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Abstract:

Thermal maximally supersymmetric SU(Nc) Yang-Mills (SYM) in (1 + p)-dimensions for

0 ≤ p ≤ 3, taken in the large Nc ’t Hooft limit, is conjectured by Maldacena duality to be

dual to Dp-branes at finite temperature in the decoupling limit. These may be described

semiclassically by certain supergravity black brane solutions, whose properties then make

predictions for the Nc and temperature, T , dependence of certain SYM quantities. Specifically

the free energy is predicted to go as ∼ N2
c T

2(7−p)
(5−p) and the thermal expectation value of the

scalars to go as ∼ T
2

5−p . Following the arguments of Horowitz and Martinec in the context of

Matrix theory black holes, and more recently Smilga, in the D0-brane context, we consider

the effective canonical partition function for the low energy moduli of the theory. Simple

estimates then predict precisely the correct Nc and T dependence of the free energy and

scalar expectation values.
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1. Introduction

Maldacena duality has enormous potential to allow us to understand the most basic questions

about quantum gravity. Once one can understand the recovery of the graviton in a well defined

theory of quantum gravity, an important

The black brane solution in supergravity is,

ds2 = α′

(
U

7
2

2π
√
bλ

(−fdt2) + 2π
√
bλ

(
U−

7
2
dU2

f
+ U−

3
2dΩ2

))

f(U) = 1− U0

U
(1.1)

where the radial coordinate U is taken to correspond to the expectation value of the scalars

in the SYM. The horizon is at U = U0, implying the thermal scale for the scalars is U0 in the

SYM. Supergravity then predicts the low temperature thermodynamic behaviour,

E

λ3−p = c N2

(
T

λ3−p

) 2(7−p)
5−p

c =

(
22131252

719
π14

)1/5

' 7.41. (1.2)

for energy density E and temperature T , valid for T/λ3−p � 1 but finite in the large N limit,

and the relation,

U7−p
0 = c

Eλ4

N2
c =

(
22131252

719
π14

)1/5

' 7.41. (1.3)

Work of Smilga [?] provides an argument for the origin of this power law dependence on

t.
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The Horowitz-Polchinski correspondence point [?] is expected at temperatures of order

t ∼ 1 and a supergravity description breaks down due to curvature corrections near the

horizon. In the ultra low temperature limit where we scale T with N , then for t� 1/N−10/21

the dilaton is large at the horizon and string quantum corrections become important so

that supergravity again breaks down, and one must move to an M-theory description. We

emphasise here that we are interested in the usual ’t Hooft scaling so that t ∼ O(1) limit as

N →∞ where supergravity is valid (for t� 1), rather than the M-theory limit.

2. Low energy effective thermal action for moduli

We begin with maximally supersymmetry U(Nc) Yang-Mills theory. Since we will be inter-

ested in finite temperature T , we use the Euclidean time formalism, with τ the Euclidean

time with period β = 1/T . Then bosonic part of the action is given as,

SB =
1

g2
YM

∫ β

0
dτ

∫ ∞
0

dxp Tr
[
F 2
µν +DµΦiDµΦi +

[
Φi,Φj

]2]
(2.1)

and the fermionic action is,

SF =
1

g2
YM

∫ β

0
dτ

∫ ∞
0

dxp Tr Ψ (γµDµ) Ψ (2.2)

where Φi for i = 1, . . . , (9− p) are scalars and ψ is a Majorana-Weyl that both transform in

the adjoint. As usual, Fµ = ∂µAν − ∂νAµ + i[Aµ, Aν ], and Dµ = ∂µ + i[Aµ, ·], and Aµ is the

vector potential transforming in the adjoint. These adjoint fields are represented as Nc ×Nc

Hermitean matrices.

A set of classical vacua of this theory are gauge equivalent to the configurations,

Aτab = aδab , Φi
ab = φiaδab (2.3)

for constants φia and P , with all other fields being zero, and a, b = 1, . . . , Nc are the colour

indices of the adjoint Hermitean matrices. Such a configuration is a classical vacuum that

breaks the U(Nc) symmetry. In the dual Dp-brane interpretation diagonal components of the

matrices Φi, the φia, are thought to represent the transverse displacement of the Nc branes.

