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Conventions:

We use conventions as in lectures. In particular we take (−, +, +, +) signature.

You may find the following formulae useful:

The Christoffel symbol is defined as,

Γµ αβ ≡
1
2

gµν
(
∂αgνβ + ∂βgαν − ∂νgαβ

)
The covariant derivative is given as,

∇µvν ≡ ∂µvν + Γν µαvα

The Riemann tensor is defined as,

R δ
αβµ = ∂βΓ

δ
αµ − ∂αΓ

δ
βµ + Γν αµΓ

δ
βν − Γ

ν
βµΓ

δ
αν

For a Lagrangian of a curve xµ(λ) of the form,

F =
∫

dλL(xµ,
dxµ

dλ
)

the Euler-Lagrange equations are,

d
dλ

 ∂L

∂(dxµ
dλ )

 =
∂L

∂xµ
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Section A

Answer all of section A.
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SECTION A

1. This question concerns accelerated motion.

(i) Suppose we have a particle following a trajectory xµ(τ) in a general space-
time.Here τ is the particle’s proper time. The particle’s 4-velocity vµ is defined
as vµ = dxµ/dτ. Show that vµvµ = −1.

ANSWER:
Testing material seen in lectures.
In an infinitesimal time dτ the spacetime interval will be,

ds2 = gµνdxµdxν = gµν
dxµ

dτ
dxν

dτ
dτ2 (1)

Now proper time for a particle is defined to be ds2 = −dτ2 and so,

−1 = gµν
dxµ

dτ
dxν

dτ
= gµνvµvν (2)

Probable mark assignment:
[4 marks]

(ii) Show that the 4-velocity transforms as vector.

ANSWER:
Testing material seen in lectures.
Under a coordinate transform, so that x ′µ

′

= x ′µ
′

(xν), then using the chain rule,

v ′µ
′

=
dx ′µ

′

dτ
=
∂x ′µ

′

∂xµ
dxµ

dτ
=
∂x ′µ

′

∂xµ
vµ (3)

and hence this does indeed transform as a vector.
Probable mark assignment:

[1 mark]

(iii) The 4-acceleration aµ is defined as aµ = vν∇νvµ. Show that in Minkowski space-
time this reduces to aµ = d2xµ/dτ2.

ANSWER:
Testing material given in lectures.
In Minkowski spacetime Γα µν = 0 and so,

aµ = vν∇νvµ = vν∂νvµ =
dxν

dτ
∂vµ

∂xν
=

dvµ

dτ
=

d2xµ

dτ2
(4)

Probable mark assignment:
[2 marks]
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(iv) Show that aµ and vµ are orthogonal 4-vectors. Hence deduce that aµ must be a
spacelike vector.

ANSWER:
Testing material seen in lectures.
Start with vµvµ = −1. Then act with vν∇ν to obtain,

0 = vν∇ν
(
vµvµ

)
= 2vµvν∇νvµ = 2vµaµ (5)

Go to the instantaneous local inertial frame of the particle, so that at some point
p on its trajectory then vµ = (1, 0, 0, 0) and gµν = ηµν at that point. Then since
aµvµ = 0 then, a t = 0, so that,

aµ = (0, a i) (6)

for 3-vector a i, and so,

gµνaµaν = δija ia j = (a1)2 + (a2)2 + (a3)2 ≥ 0 (7)

at the point p. Note that if gµνaµaν = 0 then aµ = 0 and the acceleration vanishes.
So for non-vanishing acceleration gµνaµaν > 0 at p and so aµ is spacelike there.
But we could have chosen p to be any point on the trajectory, and hence aµ

must always be spacelike.
Probable mark assignment:

[1 mark]

(v) Write down the geodesic equation for a timelike curve xµ(τ) parameterized by
proper time? Hence show a non-accelerated particle follows a geodesic.

