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Conventions:

We use conventions as in lectures. In particular we take (−, +, +, +) signature.

You may find the following formulae useful:

The Christoffel symbol is defined as,

Γµ αβ ≡
1
2

gµν
(
∂αgνβ + ∂βgαν − ∂νgαβ

)
The covariant derivative of a vector field is,

∇µvν ≡ ∂µvν + Γν µαvα

and for a covector field is,

∇µwν ≡ ∂µwν − Γ
α
µνwα

For a Lagrangian of a curve xµ(λ) of the form,

L =
∫

dλL(xµ,
dxµ

dλ
)

the Euler-Lagrange equations are,

d
dλ

 ∂L

∂(dxµ
dλ )

 =
∂L

∂xµ
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Section A

Answer all of section A.
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SECTION A

1. This question concerns accelerated motion in curved spacetimes.

(i) Suppose we have a massive particle following a trajectory xµ(τ) in a general
spacetime, where τ is the particle’s proper time. The particle’s 4-velocity vµ is
defined as vµ = dxµ/dτ. Why is vµvµ = −1?

[5 marks]

(ii) Use the chain rule property of derivatives to show that the 4-velocity transforms
as a vector.

[7 marks]

(iii) The 4-acceleration aµ is defined as aµ = vν∇νvµ. Show that in Minkowski space-
time this can be written as aµ = d2xµ/dτ2.

[6 marks]

(iv) By considering vν∇ν
(
vµvµ

)
, show that aµ and vµ are orthogonal 4-vectors (ie.

aµvµ = 0).
[7 marks]

(v) Show that since aµvµ = 0 then aµ must be a spacelike vector.
[5 marks]

(vi) Now consider a particle moving in the Schwarzschild spacetime, with coordi-
nates xµ = (t , r , θ, φ) and metric,

ds2 = −
(
1 −

2M
r

)
dt2 +

(
1 −

2M
r

)−1

dr2 + r2
(
dθ2 + sin2 θdφ2

)
(1)

Consider a particle accelerating to stay at constant spatial position, so that r , θ, φ
remain constant. Use the fact that,

Γr
tt =

M
r2

(
1 −

2M
r

)
, Γt

tt = Γθ tt = Γφ tt = 0 (2)

to calculate the norm
√

aµaµ of the 4-acceleration of the particle for r > 2M.
What happens to this quantity at r = 2M and why?

[10 marks]

[Total 40 marks]
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Section B

Answer 2 out of the 4 questions in the following section.
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SECTION B

2. This question concerns the Einstein equations for a star made of perfect fluid.

(i) State the stress tensor Tµν for a perfect fluid in terms of the fluid energy density
ρ, pressure P and 4-velocity uµ (recall uµuµ = −1). Take nµ to be orthogonal to
uµ and consider nµ∇νTµν to derive one of the fluid equations,

nµ
(
∂µP + (ρ + P) uν∇νuµ

)
= 0 (1)

[8 marks]

(ii) Consider a time independent, spherically symmetric metric describing a star.
We take coordinates xµ = (t , r , θ, φ) and a metric,

ds2 = −e2f (r)dt2 +
1

h(r)
dr2 + r2

(
dθ2 + sin2 θdφ2

)
(2)

where f (r) and h(r) are functions of r . The star is made of perfect fluid. Since
it is static then uµ = (T (r), 0, 0, 0). Firstly determine the function T (r). Then
using part i) above, choose nµ = (0, 1, 0, 0) and compute the necessary Γα µν
components to show that,

dP
dr

= − (ρ + P)
df
dr

(3)

[9 marks]

(iii) The non-zero components of Ricci with one index up and one down are,

R t
t = −

2h
r

df
dr
−

1
2

dh
dr

df
dr

+ L (r) , R r
r = −

1
r

dh
dr
−

1
2

dh
dr

df
dr

+ L (r)

Rθ
θ = Rφ

φ =
1
r2

(1 − h) −
1
2r

dh
dr
−

h
r

df
dr

(4)

where L (r) is a function of f and h you will not need to know explicitly.
Calculate the Einstein tensor components, Gtt and Grr , and then the correspond-
ing tt and rr components of the Einstein equations. Define,

h(r) = 1 −
2m(r)

r
(5)

and then show these Einstein equations yield,

dm
dr

= 4πGNr2ρ ,
df
dr

=
m + 4πGNr3P

r2 − 2mr
(6)

[ These are the Tolman-Oppenheimer-Volkoff equations for a relativistic star. ]
[8 marks]

(iv) If the star has a surface at r = R, then outside this surface for r > R there is no
fluid matter ie. ρ = P = 0. Solve the equations to find m(r) and show e2f (r) = h(r)
is a solution. Hence determine the metric in the star’s exterior. What is this
exterior spacetime? What is its mass in terms of m(r)?

[5 marks]

[Total 30 marks]
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3. This question concerns scalar fields and FLRW spacetime.