The constant a describes the holonomy of the gauge field about the Euclidean time circle,

U = Pei
∫ β
0 dτAτ = eiβa (2.4)

and hence a ∼ a + 2π/β. Note that since the p spatial directions are non-compact, there

are no gauge moduli associated to them. We may promote these constants to slowly varying

moduli fields, a(τ, x) and φi(τ, x), and then consider the thermal field theory of these moduli

degrees of freedom.

The same classical vacua exist in the non-supersymmetric (or quenched) theory without

fermions, or in the supersymmetric case with fermions. In the non-supersymmetric case
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thermal quantum corrections generate a potential on this moduli space that dominates all

other dynamics. In the maximally supersymmetric case of interest here, this thermal potential

(and in fact also the correction to the classical kinetic term) while generated, interestingly

does not dominate the dynamics, and other IR effects are of greater importance, leading to the

non-trivial scaling of free energy and scalar vevs that are predicted from supergravity. Then

one finds that there are regimes in moduli space - were the brane separations are all large -

where this moduli theory is weakly coupled and can be a good description, and furthermore

one can compute the leading corrections to it in a controlled loop expansion which in the

quantum mechanics case p = 0 is the Born-Oppenheimer approximation.

In the appendix of this paper we use such a loop expansion to determine the effective

action of these moduli as,

Smoduli = Sclassical + S1−loop + S2−loop + . . . (2.5)

where the classical action is,

Sclassical =
N

λ

∫ β

0
dτ

∫ ∞
0

dxp
∑
a

∂µφ
i
a∂µφ

i
a (2.6)

and we note that there is no classical kinetic term for the holomony field a(τ, x). The 1-loop

correction computed in the appendix, depends only on the differences ∆i
ab(τ, x) ≡ φia − φib

between moduli fields, due to the translation invariance of the brane, and can be organised

into a derivative expansion as,

S1−loop =

∫ β

0
dτ

∫ ∞
0

dxp
∑
a<b

(
L′4 +

1

β
e−β|∆ab| cos

2πa

R
(L0 + L2 + L4) + . . .

)
(2.7)

where the zeroth order and second order derivative terms are,

L0 =

(
β

|∆ab|

)− p
2
(
c1 +O

(
1

|∆ab|2

))
L2 = ∂µ∆i

ab∂µ∆i
ab

(
β

|∆ab|

)2− p
2
(
c2 +O

(
1

|∆ab|2

))
+
(

∆i
ab∆

j
ab∂µ∆i

ab∂µ∆j
ab

)( β

|∆ab|

)3− p
2
(
c3 +O

(
1

|∆ab|2

))
(2.8)

and the fourth derivative terms are,

L′4 =
1

(4π)p/2
Γ(

7− p
2

)

(
∂µ∆i

ab∂µ∆i
ab

)2
|∆i

ab|7−p

(
1 +O

(
1

|∆ab|2

))
(2.9)
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and

L4 =
(
∂µ∆i

ab∂µ∆i
ab

)2( β

|∆ab|

)4− p
2
(
c4 +O

(
1

|∆ab|2

))
+
(
∂ν∆k

ab∂ν∆k
ab

)(
∆i
ab∆

j
ab∂µ∆i

ab∂µ∆j
ab

)( β

|∆ab|

)5− p
2
(
c5 +O

(
1

|∆ab|2

))
+
(

∆i
ab∆

j
ab∂µ∆i

ab∂µ∆j
ab

)2
(

β

|∆ab|

)6− p
2
(
c5 +O

(
1

|∆ab|2

))
(2.10)

and the dots . . . represent terms of higher derivative order and |∆ab| =
√

∆i
ab∆

i
ab. This

calculation is reliable when the massive degrees of freedom that are integrated out are weakly

coupled, and this occurs when the moduli are well separated, so,

1� β|∆i
ab| (2.11)

and hence there terms of order O(1/|∆ab|2) are subdominant in the above expressions.