ANSWER:
Testing material seen in lectures.
The geodesic equation is,

vν∇νvµ = 0 (8)

where vµ = dxµ/dτ. Hence if aµ = 0, then the particle trajectory must obey the
geodesic equation.
Probable mark assignment:

[1 mark]

(vi) Now consider a particle moving in the Schwarzschild spacetime, with coordi-
nates xµ = (t , r , θ, φ) and metric,

ds2 = −
(
1 −

2M
r

)
dt2 +

(
1 −

2M
r

)−1

dr2 + r2
(
dθ2 + sin2 θdφ2

)
(9)
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Consider a particle accelerating to stay at constant spatial position, so that r , θ, φ
are all constant for the particle. Use the fact that,

Γr
tt =

M
r3

(
1 −

2M
r

)
, Γt

tt = Γθ tt = Γφ tt = 0 (10)

Calculate the norm,
√

aµaµ, of the spacelike 4-acceleration assuming that r >
2M. What happens to this norm at r = 2M and why?

ANSWER:
Testing material given in lectures.
The 4-velocity is vµ = (f , 0, 0, 0) for some function f since the particle is kept at
fixed position in space. Then since gµνvµvν = −1 then,

−

(
1 −

2M
r

)
f2 = −1 (11)

so that,

f =
1√

1 − 2M
r

(12)

The 4-acceleration is,

aµ = vν∇νvµ = vν∂νvµ + vνvαΓµ να = v t∂tvµ + v tv tΓµ tt = f2Γµ tt =
1

1 − 2M
r

Γµ tt (13)

Using the Christoffel components given in the question we have, a t = aθ = aφ =
0 and,

ar =
1

1 − 2M
r

Γr
tt =

1
1 − 2M

r

M
r3

(
1 −

2M
r

)
=

M
r3

(14)

Then the norm,

aµaµ = grr (ar )2 =
1

1 − 2M
r

M2

r6
(15)

so that, √
aµaµ =

1√
1 − 2M

r

M
r3

(16)

This is indeed spacelike (ie. > 0) for r > 2M and diverges,
√

aµaµ → ∞ at
r = 2M. This is the horizon of the black hole, and an infinite acceleration is
required to keep a timelike particle sitting at the horizon.
Probable mark assignment:

[2 marks]

[Total 11 marks]
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Section B

Answer 2 out of the 4 questions in the following section.
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SECTION B

2. This question concerns the Einstein equations for a star made of perfect fluid.

(i) Write down the stress tensor Tµν for a perfect fluid in terms of the fluid energy
density ρ, pressure P and 4-velocity uµ (recall uµuµ = −1). Consider nµ to be a
vector field that is orthogonal to vµ, so vµnµ = 0. Use stress energy conserva-
tion, and consider the quantity nµ∇νTµν to derive one of the fluid equations,

nµ
(
∂µP + (ρ + P) uν∇νuµ

)
= 0 (1)

ANSWER:
Similar problem ...
The stress tensor is;

Tµν = ρuµuν + P
(
uµuν + gµν

)
(2)

Conservation is;

0 = ∇µTµν = (∇µρ)uµuν + ρ
(
uµ∇µuν + uν∇µuµ

)
+(∇µP)

(
uµuν + gµν

)
+ P

(
uµ∇µuν + uν∇µuµ

)
(3)

where we recall ∇µgµν = 0. Then contracting with nν and using nνuν = 0 gives,

0 = uν∇µTµν = ρ
(
nνuµ∇µuν

)
+ (∇µP)

(
nνgµν

)
+ P

(
nνuµ∇µuν

)
= nν(∇µP) + nν (ρ + P)

(
uµ∇µuν

)
(4)

and ∇µP = ∂µP as it is a scalar, and hence this gives the result.