(i) Consider a scalar field φ(t , x i) with potential V (φ) on a general spacetime. Its
stress tensor is given as,

Tµν = ∇µφ∇νφ −
1
2

gµν (∇αφ∇αφ) − gµνV (φ) (1)

Using the equation of motion of this scalar field,

∇α∇αφ =
dV (φ)

dφ
(2)

show that the stress energy is conserved.
[8 marks]

(ii) Take spacetime to be FLRW, with coordinates xµ = (t , x i) with i = 1, 2, 3, and,

ds2 = −dt2 + a(t)2δijdx idx j (3)

Compute all the Christoffel symbol components Γα µν for this metric.
[8 marks]

(iii) Take the scalar to have the symmetries of FLRW, so that φ is only a function of
time t . Also take its potential to vanish,V (φ) = 0 - this is a massless scalar field.
Solve the massless scalar equation of motion to show that,

φ(t) − φ(t0) = k
∫ t

t0
dt ′

1
a(t ′)3

(4)

where k is a constant of integration.
[8 marks]

(iv) A comoving perfect fluid with equation of state P = wρ, for constant w, obeys,

ρ(t) =
c

a(t)3(1+w)
(5)

in FLRW where c is a constant. Show the stress tensor for the massless scalar
in FLRW is the same as that for a perfect fluid with w = +1 (a ’stiff fluid’). Find
the relation between the constants c and k .

[6 marks]

[Total 30 marks]
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4. Before Einstein completed his equations of General Relativity, an alternative theory
was proposed by Nordström. As with Einstein’s theory, in Nordström’s theory grav-
ity is due to curvature of spacetime. However, the theory is much simpler as the
spacetime metric cannot be general, but is given in terms of one function φ(t , x i), as,

ds2 = φ2
(
−dt2 + dx idx i

)
(1)

where we have taken coordinates xµ = (t , x i) with i = 1, 2, 3. Particle motion is then
just as for GR but in this particular curved spacetime.

(i) A massive particle in the spacetime follows the timelike geodesic xµ =
(T (τ), X i(τ)) where τ is its proper time. Assume the Nordstöm scalar φ is time
independent, so φ = φ(x i). Use the Euler-Lagrange equations to vary the La-
grangian,

L =
∫

dτ φ2(X )
− (

dT
dτ

)2

+
dX i

dτ
dX i

dτ

 (2)

with respect to X i and hence determine that the geodesic is governed by,

d2X i

dτ2
= −

1
φ3

∂φ(X )
∂X i

(3)

[8 marks]

(ii) Nordström proposed a field equation governing φ to be,

1
φ3

(
−∂2

t + ∂2
i

)
φ = κ ρ (4)

where ρ is the matter energy density and κ is a constant. Consider a Newtonian
limit similar to that in GR by taking φ = 1 + εΦ and time independent with ε � 1.
Use your answer to part i) to identify the Newtonian gravitational potential and
hence determine the constant κ in terms of Newton’s constant GN.

[8 marks]

(iii) Like GR, Nordström’s theory predicts a gravitational redshift. Suppose a particle
is at fixed position x i

1 and emits radiation with frequency ω in its rest-frame. At
what frequency does a particle at fixed position x i

2 receive it, assuming that φ is
time independent? Consider this redshift in the Newtonian limit - can it be used
to distinguish Einstein’s GR from Nordström’s theory?

[8 marks]

(iv) Assuming φ is time independent, perform the T variation of the Lagrangian in
part i) to give a conserved quantity for the motion. Show how this conserved
quantity can be written in terms of the particle’s 4-velocity and an appropriate
Killing vector K µ which you should determine.

[6 marks]

[Total 30 marks]
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5. This question concerns light bending in the Newtonian spacetime. Recall the Newto-
nian metric is,

ds2 = gµνdxµdxν , with gµν = ηµν − 2εΦ(x i) δµν + O(ε3/2)

where xµ = (t , x i) with i = 1, 2, 3 and we assume ∂tΦ = 0 so the spacetime is static.
When ε � 1 this is the Newtonian limit of GR with εΦ being the Newtonian gravita-
tional potential.

(i) Parameterize a null geodesic in the Newtonian spacetime as xµ(λ) =
(T (λ), X i(λ)) with affine parameter λ. By varying

L =
∫

dλgµν
dxµ

dλ
dxν

dλ
(1)

with respect to X i show that for a null geodesic,

d2X i

dλ2
= 2ε

(
∂Φ

∂X k

dX i

dλ
dX k

dλ
− δijδkl

∂Φ

∂X j

dX k

dλ
dX l

dλ

)
(2)

to leading order in ε.
[10 marks]

(ii) Take the Newtonian potential for a static point source with mass (εM) at position
x i = (0, R, 0). Consider a light ray initially propagating along the x1 axis, so that
xµ = (λ, λ, 0, 0) for λ→ −∞. The trajectory of the ray is then

X i(λ) = (X (λ), Y (λ), Z(λ)) =
(
λ + εG(λ) + O(ε3/2), εH(λ) + O(ε3/2), 0

)
(3)

Use the answer to part i) to show that,

d2H
dλ2

= −2
∂Φ(X i)
∂Y

(4)

[10 marks]

(iii) By using the explicit form of the Newtonian potential for the point mass, integrate
twice to determine H(λ). Hence show that light is deflected by an angle θ which
to leading order in ε is,

θ =
4GN(εM)

R
(5)

Hint: You may find the following integral useful;∫
dx

(a2 + x2)3/2 =
x

a2
√

a2 + x2
(6)

[10 marks]

[Total 30 marks]
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