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Abstract Exact analytic solutions and various numerical results for the rewiring of

bipartite networks are discussed. An interpretation in terms of copying and innovation

processes make this relevant in a wide variety of physical contexts.

Introduction

There are many situations where an ‘individual’ chooses an ‘artifacts’ by copying

the existing choice of another individual. Names for new babies and registration rates of

pedigree dogs often reflect current popular choices [1,2]. The allele for a particular gene

carried (‘chosen’) by an individual reflects current gene frequencies [3]. In Urn models

the probabilities controlling the urn chosen by a ball can reflect earlier choices [4]. The

individuals in a Voter models [12] copy one of two choices made by a neighbour, as

defined by a network of the individuals. Such copying is so common process because it

can be implemented without any global information [5]. We will consider the simplest

such model of copying and look at how this can be applied and extended.

The Basic Model

We first consider a non-growing bipartite network in which E ‘individual’ vertices

are each attached by a single edge to one of N ‘artifact’ vertices. At each time step

we choose to rewire the artifact end of one edge, the departure artifact chosen with

probability ΠR. This is attached to an arrival artifact chosen with probability ΠA.

Only after both choices are made is the graph rewired as shown in Fig. 1. The de-

gree distribution of the artifacts when averaged over many runs of this model, n(k, t),
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Fig. 1 The bipartite network of E individ-
ual vertices (circles), each connected by a
single edge (solid lines) to any one of N arti-
facts (hexagons). The dashed lines below the
individuals are a social network. In the event
shown individual 3 updates their choice,
making B the departure artifact. They do
this by copying the choice of a friend, friend
of a friend, etc., found by making a random
walk on the social network. Here this pro-
duces A as the arrival artifact so edge 3B is
rewired to become edge 3A.

satisfies the following equation:-

n(k, t + 1) = n(k, t) + n(k + 1, t)ΠR(k + 1, t) (1−ΠA(k + 1, t))

−n(k, t)ΠR(k, t) (1−ΠA(k, t))− n(k, t)ΠA(k, t) (1−ΠR(k, t))

+n(k − 1, t)ΠA(k − 1, t) (1−ΠR(k − 1, t)) , (E ≥ k ≥ 0) , (1)

where n(k) = ΠR(k) = ΠA(k) = 0 for k = −1, (E + 1). If ΠR or ΠA have terms

proportional to kβ then this equation is exact only when β = 0 or 1 [6]. We will use

the most general ΠR and ΠA for which (1) is exact, namely

ΠR =
k

E
, ΠA = pr

1

N
+ pp

k

E
, pp + pr = 1 (E ≥ k ≥ 0) . (2)

provided the social network is a complete graph with self-loops.

This form for ΠA (2) contains two processes. The preferential attachment pp term

means an individual copies (inherits) the choice of another. This emerges naturally

when using a random walk on a general network [5]. The random choice pr term can

be thought of as innovation or mutation, or may be just be a first approximation for

other unspecified. This choice for ΠA has two other special properties: one involves

the scaling properties [6] and the second is that these exact equations can be solved

analytically [7,6,8,9]. The generating function G(z, t) =
∑

k zkn(k, t) is decomposed

into eigenmodes G(m)(z) through G(z, t) =
∑E

m=0 cm(λm)tG(m)(z). From (1) we find

a second order linear differential equation for each of the eigenmodes with solution [6]

G(m)(z) = (1− z)m2F1(a + m, b + m; c; z) , λm = 1− m(m− 1)

b d
− m(d− b)

b d
,

a =
pr

pp

E′

N
, b = −E , c = 1 + a + d , d = b− prE′

pp
, 0 ≤ m ≤ E , (3)

where E′ = E. These solutions are well known in theoretical population genetics as

those of the Moran model [3] and one may map the bipartite model directly onto a

simple model of the genetics of a haploid population [6].

The degree distribution is proportional to

p(k) ∝ Γ (k + a)

Γ (k + 1)

Γ (1− c− k)

Γ (1− b− k)
(4)
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(a) The equilibrium degree probability distribu-
tion function p(k) = n(k)/N for N = E = 100.
Shown are (from top to bottom at low k) pr = 1
(red crosses), 10/E (green circles), 1/E (blue
stars) and 0.1/E (magenta squares).
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(b) The points are results from the net-
work version of the Tangled Nature
model [11]. The lines are the best fits
achieved by eye of the analytic equilib-
rium solution of the basic model (4).