Probable mark assignment: 1 mark for

[1 mark]

(ii) Consider a static (ie. time independent) metric describing a spherically symmet-
ric star. We take coordinates xµ = (t , r , θ, φ) and a metric,

ds2 = −e2f (r)dt2 +
(
1 −

m(r)
r

)−1

dr2 + r2
(
dθ2 + sin2 θdφ2

)
(5)

where f (r) and m(r) are functions of the radial coordinate r . Consider this to be
the solution to the Einstein equations for perfect fluid, where the fluid is static
so that uµ = (T (r), 0, 0, 0). Firstly determine the function T (r). Then using your

PT4.2 ANSWERS 8
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answer to part i) above, choosing nµ = (0, 1, 0, 0) and computing the necessary
components of Γα µν, show that,

dP
dr

= − (ρ + P)
df
dr

(6)

ANSWER:
Similar problem ...
Now since gµνuµuν = −1 we have,

−1 = gµνuµuν = gttutut = −e2f (r)T2 (7)

and so,

T = e−f (r) (8)

Consider the equation from part i) with nµ = (0, 1, 0, 0), then,

0 = nµ
(
∂µP + (ρ + P) uν∇νuµ

)
= ∂rP + (ρ + P) uν∇νur

= ∂rP + (ρ + P)
(
uν∂νur + Γα νru

νuα
)

= ∂rP + (ρ + P)
(
ut∂tur + Γt

tru
tut

)
= ∂rP + (ρ + P) Γt

trgttutut

= ∂rP + (ρ + P) Γt
tre

2f (r)T2

= ∂rP + (ρ + P) Γt
tr (9)

Now we require Γt
tr ;

Γt
tr =

1
2

gtν (∂tgrν + ∂rgtν − ∂νgtr )

=
1
2

gtt (∂tgrt + ∂rgtt − ∂tgtr )

=
1
2

gtt∂rgtt

=
1
2

e−2f (r)∂re2f (r)

= ∂r f (10)

and then,

0 = ∂rP + (ρ + P) Γt
tr

= ∂rP + (ρ + P) ∂r f (11)

as required.
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Probable mark assignment: 1 mark for

[1 mark]

(iii) Now the non-zero components of the Ricci tensor with one index up and one
down, Rµ

ν, are,

R t
t = −f ′′(r)

(
1 −

m(r)
r

)
+ f ′(r)

(
rm′(r) + 3m(r) − 4r

2r2

)
− f ′(r)2

(
1 −

m(r)
r

)
R r

r =
rm′(r) −m(r)

r3
− f ′′(r)

(
1 −

m(r)
r

)
+ f ′(r)

(
rm′(r) −m(r)

2r2

)
− f ′(r)2

(
1 −

m(r)
r

)
Rθ

θ = Rφ
φ =

m(r) + rm′(r)
2r3

+ f ′(r)
(
m(r) − r

r2

)
(12)

Use these to calculate the Einstein tensor components, Gtt and Grr , and hence
show the Einstein equations imply,

m(r) = 8πGN

∫ r

0
ρ(r ′)r ′2dr ′ ,

df
dr

=
m(r) + 8πGNr3P(r)

2r (r −m(r))
(13)

ANSWER:
Similar problem ...
The Ricci scalar is,

R = R t
t + R r

r + Rθ
θ + Rφ

φ

= R t
t + R r

r + 2Rθ
θ

= 2
m′(r)

r2
− 2f ′′(r)

(
1 −

m(r)
r

)
+ f ′(r)

(
rm′(r) + 3m(r) − 4r

r2

)
− 2f ′(r)2

(
1 −

m(r)
r

)
Then,

Gtt = Rtt −
1
2

gttR

= gttR t
t −

1
2

gttR

= gtt

(
R t

t −
1
2

R
)

(14)

where,

R t
t −

1
2

R = −
m′(r)

r2
(15)

so,

Gtt = e2f (r) m
′(r)
r2

(16)
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And,

Grr = Rrr −
1
2

grrR

= grrR r
r −

1
2

grrR

= grr

(
R r

r −
1
2

R
)

(17)

where,

R r
r −

1
2

R = −
m(r)
r3

+ 2f ′(r)
(
r −m(r)

r2

)
(18)

so,

Grr =
1

1 − m(r)
r

(
−

m(r)
r3

+ 2f ′(r)
(
r −m(r)

r2

))
= −

m(r)
r3 −m(r)r2

+
2
r

f ′(r) (19)

