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Abstract

We consider the calculations of three-point functions at finite temperature as
they are usually performed in the literature. We show that as normally used,
the Imaginary-Time and the Real Time finite temperature formalisms calculate
expectation values of retarded and time ordered three point functions respectively.
We also present a relation between these quantities that shows that they are not
generally equal.

In the past in finite temperature field theory, attention has focused largely on two-
point functions [1, 2]. Recently there has been increasing interest in three-point functions,
especially for the calculation of the QCD coupling constant as it runs with temperature
[3, 4, 5, 6].

Here we will look at only one issue, that of the apparent incompatibility between
results for three-point functions obtained from the two different finite temperature for-
malisms, ITF (Imaginary-Time Formalism) [1, 2] or the newer RTF (Real Time Formal-
ism) [2]. Typically in any one-loop three-point function calculation, one finds factors of
n3 in RTF calculations, where n is the number distribution, but only single n factors in
the equivalent ITF calculation.

In the particular case of three-point functions in QCD, this results in very different
high temperature behaviour. In RTF, one finds β−3 and β−2 behaviour in the static
case (zero external energies) [3, 4], where β is the inverse temperature, while with ITF
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one finds only β−1 in the static case [5] and β−2 in the dynamic case (non-zero external
energies) [5, 6]. Such differences have led to the suggestion that RTF and ITF may not
be compatible after all [4]. However, with these QCD calculations there are many other
issues to be resolved, such as gauge dependence and dependence on choice of momentum
renormalisation point. We do not address these other issues here and we do not claim
to have the complete solution in the case of the QCD running coupling constant. The
results of this Letter, when applied to these QCD calculations, clarify only one problem,
that of the possible incompatibility between ITF and RTF alluded to in [4].

The main results of this Letter apply to any theory. First of all we show that ITF,
as usually used, calculates the retarded three-point function, whereas RTF gives the
time-ordered three-point function. Secondly, we give an explicit relation, equation (20),
between the retarded and time-ordered three-point functions. This relation shows re-
tarded and time-ordered functions are not equal at non-zero temperature, contrary to
the case at zero temperature [7] or even the case of the real parts of two point functions
at non-zero temperature [1, 2]. The relation is the extension to three-point functions of
the well known relation between the retarded and time-ordered finite temperature prop-
agators [1, 2]. These results also clearly show that we do not expect calculations which
use ITF and RTF in the standard way, e.g. the QCD calculations [3, 4, 5, 6], to give the
same result, and that such calculations can differ by powers of β in the high temperature
limit.

We first need to consider what expectation values are actually calculated in RTF and
ITF. In RTF calculations, one looks at the diagram where all the external vertices are
fixed to be type 1, and, by definition, this is the time ordered product [2]. To see what
is calculated in ITF, we have to extend the work of Baym and Mermin [8] from two-
point functions to three-point functions. We consider a three-point function of three (not
necessarily equal) Heisenberg fields, ϕ1(t), ϕ2(t), ϕ3(t), and we shall suppress any spin
indices and any dependence on space or three-momentum variables as neither of these
aspects affects our results.

We start by defining

ΓT (t1, t2, t3) = Tr{e−ıτHT ϕ1(t1)ϕ2(t2)ϕ3(t3)}/ Tr{e−ıτH}, (1)

Γabc(t1, t2, t3) = (−1)pTr{e−ıτHϕa(ta)ϕb(tb)ϕc(tc)}/ Tr{e−ıτH}, (2)

where T stands for time ordering. In (2), p is the number of times one has to swap fermion
fields in going from a 123 ordering to the abc ordering of Γabc of (2). Throughout this
Letter we let (abc) be any permutation of (123), so that ta = t2, nb = n3 when we choose
the (231) permutation for (abc). When τ = −iβ, we have the canonical ensemble which is
assumed to be absolutely convergent. Thus ΓT is analytic in the lower half τ plane. Using
cyclicity of the trace, we see that Γabc(t1, t2, t3) converges only when {t1, t2, t3} ∈ Aabc

where
Aabc := {{ta, tb, tc} | Im(tc) ≥ Im(tb) ≥ Im(ta) ≥ Im(tc + τ)}. (3)

Using this we can analytically extend the definition of the time ordered product, ΓT ,
to cover complex time arguments, and we define

ΓT (t1, t2, t3) = Γabc(t1, t2, t3) (4)
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when
{ta, tb, tc} ∈ Aabc (5)

and
Re(ta) ≥ Re(tb) ≥ Re(tc). (6)

The cyclicity of the trace leads to the boundary condition

Γcab(t1, t2, t3) = σcΓabc(t
′

1, t
′

2, t
′

3) (7)

when {t1, t2, t3} ∈ Aabc, and

ΓT (t1, t2, t3) = ΓT (t
′

1, t
′

2, t
′

3) (8)

when {t1, t2, t3} ∈ Aabc and Re(ta) ≥ Re(tb) ≥ Re(tc), where t
′
a = ta,t

′
b = tb, t

′
c = tc − τ

in (7) and (8). In this Letter, we shall set σa = +1 (−1) if the a-th field is bosonic
(fermionic). Because the Γabc are bounded when {t1, t2, t3} ∈ Aabc, its Fourier transform,
γabc, exists so that