Fig. 2 Equilibrium distributions.

in the equilibrium limit [7,6]. This has three typical regions illustrated in Fig. 2(a).

We have a condensate, where most of the edges are attached to one artifact p(k =

E) ∼ O(N0), for pr ¿ (E + 1 − 〈k〉)−1 . On the other hand when pr À (1 + 〈k〉)−1

we get a peak at small k with an exponential fall off, a distribution which becomes an

exact binomial at pr = 1. In between we get a power law with an exponential cutoff,

p(k) ∝ (k)−γ exp{−ζk} where γ ≈ (1− pr
pp
〈k〉) and ζ ≈ − ln(1− pr).

For many parameter values the power γ will be indistinguishable from one and

this is a characteristic signal of an underlying copying mechanism. For instance in the

Laird and Jensen network version of the Tangled Nature model [11], the number of

links between species is well fitted by the form of the analytic equilibrium solution (4).

One may try to estimate these values from first principles. As the network in [11] is a

simple graph one must set −b = (N−1), the largest possible degree. In our basic model

a/〈k〉 is the ratio of edges attached by innovation divided by those added by copying.

However the best fit for a to the Tangled Nature network results is roughly double

what one would estimate from the ratio of random to inherited (copied) links in [11].

This suggests renormalisation is needed to account for additional fluctuations found

in more complicated situations. Similar features can be seen in a simple econophysics

model [10].

One of the best ways to study the evolution of the degree distribution [6,8] is

through the Homogeneity Measures, Fn := (Γ (E+1−n)/Γ (E+1))(dnG(z, t)/dzn)z=1

(rescaled factorial moments). This is the probability that n distinct edges chosen at

random are connected to same artifact. Further, each Fn depends only on the modes

numbered 0 to n so they provide a practical way to fix the constants cn in the mode

expansion. Since F0 = E and F1 = 1, we find c0 = 1 and c1 = 0 while equilibration

occurs on a time scale of τ2 = −1/ ln(λ2) (see Fig. 3).

Communities

Our first generalisation of the basic model is to consider two distinct communities

of individuals, say Ex (Ey) of type X (Y). The individuals of type X can now copy

the choices made by their own community X with probability ppxx, a different rate
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Fig. 3 Plots of various Fn(t) for E = N =
100, pr = 0.01. The points are averages over
105 runs while the lines are the exact theo-
retical results. From top to bottom we have:
F2(t) (crosses), F3(t) (circles), F4(t) (stars).

which is used when an X copies the choice made by somebody in community Y, ppxy.

An X individual will then innovate with probability (1 − ppxx − ppxy). Another two

independent copying probabilities can be set for the Y community. At each time step

we choose to update the choice of a member of community X (Y) community with

probability px (1 − px). Complete solutions are not available but one can find exact

solutions for the lowest order Homogeneity measures and eigenvalues using similar

techniques to those discussed above. The unilluminating details are given in [8].

Complex Social Networks

An obvious generalisation is to use a complex network as the Individual’s social

network [8]. When copying, done with probability pp, an individual does a random walk

on the social network to choose another individual and finally to copy their choice of

artifact, as shown in Fig. 1. The random walk is an entirely local process, no global

knowledge of the social network is needed, so it is likely to be a good approximation

of many processes found in the real world. It also produces an attachment probability

which is approximately proportional to the degree distribution [5]. The random at-

tachment process, followed with probability pr, involves global knowledge through its

normalisation N in (2). However when N À E this can represent innovation of new

artifacts as it is likely that the arrival artifact has never been chosen before.
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Fig. 4 The degree distributions p(k) av-
eraged over 104 runs for different social
networks of average degree of 4: Erdős-
Réyni (red pluses), Exponential (random
with p(k) ∝ exp(−ζk), green circles),
Scale Free (random with p(k) ∝ k−3,
purple squares), periodic lattices of two
(grey crosses) and one (blue diamonds)
dimension. The line is the analytic result
where the social network is a complete
graph with self loops. N = E = 100,
pr = 1/E.