The Einstein equation is,

Gµν = 8πGNTµν (20)

Now,

Ttt = ρu2
t + P (utut + gtt ) (21)

and ut = gttut = −e2f (r)T = −ef (r), so,

Ttt = ρe2f (r) (22)

and,

Trr = ρu2
r + P (urur + grr ) =

P

1 − m(r)
r

(23)

Then the tt component of the Einstein equation is;

−e2f (r) m
′(r)
r2

= 8πGN

(
ρe2f (r)

)
(24)

so we find,

m′(r)
r2

= 8πGNρ (25)
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so we find as required,

m(r) = 8πGN

∫ r

0
dr ′ρ(r ′)r ′2 (26)

And for the rr component,

−
m(r)

r3 −m(r)r2
+

2
r

f ′(r) = 8πGN

 P

1 − m(r)
r

 (27)

so,

f ′(r) =
1
2r

(
m(r) + 8πGNr3P

r −m(r)

)
(28)

Probable mark assignment: 1 mark for

[1 mark]

(iv) If the star has a surface, say at r = R, then outside this surface for r > R there is
no fluid matter ie. ρ = P = 0. Then solve the equations to determine the metric
in the star’s exterior. What is this exterior spacetime? What is the mass of the
star in terms of the function m(r)?

ANSWER:
Similar problem ...
Probable mark assignment: 1 mark for

[1 mark]

[Total 4 marks]
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3. This question concerns scalar fields and FLRW spacetime.

(i) Consider a scalar field φ(t , x i) with potential V (φ) on a general spacetime. Its
stress tensor is given as,

Tµν = ∇µφ∇νφ −
1
2

gµν (∇αφ∇αφ + V (φ)) (1)

Use stress energy conservation to determine the equation of motion of this scale
field.

ANSWER:
Similar problem ...
Probable mark assignment: 1 mark for

[1 mark]

(ii) Now take the spacetime to be FLRW, with coordinates xµ = (t , x i), and metric,

ds2 = −dt2 + a(t)2dx idx i (2)

Compute the Christoffel symbol components Γα µν for this metric.

ANSWER:
Similar problem ...
Probable mark assignment: 1 mark for

[1 mark]

(iii) Take the scalar to have the symmetries of FLRW, so that φ is only a function of
time t . Also take its potential to vanish,V (φ) = 0 - this is a massless scalar field.
Show that the change in the scalar at time t from some initial time t0 is given as,

φ(t) − φ(t0) =
∫ t

t0
dt ′a(t ′)3 (3)

Consider the stress tensor for this massless scalar field in FLRW. By computing
the components of Tµν explicitly, show that it behaves in the same way as a
perfect fluid with equation of state ρ = P.

ANSWER:
Similar problem ...
Probable mark assignment: 1 mark for

[1 mark]
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(iv) Consider now the opposite limit of the scalar field behaviour, where we can
ignore the scalar field time dependence so φ′(t)2 � V (φ) - this is a potential
dominated scalar field. Use the fact that the tt-component of the Einstein tensor
is given as,

Gtt = 3
(
a′(t)
a(t)

)2

(4)

and the scalar is approximately independent of time to show the scale factor
may expand exponentially quickly in time as,

a(t) = exp

t √4π
3

GNV (φ)

 (5)

ANSWER:
Similar problem ...
Probable mark assignment: 1 mark for

[1 mark]

[Total 4 marks]
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4. This question concerns Nordström’s theory of gravity.

(i) Before Einstein completed his equations of General Relativity, an alternative
theory was proposed by Nordström. As with Einstein’s theory, in Nordström’s
theory gravity is due to curvature of spacetime. However, the theory is much
simpler as the spacetime metric cannot be general, but is given in terms of one
function Φ(t , x i), as,

ds2 = Φ2
(
−dt2 + dx idx i

)
(1)

where we take coordinates xµ = (t , x i). Nordström proposed the gravitational
field equation is,

R = κT (2)

where R is the Ricci scalar, and T is the trace of the stress tensor, and κ is a
constant.

