partial_{\alpha} A_{\mu}(x)$$

and so,

$$\frac{d}{d\tau}\frac{\partial \mathcal{L}_{int}}{\partial \frac{dx^{\alpha}}{d\tau}} = \frac{d}{d\tau}A_{\alpha}(x) = \frac{dx^{\mu}}{d\tau}\partial_{\mu}A_{\alpha}(x)$$

Then,

$$a_{\alpha} = -\frac{1}{2} \left( \frac{dx^{\mu}}{d\tau} \partial_{\mu} A_{\alpha}(x) - \frac{dx^{\mu}}{d\tau} \partial_{\alpha} A_{\mu}(x) \right)$$
$$= \frac{1}{2} \frac{dx^{\mu}}{d\tau} \left( \partial_{\alpha} A_{\mu}(x) - \partial_{\mu} A_{\alpha}(x) \right)$$

[This question continues on the next page ...]

PT4.2

Finally, note that,

$$F_{\mu\nu} = \nabla_{\mu}A_{\nu} - \nabla_{\nu}A_{\mu}$$
  
=  $\partial_{\mu}A_{\nu} - \Gamma^{\alpha}{}_{\mu\nu}A_{\alpha} - \partial_{\nu}A_{\mu} + \Gamma^{\alpha}{}_{\nu\mu}A_{\alpha}$   
=  $\partial_{\mu}A_{\nu} - \partial_{\nu}A_{\mu}$ 

and hence we see,

$$a_{\alpha} = \frac{1}{2} \frac{dx^{\mu}}{d\tau} \left( \partial_{\alpha} A_{\mu}(x) - \partial_{\mu} A_{\alpha}(x) \right) = \frac{1}{2} F_{\alpha \mu} v^{\mu}$$

as required.

[12 marks] [Total 30 marks]

5. (i) Show that the Christoffel symbol is related to partial derivatives of the metric as,

$$\partial_{\alpha} g_{\mu\nu} = g_{\mu\beta} \Gamma^{\beta}{}_{\alpha\nu} + g_{\nu\beta} \Gamma^{\beta}{}_{\alpha\mu} .$$

**ANSWER:** Testing material covered in lectures.

Now,

$$g_{\mu\beta}\Gamma^{\beta}_{\ \alpha\nu} = g_{\mu\beta}\left(\frac{1}{2}g^{\beta\sigma}\left(\partial_{\nu}g_{\alpha\sigma} + \partial_{\alpha}g_{\sigma\nu} - \partial_{\sigma}g_{\alpha\nu}\right)\right)$$
$$= \frac{1}{2}\left(\partial_{\nu}g_{\alpha\mu} + \partial_{\alpha}g_{\mu\nu} - \partial_{\mu}g_{\alpha\nu}\right)$$

So,

$$g_{\mu\beta}\Gamma^{\beta}{}_{\alpha\nu} + g_{\nu\beta}\Gamma^{\beta}{}_{\alpha\mu} = \frac{1}{2} \left( \partial_{\nu}g_{\alpha\mu} + \partial_{\alpha}g_{\mu\nu} - \partial_{\mu}g_{\alpha\nu} \right) + \frac{1}{2} \left( \partial_{\mu}g_{\alpha\nu} + \partial_{\alpha}g_{\nu\mu} - \partial_{\nu}g_{\alpha\mu} \right)$$
$$= \frac{1}{2} \partial_{\alpha}g_{\mu\nu} + \frac{1}{2} \partial_{\alpha}g_{\nu\mu} = \partial_{\alpha}g_{\mu\nu}$$

as required.

[6 marks]

(ii) The Lie derivative of a (0, 2) tensor  $A_{\mu\nu}$  with respect to a vector field  $w^{\mu}$  is,

$$(Lie)(w, A)_{\mu\nu} = w^{\alpha} \partial_{\alpha} A_{\mu\nu} + A_{\mu\alpha} \partial_{\nu} w^{\alpha} + A_{\alpha\nu} \partial_{\mu} w^{\alpha}$$

Suppose we consider the Lie derivative of the metric  $g_{\mu\nu}$ . Show that this can also be written in terms of the covariant derivative as,

$$(Lie)(w,g)_{\mu\nu} = \nabla_{\mu}w_{\nu} + \nabla_{\nu}w_{\mu}$$
.

If this vanishes, we say  $w^{\mu}$  is a *Killing vector field*.

**ANSWER:** Testing material covered in lectures.

$$(Lie)(w, g)_{\mu\nu} = w^{\alpha}\partial_{\alpha}g_{\mu\nu} + g_{\mu\alpha}\partial_{\nu}w^{\alpha} + g_{\alpha\nu}\partial_{\mu}w^{\alpha}$$
  
$$= w^{\alpha} \left(g_{\mu\beta}\Gamma^{\beta}{}_{\alpha\nu} + g_{\nu\beta}\Gamma^{\beta}{}_{\alpha\mu}\right) + g_{\mu\alpha}\partial_{\nu}w^{\alpha} + g_{\alpha\nu}\partial_{\mu}w^{\alpha}$$
  
$$= \left(g_{\mu\alpha}\partial_{\nu}w^{\alpha} + w^{\alpha}g_{\mu\beta}\Gamma^{\beta}{}_{\alpha\nu}\right) + \left(g_{\alpha\nu}\partial_{\mu}w^{\alpha} + w^{\alpha}g_{\nu\beta}\Gamma^{\beta}{}_{\alpha\mu}\right)$$
  
$$= g_{\mu\beta} \left(\partial_{\nu}w^{\beta} + w^{\alpha}\Gamma^{\beta}{}_{\alpha\nu}\right) + g_{\nu\beta} \left(\partial_{\mu}w^{\beta} + w^{\alpha}\Gamma^{\beta}{}_{\alpha\mu}\right)$$
  
$$= g_{\mu\beta}\nabla_{\nu}w^{\beta} + g_{\nu\beta}\nabla_{\mu}w^{\beta}$$
  
$$= \nabla_{\nu}w_{\mu} + \nabla_{\mu}w_{\nu}$$

[6 marks]

[This question continues on the next page ...]