Γabc(t1, t2, t3) = (2π)−3
∫

dp1dp2dp3e
−ı(p1t1+p2t2+p3t3)γabc(p1, p2, p3) (9)

where t1, t2, t3 ∈ Aabc. The boundary conditions on (9), when {t1, t2, t3} ∈ Aabc, lead to

γabc(p1, p2, p2) = γcab(p1, p2, p3).fc (10)

where
fa := σae

−ıτpa . (11)

Now we consider exactly what one calculates in ITF. To do this we consider the
Fourier series of ΓT for ti/τ ∈ ℜe, −1 < ti/τ < 1 and define γν1,ν2,ν3 by

ΓT (t1, t2, t3) = τ−3
∑

ν1,ν2,ν3

e−2πı(ν1t1+ν2t2+ν3t3)/τ .γν1,ν2,ν3 (12)

where νa is an integer (half-integer) if the a-th field is bosonic (fermionic). Thus

γν1,ν2,ν3 = δν1,ν2,ν3

∫ τ

0
dt1dt2 e

2πı(ν1t1+ν2t2)/τ .ΓT (t1, t2, 0), (13)

where we have used time translation invariance. From (13), after some manipulation, we
find that

γν1,ν2,ν3 = δν1,ν2,ν3Φ(z1 = 2πν1/τ, z2 = 2πν2/τ) (14)

where

Φ(z1, z2) = (2π)−2
∫
dp1dp2dp3 δ(p1 + p2 + p3){

γ123(p1, p2, p3).

(
ı

z1 − p1
.

ı

z1 − p1 + z2 − p2
− f1.

ı

z1 − p1
.

ı

z2 − p2
+

f1f2.
ı

z1 − p1 + z2 − p2
.

ı

z2 − p2

)
+

γ321(p1, p2, p3).

(
ı

z1 − p1
.

ı

z1 − p1 + z2 − p2
− f−1

1 .
ı

z1 − p1
.

ı

z2 − p2
+

f−1
1 f−1

2 .
ı

z1 − p1 + z2 − p2
.

ı

z2 − p2

)}
. (15)
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Now there are many other definitions of Φ that satisfy (14). For instance, we can
insert σ1e

ız1τ and σ2e
ız2τ anywhere in the expression (15) for Φ and it will still satisfy (14).

However, (15) is the unique analytic continuation that is both analytic off the z1, z2 ∈ ℜe
plane and that tends to zero as either z1 or z2 tend to infinity in any direction in the
complex plane. The proof that it is unique is the same as in [8], because we can consider
Φ as a function of just one complex variable at a time, holding the others constant. The
question is now what is (15) near the z1, z2 ∈ ℜe plane. The simplest approach, and the
one almost always used in the literature, is to set z1 = k1 + ıϵ1, z2 = k2 + ıϵ2, though
there are many other possibilities for the analytic continuation of external energies in ITF.
Then there are just six different ways of approaching this plane. The six different choices
for the ϵ’s and the results are shown in in table 1. Essentially, we get all the different

Result R1 R̄1 R2 R̄2 R3 R̄3

ϵ1/ϵ +2 -2 -1 +1 -1 +1
ϵ2/ϵ -1 +1 +2 -2 -1 +1

Table 1: The results obtained for different choices for ϵ1, ϵ2 inΦ(k1 + ıϵ1, k2 + ıϵ2)

types of three point retarded function, which we define through the (anti-)commutators
[7]

Ra = R(ϕa(ta) | ϕb(tb)ϕc(tc))

= θ(ta − tb)θ(tb − tc)[Γabc − Γbac − Γcab + Γcba] +

θ(ta − tc)θ(tc − tb)[Γacb − Γcab − Γbac + Γbca], (16)

R̄a = R(ϕb(tb)ϕc(tc) | ϕa(ta))

= θ(tc − tb)θ(tb − ta)[Γabc − Γbac − Γcab + Γcba] +

θ(tb − tc)θ(tc − ta)[Γacb − Γcab − Γbac + Γbca], (17)

where Γabc = Γabc(t1, t2, t3) etc. This is what is usually calculated in ITF, i.e. the simplest
analytic continuation to real energies is used.

The retarded function, which is the usual ITF result, should be compared with the
expectation value of the time ordered product, which is the RTF result. The Fourier
transform of the latter is

ΓT (k1, k2) = (2π)−2
∫
dp1dp2dp3δ(p1 + p2 + p3){

γ123(p1, p2, p3)

(
ı

k1 − p1 + ıϵ
.

ı

k1 − p1 + k2 − p2 + ıϵ
−

f1.
ı

k1 − p1 − ıϵ
.

ı

k2 − p2 + ıϵ
+

f1f2.
ı

k1 − p1 + k2 − p2 − ıϵ
.

ı

k2 − p2 − ıϵ

)
+

γ321(p1, p2, p3)

(
ı

k1 − p1 − ıϵ
.