Results shown in Fig.4 show that the existence of hubs in the Scale Free social

network enhances the condensate while large distances in the social networks, as with

the lattices, suppress the condensate.
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An interesting example is the case of N = 2 which is a Voter Model [12] with noise

(innovation pr 6= 0) added. One can then compare the probability that a neighbour has

a different artifact (the interface density) ρ(t), a local measure of the inhomogeneity,

with our global measure (1 − F2(t)). These coincide when the social network is a

complete graph. However as we move from 3D to 1D lattices, keeping N , E and pr

constant, we see from Fig. 5 that both these local and global measures move away from

the result for the complete graph but in opposite directions [8].
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Fig. 5 Inhomogeneity measures for var-
ious lattices against t/E. The black solid
line represents the analytic result (1 −
F2(t)) for N = 2, pr = 1/E and E =
729. Numerical results for (1 − F2(t))
(triangles) and for the average probabil-
ity that a neighbour has a different arti-
fact, ρ(t) (circles) shown for social net-
works which are lattices of different di-
mensions. Averaged over 1000 runs.

Different Update Methods

Another way we can change the model is to change the nature of the update.

Suppose we first select the edge to be rewired and immediately remove it. Then, based

on this network of E′ = (E − 1) edges, we choose the arrival artifact with probability

ΠA = (pr/N) + (1− pr)k/E′. The original master equation (1) is still valid and exact.

Moreover it can still be solved exactly giving exactly the same form as before, (3), but

with E′ = (E − 1) not E. This gives very small differences of order O(E−1) when

compared to the original simultaneous update used initially.

Instead we will consider the simultaneous rewiring of X edges in our bipartite graph

at each step. We will choose the individuals, whose edges define the departure artifacts,

in one of two ways: either sequentially or at random. The arrival artifacts will be chosen

as before using ΠA of (2).

The opposite extreme from the single edge rewiring case we started with (X = 1)

is the one where all the edges are rewired at the same time, X = E. This is the model

used in [1,2,13] to model various data sets on cultural transmission. It is also the classic

Fisher-Wright model of population genetics [3]. The evolution equation is then

G(z, t + E) =

E∑

k′=0

[1 + (z − 1)ΠA(k′)]En(k′, t) . (5)

From this each homogeneity measure Fn and the n-th eigenvector λn may be calculated

in terms of lower order results Fm (m < n). For instance

F2(t) = F2∞ + (λ2)
t (F2(0)− F2∞) , F2∞ =

p2
p + (1− p2

p)〈k〉
p2
p + (1− p2

p)E
, λ2 =

p2
p(E − 1)

E
.
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Fig. 6 τ2 = −1/ ln(λ2) (left) and F2(∞) (right) obtained by fitting A + B(λ2)t to the data
for F2(t). For sequential (m = 4 black circles, lower lines) and random (m = 6 red triangles,
upper lines) updates of X individuals at a time. N = E = 100, pr = 1/E = 0.01 and averaged
over 104 runs. The dashed lines represent the best linear fit with τ2 ≈ 1230(20) + 21.8(3)X
for m = 4 and τ2 ≈ 2470(10) + 8.1(2)X for m = 6. Theoretical values are τ2 ≈ 2512.1 and
F2(∞) ≈ 0.50251 for X = 1 random update and τ2 ≈ 3316.6 and F2(∞) ≈ 0.33669 for
X = 100 either update.

Comparing with the results for X = 1 we see that there are large differences in the

equilibrium solution and in the rate at which this is approached (measured in terms

of number of the rewirings made). For intermediate values of X we have not obtained

any analytical results so for these numerical simulations are needed, as shown in Fig.6.

Conclusions

We have considered a simple model of bipartite network rewiring. Since copying is

a universal process, this model can be mapped onto problems in a wide variety of fields.

We’ve noted that the simplest version can be solved exactly and used these solutions to

gain a qualitative understanding of much more complicated models in other areas [10,

11]. We’ve also seen how the results change as we consider a wide variety of extensions

to the basic model.

TSE would like to thank Prof. Jensen for providing the data from [11] for Fig.2(b).
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