PT4.2

(iii) Consider a timelike particle with velocity  $v^{\mu} = dx^{\mu}/d\tau$  for proper time  $\tau$ . Suppose it follows a geodesic in a spacetime with a Killing vector field  $w^{\mu}$ . Show that the quantity,

$$\phi = -\mathbf{W}^{\mu}\mathbf{V}_{\mu}$$

is constant along the particle's trajectory.

**ANSWER:** Testing material covered in lectures and example sheets.

If constant along the particle's trajectory, then,

$$0 = \frac{d}{d\tau}\phi = \frac{dx^{\alpha}}{d\tau}\partial_{\alpha}\phi = v^{\alpha}\nabla_{\alpha}\phi$$
$$= -v^{\alpha}\nabla_{\alpha}\left(w^{\mu}v_{\mu}\right)$$
$$= -w^{\mu}\left(v^{\alpha}\nabla_{\alpha}v_{\mu}\right) - v^{\alpha}v^{\mu}\nabla_{\alpha}w_{\mu}$$

The first term vanishes by geodesic condition  $v^{\alpha}\nabla_{\alpha}v_{\mu} = 0$ , the second since  $w^{\mu}$  is Killing, so,

$$0 = v^{\mu}v^{\nu}Lie(w,g)_{\mu\nu} = v^{\mu}v^{\nu}\left(\nabla_{\mu}w_{\nu} + \nabla_{\nu}w_{\mu}\right) = 2v^{\mu}v^{\nu}\nabla_{\mu}w_{\nu}$$

[8 marks]

(iv) Consider the spacetime with coordinates  $x^{\mu} = (t, x^{i})$ 

$$ds^2 = -N(x)dt^2 + g_{ij}(x)dx^i dx^j$$

where *N* and  $g_{ij}$  only depend on the spatial coordinates  $x^i$  and not time *t*. Show that there is a Killing vector  $w^{\mu}$  for this spacetime and explicitly check that Lie(w, g) = 0. In this spacetime how is the conserved quantity  $\phi$  for a non-accelerated particle related to the energy of the particle as measured by observers sitting at constant spatial position?

**ANSWER:** Problem not seen in lectures or example sheets.

So,

$$(Lie)(w, g)_{\mu\nu} = w^{\alpha} \partial_{\alpha} g_{\mu\nu} + g_{\mu\alpha} \partial_{\nu} w^{\alpha} + g_{\alpha\nu} \partial_{\mu} w^{\alpha}$$

Now  $\partial_t g_{\alpha\beta} = 0$  since  $\partial_t N = \partial_t g_{ij} = 0$ . Thus the vector  $w^{\mu} = (1, 0, 0, 0)$  is a Killing vector. Then,

$$(Lie)(w, g)_{\mu\nu} = w^{\alpha}\partial_{\alpha}g_{\mu\nu} + g_{\mu\alpha}\partial_{\nu}w^{\alpha} + g_{\alpha\nu}\partial_{\mu}w^{\alpha}$$
$$= \partial_{t}g_{\mu\nu} = 0$$

[This question continues on the next page . . . ]

**ANSWERS** 22

as  $\partial_{\mu}w^{\nu} = 0$  since it has constant components.

The quantity  $\phi$  for a geodesic particle with 4-velocity  $v^{\mu}$  is then,

$$\phi = -\mathbf{W}^{\mu}\mathbf{V}_{\mu} = -\mathbf{V}_{t} \tag{1}$$

Consider an observer sitting at constant spatial position  $x^i$ . These have proper time  $\bar{\tau}$  and 4-velocity  $\bar{v}^{\mu} = dx^{\mu}/d\bar{\tau}$ . Then since  $x^i$  are constant, then,

$$\bar{\boldsymbol{v}}^{\mu} = \left(\frac{dt}{d\bar{\tau}}, \boldsymbol{0}^{i}\right) \tag{2}$$

Since  $\bar{\tau}$  is proper time we must have  $\bar{v}^{\mu}\bar{v}_{\mu} = -1$  and so,

$$-1 = \bar{v}^{\mu}\bar{v}_{\mu} = \bar{v}^{\mu}\bar{v}^{\nu}g_{\mu\nu} = \bar{v}^{t}\bar{v}^{t}g_{tt} = -N\left(\frac{dt}{d\bar{\tau}}\right)^{2}$$
(3)

So then we see,

$$\left(\frac{dt}{d\bar{\tau}}\right)^2 = \frac{1}{N} \tag{4}$$

and so,

$$\bar{\boldsymbol{v}}^{\mu} = \left(\frac{1}{\sqrt{N}}, \boldsymbol{0}^{i}\right) \tag{5}$$

Suppose the particle has mass *m*. The energy measured by an observer with 4-velcocity  $\bar{v}^{\mu}$  is,

$$E = -p^{\mu}\bar{v}_{\mu} = -mv^{\mu}\bar{v}_{\mu} = -mv_{\mu}\bar{v}^{\mu} = -mv_{t}\frac{1}{\sqrt{N}}$$
(6)

where  $p^{\mu} = mv^{\mu}$  is the 4-momentum.

Hence we see that the conserved quantity is related to this energy as,

$$E = m \frac{1}{\sqrt{N(x^i)}} \phi \tag{7}$$

[10 marks] [Total 30 marks]