## Imperial College London

100 years of living science

Oxford, 8th May 2007

Tim Evans

Theoretical Physics

## 100

# Exact Results for Cultural Transmission and Network Rewiring

#### T.S.Evans, A.D.K.Plato

 "Exact Solution for the Time Evolution of Network Rewiring Models"

Phys. Rev. E **75** (2007) 056101 [cond-mat/0612214]

 "Network Rewiring Models" (for ECCS07) www.imperial.ac.uk/people/t.evans



#### The Model

- Bipartite network
   E individual vertices each with one edge
   connected to N individual vertices
- Study degree k of artifact vertices
   n(k) = degree distribution,
   p(k) = n(k)/N = degree probability distribution



## The Model - Rewiring

- Removal: Choose an edge intending to rewire its artifact end = choosing departure artifact with probability  $\Pi_{\rm p}$ .
- **Attachment**: Choose an arrival artifact with probability  $\Pi_A$  ready to accept edge.
- Rewire: Only after these choices are made.



## Equivalence to other network rewiring models

Directed/Undirected Network:

Join edges of individual vertices (2i) and (2i+1).

[Watts and Strogatz, 1998]



This is just a **Molloy-Reed** [1995] projection onto a unipartite random graph of artifact vertices, with degree distribution p(k)

## Equivalence to other network rewiring models (2)

 Alternative **Projection 2:** 

> (N=E) Merge each individual vertex with one artifact vertex and let edges point from the individual to the artifact end. [Park et al. 2005]



## Relationship to Statistical Physics Models

## Some parameter values of other models are equivalent to our model:

- Urn Models [Bernoulli 1713, ..., Ohkubo et al. 2005]
- Zero Range Processes (Misanthrope version)
   [review M.R.Evans & Hanney 2005]
- Voter Models [Liggett 1999, ..., Sood & Redner 2005]
- Backgammon/Balls-in-Boxes

applied to glasses [Ritort 1995], wealth distributions, simplicical gravity ...



## Relationship to Other Systems

- Gene Frequencies [Kimura and Crow, 1964]
   -Inheritence and Mutation
   Organisms (=individuals) *inherit* a copy of a gene (alleles = artifacts) leading to *drift* in genetic frequencies.
   Alternatively they gain a new *mutation* (random choice).
- Family Names [Zanette and Manrubia, 2001]
   -Inheritence and New Immigrants
   Males (=individuals) inherit family name (=artifacts).
   Occasionally new names appear randomly (e.g. immigration).
- Language Extinction
- Minority Game variant (see later)[Anghel et al, 2004]

## Relationship to Other Systems

 Cultural Transmission [Bentley et al.,1999...2006] Individuals *copy* (p<sub>p</sub>) the choice of artifact made by others or *innovate* (p<sub>r</sub>) e.g. choice of pedigree dog, baby names, pop chart positions, archaeological pottery types, tennis star celebration action (?!), language extinction [Stauffer et al. 2006], fashion ...

## Relationship to Other Systems

Cultural Transmission

- Fashion (?) in the shoes of male physics

students [Morgan and Swanell 2006]



186 Individuals in 196 categories of which 37 used, most popular white lace up trainers (39)

## Mean Field Degree Distribution Master Equation

## Mean field approximation very accurate for many models (low vertex correlations)

$$n(k,t+1) - n(k,t) = +n(k+1,t)\Pi_R(k+1)[1 - \Pi_A(k+1)]$$

(1-∏) terms
Invariably
ignored

$$-n(k,t)\Pi_A(k)[1-\Pi_A(k)]$$

$$-n(k,t)\Pi_{R}(k)[1-\Pi_{R}(k)]$$

$$+n(k-1,t)\Pi_A(k-1)[1-\Pi_R(k-1)]$$

Number of edges attaching to a vertex of degree (k-1)

© Imperial College London

Probability of NOT reattaching to same vertex

## Can the Mean Field equation be exact?

Distribution  $n_i(k)$  different in each instance i

 $\left\langle \frac{n_i(k)k^{\beta}}{\sum_{k}n_i(k)k^{\beta}} \right\rangle$ 

 $\left\langle \frac{1}{\sum_{k} n_{i}(k) k^{\beta}} \right\rangle$ 

Ensembles over many instances *i* 

Normalisation of probabilities not usually same for different *i* 

$$\sum_{k} n_{i}(k)k^{\beta} = \left\langle \sum_{k} n_{i}(k)k^{\beta} \right\rangle$$

© Imperial College London

 $\beta=1$ 

## Only Exactly Solvable Case

To be able to solve exactly we limit the attachment and removal probabilities,  $\Pi_R$ and  $\Pi_{\Delta}$ , to be **linear** in degree exploiting only two constants of the motion, N and E

$$-\Pi_{R}(k)=(k/E)$$
 Choose random edge to be rewired

$$- \Pi_{A}(k) = [(1-p_{r})k + p_{r} < k > ] / E$$

Fraction (1-p<sub>r</sub>) of the time use preferential attachment random attachment