Show that,

Γα µν = (3)

ANSWER:
Similar problem ...
Probable mark assignment: 1 mark for

[1 mark]

(ii) Now compute the Ricci tensor, and show that the field equation yields,

6
Φ3
∇µ∇µΦ = −κT (4)

ANSWER:
Similar problem ...
Probable mark assignment: 1 mark for

[1 mark]

(iii) A massive particle in the spacetime follows the timelike curve xµ = (T (τ), X i(τ))
where τ is its proper time. Assume the Nordstöm scalar Φ is time independent,
so Φ = Φ(x i). Use the Euler-Lagrange equations to vary the Lagrangian,

L =
∫

dτΦ2(X )
− (

dT
dτ

)2

+
dX i

dτ
dX i

dτ

 (5)

PT4.2 ANSWERS 15
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and hence determine the equation of the geodesic curves.

ANSWER:
Similar problem ...
Probable mark assignment: 1 mark for

[1 mark]

(iv) Consider a Newtonian limit similar to that in GR by taking Φ = 1 + εφ + O(ε3/2).
Use you answer to part iii) to identify φ with the usual Newton gravitational po-
tential. Consider slowly moving dust fluid, and show that the constant κ should
be κ = 24πGN.

ANSWER:
Similar problem ...
Probable mark assignment: 1 mark for

[1 mark]

[Total 4 marks]
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5. This question concerns the Newtonian limit and light bending. Recall the metric for
the Newtonian spacetime is;

ds2 = gµνdxµdxν , with gµν = ηµν − 2εΦ(x i) δµν + O(ε3/2)

where xµ = (t , x i) with i = 1, 2, 3 and we will take the potential Φ(x i) to be static so
∂tΦ = 0.

(i) Take a massive particle moving on the curve, xµ(τ), where τ is its proper time.
Assume the motion is slow so that,

dxµ

dτ
=

(
1 + ε f + O(ε3/2), ε1/2 v i + O(ε3/2)

)
Determine the function f in terms of the 3-velocity v i and potential Φ. Suppose
the particle is moving through a curved region of space where Φ , 0, and we
are sitting very far away at constant x i in a region where Φ = 0. If the particle
emitted light with frequency ω, what frequency do we observe the light to have?

ANSWER:
Similar problem ...
Probable mark assignment: 1 mark for

[1 mark]

(ii) Parameterize a null curve xµ(λ) = (T (λ), X i(λ)) by an affine parameter λ. By
varying the Lagrangian,

L =
∫

dλgµν
dxµ

dλ
dxν

dλ
(1)

show that in the Newtonian limit the equations governing a light ray are;(
dT
dλ

)2

=
dX i

dλ
dX i

dλ
,

dT
dλ

= k (1 − εΦ) + O(ε3/2) ,
d2X i

dλ2
= ε∂jΦ

dX i

dλ
dX j

dλ
+ O(ε3/2) (2)

for some constant k .

ANSWER:
Similar problem ...
Probable mark assignment: 1 mark for

[1 mark]

PT4.2 ANSWERS 17
[This question continues on the

next page . . . ]



General Relativity May 2013 ANSWERS DRAFT January 29, 2013

(iii) Take the Newtonian potential for a static point source with mass M at position
x i = (0, R, 0). Consider a light ray initially propagating along the x1 axis, so that
xµ = (λ, λ, 0, 0) for λ→ −∞. The trajectory of the ray is then

xµ = (λ + εF(λ) + O(ε3/2)), λ + εG(λ) + O(ε3/2)), εH(λ) + O(ε3/2)), 0) (3)

Determine H(λ), and hence show that light is deflected by an angle θ, where,

θ = ε
GNM
4R

+ O(ε3/2) (4)

ANSWER:
Similar problem ...
Probable mark assignment: 1 mark for

[1 mark]

[Total 3 marks]
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