ı

k1 − p1 + k2 − p2 − ıϵ
−

f−1
1 .

ı

k1 − p1 + ıϵ
.

ı

k2 − p2 − ıϵ
+
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f−1
1 f−1

2 .
ı

k1 − p1 + k2 − p2 + ıϵ
.

ı

k2 − p2 + ıϵ

)}
. (18)

where ϵ is small, real and positive. We now make use of (10) and

ı

x± ıϵ
=

ıPP

x
± πδ(x), (19)

where PP indicates the principal part, and then find after some manipulation that

ΓT (k1, k2) = [(1− F−1
1 )(1− F−1

2 )(1− F−1
3 )]−1

3∑
a=1

(1− F−1
a ).Ra(k1, k2) +

[(1− F1)(1− F2)(1− F3)]
−1

3∑
a=1

(1− Fa).R̄a(k1, k2) (20)

where Fa := σae
−ıτka and k3 := −k1 − k2.

Equation (20) will hold for any combination of three fields, irrespective of spin, as it
relies on the boundary condition (10) that is true for all fields. It will also be satisfied
by any field or any approximation to a field that respects the boundary condition (10).
Thus equation (20) applies both to full connected three-point functions and to any one
diagram in the Feynman expansion of full connected three-point functions.

We have thus shown two key results. First is the extension from two- to three-point
functions of the result of Baym and Mermin [8], that is that in ITF after the physical
analytic continuation in the external energies variables, one finds that we are calculating
function Φ of (14). The simplest analytic continuation of this function, that is almost
always used in the ITF literature, is seen to give the retarded function as a final result,
as table 1 shows. The second result is equation (20), the generalistion to three-point
functions of the well known relation between retarded and time-ordered propagators
[1, 2].

One immediate observation can now be made, if we also remember that in the usual
RTF calculations, where the (111) componant is taken, we are calculating the time-
ordered function, ΓT . Our results show that the usual RTF and ITF three-point calcula-
tions are not simply equal but are related by equation (20).

In the case of the QCD calculations our results mean that there will be some big
differences between the RTF calculations [3, 4] and the ITF calculations [5, 6]. This
is because they all use the finite temperature formalisms in the standard way and are
thus calculating time-ordered and retarded functions which are unequal as equation (20)
shows. However, it is not possible to make a detailed quantitative comparison between the
published results because they have not all been done at the same external momentum.
In any case, there are several other unresolved issues that may cause problems with
these QCD calculations, so we have yet to fully understand the case of the QCD running
coupling constant at finite temperature.

We emphasise that there are ways of using ITF and RTF other than the usual way
that is considered here and that is also used in the literature. For example, one has many
other analytic continuations in ITF other than the simple one considered here and which
is used in the literature. Thus, we must always note how a formalism is being used so
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that it is clear what sort of function is being calculated. This is important because, as
our results for three-point functions have shown, the usual use of ITF and RTF leads to
different types of function being calculated and further that different types of function
are not in general equal at non-zero temperature.

However, ITF and RTF as a whole must give the same results for the same quantity
as their path integral derivations show they are identical in content [2]. They differ only
in the relative ease with which each formalism can calculate a given quantity. As we have
shown above for the three-point functions, it is easiest to extract the retarded functions
from ITF but the time-ordered ones from RTF. Thus the choice between ITF and RTF
is merely one of computational convenience, not of any fundamental difference in the
physics. The real question is not whether ITF or RTF is ‘correct’ but whether we need
retarded or time-ordered functions in a particular problem, and this will be decided by
the physical context.

Finally, we note that we can separate the complex equation (20) into two parts by us-
ing (19), one part containing only (PP )2 and δ2 terms while the other contains the ıPP.δ
terms. Unlike the case of the two-point functions however, these do not necessarily corre-
spond to the real and imaginary parts of equation (20) because the equation also contains
γ functions which are not necessarily real for three-point functions. We can not therefore
make general statements about the real and imaginary parts of (20). This is to contrasted
with the situation for propagators [1, 2]. There one can show, by using Hermitean proper-
ties and energy conservation, that γ∗

12(k1, k2) = γ12(−k2,−k1) = γ12(k1, k2) (in an obvious
generalisation of the notation to two-point functions with ϕ1 = ϕ†

2) so γ12 ∈ ℜe. Thus,
all the factors of ı in the case of the two-point retarded and time ordered functions come
from the split given in (19). For the three point functions, even with ϕ1 = ϕ†

3 and ϕ2 = ϕ†
2,

we can only show that γ∗
123(k1, k2, k3) = γ123(−k3,−k2,−k1) = γ123(k1 + k2,−k2,−k1), so

that γ123 etc. are not necessarily real and we can not do the simple split of (20) into real
and imaginary parts that is possible for two-point functions.

Since this work was completed, we have become aware of the complementary work of
Kobes [9] in which he derives an expression for the usual ITF calculation in terms of the
various real-time functions for the case of a one-loop diagram in a scalar field theory with
cubic self-interaction.

I would like to thank I. Hardman, R.Pisarski, H. Umezawa and Y. Yamanaka for
useful discussions.
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