Fraction p<sub>r</sub> of the time choose

## Exact Mean Field rewiring processes

#### Removal:

A random individual decides to update their choice of artifact

#### • Attachment:

With probability  $(1-p_r)$  the individual **copies** the existing choice of *any* individual. With probability  $(p_r)$  the individual **innovates** by choosing a random artifact.



individuals



## **Exact Equilibrium Solution**

$$n(k) = A \frac{\Gamma(k + \overline{K})}{\Gamma(k + 1)} \frac{\Gamma(E - \overline{E} - \overline{K} - k)}{\Gamma(E + 1 - k)} \qquad \overline{K} = \frac{p_r}{p_p} \langle k \rangle$$

$$\overline{E} = \frac{p_r}{p_p} E$$

A is ratio of four  $\Gamma$  functions

- Simple ratios of Γ functions
- Similar to those found for growing networks but second fraction is only found for network rewiring
- Only approximate solutions known previously

## Large Degree Equilibrium Behaviour – Large p, Case

For 
$$p_r > p_* \sim 1/E$$

(on average at least one edge attached to a randomly chosen artifact per generation)

$$\lim_{k\to\infty} \left[ n(k) \right] = k^{-\gamma} \exp(-\zeta k)$$

$$\gamma = 1 - \frac{p_r}{p_p} \langle k \rangle$$

 $\gamma = 1 - \frac{p_r}{p_p} \langle k \rangle$  Power below one but in data indistinguishable from one

$$\zeta = -\ln(1-p_r)$$
 Exponential Cutoff

## Large Degree Equilibrium Behaviour – Small p<sub>r</sub> Case

## For $p_r < p_* \sim 1/E$

(on average if all edges have been rewired once no edge is attached to a randomly chosen artifact per generation)

## Degree distribution rises near *k=E*

© Imperial College Londor

- $\Rightarrow$ In extreme case  $p_r$ =0 all the edges are attached to ONE artifact
  - a CONDENSATION or FIXATION

 $n(k) = A \left( \frac{\Gamma(k+\overline{K})}{\Gamma(k+1)} \right) \left[ \frac{\Gamma(E-\overline{E}-\overline{K}-k)}{\Gamma(E+1-k)} \right]$ 

Blows

### **Equilibrium Behaviour Results**

N=E=100

Points: 10<sup>5</sup> data runs

Lines: exact mean field solution

 $p_r = 0.001 < p_*$  condensate



#### Solution

## Best solved using the generating function

$$G(z,t) = \sum_{k=0}^{E} (z)^{k} n(k,t) = \sum_{m=0}^{E} c_{m} (\lambda_{m})^{t} G^{(m)}(z)$$

#### where:-

• Eigenfunctions  $\mathbf{G}^{(m)}(z) = \left(1-z\right)^m \mathbf{F}(a+m,b+m;c;z)$  Hypergeometric function

$$a = \frac{p_r}{p_p} \langle k \rangle, \ b = -E, \ c = 1 + a + b - \frac{p_r}{p_p} E$$

• Eigenvalues  $\lambda_m = 1 - m(m-1)\frac{p_p}{E^2} - m\frac{p_r}{E}$ 

c<sub>m</sub> are constants fixed by initial conditions

#### Features of solution

- n-th moment of degree distribution gets contributions from only m≤n eigenfunctions
- *m*=0 eigenfunction number zero
  - only time independent solution = equilibrium
  - fixes distribution N
- *m*=1 eigenfunction *never contributes* otherwise would make first moment *E* time dependent
- Slowest time dependence comes from *m*=2 eigenfunction setting time scale

$$\tau_2 = -1/\ln(\lambda_2) \approx [2(p_r/E) + 2(1-p_r)/E^2]^{-1}$$

## Homogeneity Measures F<sub>n</sub>

 n-th derivatives of generating function gives measures of homogeneity related to n-th moment of degree distribution

$$F_n(t) := \frac{\Gamma(E+1-n)}{\Gamma(E+1)} \frac{d^n G(z,t)}{dz^n} \bigg|_{z=1} = \sum_{k=0}^{E} \frac{k}{E} \frac{(k-1)}{(E-1)} \cdots \frac{(k-n+1)}{(E-n+1)} n(k)$$

- These are simple known ratios of  $\Gamma$  functions
- Equals the probability of choosing n different individuals connected to the same artifact
- $\Rightarrow$  F<sub>n</sub> = 0 if no artifact chosen more than once F<sub>n</sub> = 1 if all individuals attached to same artifact

F<sub>2</sub> Homogeneity Measure

$$F_2(t) := \frac{1}{E(E+1)} \frac{d^2 G(z,t)}{dz^2} \bigg|_{z=0}^{z=0}$$

 $F_2$  = probability that two different individuals have chosen the same artifact

$$F_2(t) = F_2(0) + (\lambda_2)^t (F_2(\infty) - F_2(0))$$

Initial values fix  $F_2(0)$  e.g.  $F_2(0)=0$  if each individual starts attached to unique individual