We emphasise that the term L′4 is qualitatively different from the terms L0, L2, L4 in

that the latter all arise from thermal corrections and are subsequently suppressed by a factor

e−β|∆ab|, whereas the term L′4 arises already in the zero temperature theory. Indeed we shall

see that these thermal corrections are actually dominated by this zero temperature term in

the naive scaling limit we now discuss.

3. Estimates for free energy and scalar vevs

We now use similar estimates to those of Horowitz and Martinec in order to deduce the Nc

and T scaling of the quantities of interest. Having computed the effective action in a regime

where is applies, we now argue that the theory actually receives its dominate contribution

from the region where this loop expansion becomes strongly coupled, and hence certain 1-loop

terms are of the same scale as the leading classical kinetic terms.

Firstly we estimate all the φia to be of the same order which we write φ. Furthermore we

estimate that the differences between these moduli are also of the same scale, so that,

∆i
ab ∼ φ (3.1)

Then given that the only explicit dimensional scale is temperature, it is natural to assume,

∂µφ
i
a ∼ ∂µ∆i

ab ∼
1

β
φ (3.2)

We now equate the leading classical term with the 1-loop term L′4, and later argue this

dominates the other thermal 1-loop terms with the same or less derivatives. The classical

term is estimated as,

N

λ

∫ β

0
dτ

∫ ∞
0

dxp
∑
a

∂µφ
i
a∂µφ

i
a ∼

N

λ

∫ ∞
0

dxp
N

β
φ2 (3.3)
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where we use
∫
dτ ∼ β,

∑
a ∼ N and ∂µφ

i
a ∼ φ/β. We estimate the 1-loop L′4 term as,∫ β

0
dτ

∫ ∞
0

dxp
∑
a<b

1

(4π)p/2
Γ(

7− p
2

)

(
∂µ∆i

ab∂µ∆i
ab

)2
|∆i

ab|7−p
∼
∫ ∞

0
dxp

N2

β3

1

φ3−p (3.4)

where we have taken,
∫
dτ ∼ β,

∑
a<b ∼ N2 and ∂µφ

i
a ∼ φ/β.

Now equating the classical and 1-loop term yields the estimate,

N2

β
φ2 ∼ N2

β3

1

φ3−p (3.5)

and so,

φ ∼ β−
2

5−p (3.6)

This scaling implies that,

β|∆i
ab| ∼ βφ ∼ β

3−p
5−p (3.7)

Then the classical and 1-loop action for L′4 are estimated as,

Sclassical, SL′4 ∼
N

λ

∫
dxp

N

β
φ2 ∼

∫
dxpN2β

− 9−p
5−p (3.8)

The remaining 1-loop terms we estimate as,∫ β

0
dτ

∫ ∞
0

dxp
∑
a<b

( 1

β
e−β|∆ab| cos

2πa

R
(L0 + L2 + L4) + . . .

)
∼
∫
dxpe−βφ

(
φ

β

) p
2

(1 +O(βφ))

∼
∫
dxpe−β

3−p
5−p

β
− 7−p

5−p (3.9)

Hence we may consistently ignore these over the classical and L′4 term provided that 1�
β, ie. we are in the low temperature limit. Now the free energy, F , is given as βF =< S >,

and hence we may estimate the free energy density f as,

βf ∼ N2β
− 9−p

5−p (3.10)

and thus,

f ∼ N2T
− 2(7−p)

5−p (3.11)

This is precisely the parametric dependence predicted by the supergravity. Note that the free

energy density and energy density ε should have the same parametric scaling so that,

ε ∼ N2T
− 2(7−p)

5−p (3.12)
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The thermal vev of the scalars, U , is measured as,

U =

√
<

1

N
TrΦiΦi > ∼

√
<

1

N

∑
a

φiaφ
i
a > ∼ φ (3.13)

Then, we find,

U ∼ φ ∼ β−
2

5−p ∼
( ε

N2

)7−p
(3.14)

which is precisely the relation predicted by the supergravity.

4. Discussion
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