 $3^{rd}$  eigenfunction controls all time dependence  $\tau_2 = -1/\ln(\lambda_2)$ 

$$\approx [2(p_r/E) + 2(1-p_r)/E^2]^{-1}$$

$$F_2(\infty) = \frac{1 + p_r(\langle k \rangle - 1)}{1 + p_r(E - 1)}$$

## F<sub>n</sub> numerical results

0.998

 $E=N=100, p_r=0.01\cong p_*,$ 

Points: average of 10<sup>5</sup> simulations

Lines: exact mean field prediction

Start:  $n(k) = \delta_{k,1}$ 



F increases as homogeneity increases with time

Time
dependence of
averages
predicted
very accurately,
←deviations less

than 1%

#### Phase transitions in real time

- Bipartite graph can be projected onto a unipartite graph of the artifact vertices
- Artifact degree distribution p(k) is the degree distribution for a random graph



A Molloy-Reed [1995] projection

## **Graph Transition in Real Time**

Infinite Random Graphs (given *p(k)* but otherwise completely randomised) have a phase transition (appearance of **GCC** - great connected component) at [Fronczak et al 2005, etc]

$$z(t)=1$$

where

$$z(t) = \frac{\langle k^2 \rangle}{\langle k \rangle} - 1 = (E - 1)F_2(t)$$

## Phase Transition in Molloy-Reed projection



## Phase Transition in Molloy-Reed projection

For  $N=E=10^5$ ,  $p_r=0$ , initial  $F_2(0)=0$ 

- z(t)=1 at t=0.50000 (2) as predicted
- Transition at t/E = 0.535 (5)
- At transition z(t)=1.06 (1) not z(t)=1
- Average distance and diameter of GCC maximum at this point and second derivative of number of vertices in GCC zero at this point (within errors)

## ⇒Finite size effects clearly present

### **Generalisations of Model**

- Add a graph to the individual vertices
   -choose who to copy using individual's network
- Add a graph to the artifact vertices

   mutations/innovations limited by metric in an artifact space
- Different types of individual

   update their choice and copy/innovate at different rates

### Adding a Network of Individuals

- Removal: Choose random individual as before
- Attachment:

With probability  $(1-p_r)$  the individual **copies** the existing choice of any **neighbouring** individual. With probability  $(p_r)$  the individual **innovates** 



## Equilibrium with a Network of Individuals

Qualitative behaviour largely unchanged except for 1d Lattice



## Approach to Equilibrium for different Individual networks

 Results move away from complete graph as move from 3d -> 1d lattice



## Voter Model [Liggett 1999; Sood & Redner 2005]

- At each time step an individual is chosen randomly who copies the choice of a neighbour in an individual network
- Equivalent to N=2,  $p_r=0$  limit here
- Study time scales to come to complete
   consensus = condensation
- Used for models of language [Stauffer et al. 2006]
- ⇒We find approach to complete consensus is slow but a little randomness can speed this up while leaving a fairly complete condensation

## Minority Game Example - Leaders and Followers

- At each step each individual chooses one or zero
   the *minority* choice wins
- Choices are made based on one of a large but finite number of strategies using finite history
   – each strategy is a different artifact
- Individuals may follow their own prediction or they may follow the prediction from the most successful nearest neighbour in an ER random graph of individuals
  - i.e. they *copy* the strategy of a neighbour [Anghel et al. PRL 92 (2004) 058701]

## Minority Game Example – Leaders and Followers

Plot n(k) the average of the number of strategies (of some leader) used by k individuals (followers).

Various system sizes and various ER random graphs.



## Minority Game Example - Leaders and Followers

## Minority Game variant [Anghel et al, 2004]

Agents (individual vertices) *copy* best strategy (artifacts) of their neighbours in an additional individual network. Number of people following a given strategy is effectively n(k) of our model.

# Shows how **copying** can arise naturally c.f. preferential attachment in growing networks [TSE & Saramaki 2005]

#### Two Tribes

Change model so there are two types of individual, each type chooses new artifacts with their own probabilities for:- (A) copying from same type, (B) copying from different type, (C) innovation



#### Two Tribes

- Exact solutions for inhomogeneity measures
   F<sub>2ab</sub>(t) [a,b∈{X,Y}] still possible
  - solutions of three-dimensional matrix

- 8 free parameters
  - difficult to draw general conclusions

 Might relate to Freakonomics type explanation for baby names in terms of different socioeconomic groups

## Summary

- Made connections between rewiring of bipartite network and many other network, statistical physics and social science models.
   Some connections made in some existing papers.
- Exact mean field equation.
   Only now is behaviour at boundary k=E correct.
- Exact equilibrium solutions.
   Previous results for large degree k, large systems N,E.
- Exact solutions for all times in terms of standard functions phase transitions in time

I know of no other network solutions for arbitrary time and arbitrary size.



## Summary

### Many variations of model

- Individual Networks
  - Only 1d lattice seems to make a big difference to equilibrium
- Generalisation of Voter models
   p<sub>r</sub> can speed process up without significantly upsetting consensus
- Two Tribes

exact solutions for some aspects possible with two types of individual

