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Abstract In this paper, we use a partition of the links of a network in order to uncover

its community structure. This approach allows for communities to overlap at nodes, so

that nodes may be in more than one community. We do this by making a node partition

of the line graph of the original network. In this way we show that any algorithm which

produces a partition of nodes can be used to produce a partition of links. We discuss

the role of the degree heterogeneity and propose a weighted version of the line graph

in order to account for this.
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1 Introduction

Finding hidden patterns or regularities in data sets is a universal problem which has

a long tradition in many disciplines from computer science [1] to social sciences [2].

When the data-set can be represented as a graph, i.e. a set of elements in interaction,

a powerful method consists in searching for tightly knit sets of nodes, usually called

communities or modules. The identification of such communities is particularly crucial

with the arrival of large network data sets that require new mathematical tools and

computer algorithms for their interpretation. Most community detection methods find

a partition of the set of nodes where most of the links are concentrated within the

communities [3,4]. Here the communities are the elements of the partition, and so each

node is in one and only one community.
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Fig. 1 By partitioning the links of a network into communities, one may uncover overlapping
communities for the nodes by noting that a node belongs to the communities of its links. In this
toy example, a meaningful partition consists in dividing the links into two groups (straight blue
lines and the dashed red lines). In that case, the central node belongs to the two communities
because it is at the interface between these link communities.

A popular class of algorithms seek to optimise the modularity Q of the partition of

the nodes of a graph G [5–9]. The simplest definition of modularity for an undirected

graph, i.e. the adjacency matrix A is symmetric, is [10]

Q(A) =
1

W

∑

C∈P

∑

i,j∈C

[
Aij −

kikj

W

]
(1)

where W =
∑

i,j Aij and ki =
∑

j Aij is the degree of node i. The indices i and

j run over the N nodes of the graph G. The index C runs over the communities of

the partition P. Modularity counts the number of links between all pairs of nodes

belonging to the same community, and compares it to the expected number of such

links for an equivalent random graph in which the degree of all nodes has been left

unchanged. By construction |Q| ≤ 1 with larger Q indicating that more links remain

within communities then would be expected in the random model. Uncovering a node

partition which optimises modularity is therefore likely to produce useful communities.

This node partitioning approach has, however, the drawback that nodes are at-

tributed to only one community, which may be an undesirable constraint for networks

made of highly overlapping communities. This would be the case, for instance, for so-

cial networks, where individuals typically belong to different communities, each char-

acterised by a certain type of relation, e.g. friendship, family, or work. In scientific

collaboration networks (for example [11]), authors may belong to different research

groups characterised by different research interests. Such inter-community individuals

are often of great interest as they broker the flow of information between otherwise

disconnected contacts, thereby connecting people with different ideas, interests and

perspectives [12].

Only a few alternative approaches have been proposed in order to uncover over-

lapping communities of nodes, for example [13–15]. The idea [16,17] is to define com-

munities as a partition of the links rather than of the set of nodes. A node may then

have links belonging to several communities and in this it belongs to several commu-

nities. The central node in a Bow Tie graph is a simple example, see Fig. 1. This link

partition approach should be especially efficient in situations when the nodes of a net-

work are connected by different types of links, i.e. in situations where the nodes are

heterogeneous while the links are very homogeneous. In the case of the social network

mentioned above, this would occur when the friendship network and work network of

individuals only have a very small overlap.
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This paper is organised as follows. In section 2, we review a definition of modularity

which uses the statistical properties of a dynamical process taking place on the nodes

of a graph. In section 3, we propose three dynamical processes taking place on the links

of the graph and derive their corresponding modularities, now defined for a partition

of the links of a network. To do so, we make connections to the concept of a line graph

and with the projection of bipartite networks. In section 4, we optimise the three

modularities for some examples and interpret our results. In section 5 we conclude and

propose ways to improve our method.

2 Dynamical formulation of modularity

To motivate our link partition quality function, let us first consider how to interpret

the usual modularity Q (1) in terms of a random walker moving on the nodes [18,

19]. Suppose that the density of random walkers on node i at step n is pi;n and the

dynamics is given by

pi;n+1 =
∑

j

Aij

kj
pj;n . (2)

From now on, we will only consider networks that are undirected (the adjacency matrix

is symmetric), connected (there exists a path between all pairs of nodes), non-bipartite

(it is not possible to divide the network into two sets of nodes such that there is no

link between nodes of the same set), and simple (without self-loops nor multiple links).

If the first three conditions are respected, it is easy to show [20] that the stationary

solution of the dynamics is generically given by p∗i = ki/W .

Let us now consider a node partition P of the network and focus on one community

C ∈ P. If the system is at equilibrium, it is straightforward to show that the probability

a random walker is in C on two successive time steps is

∑

i,j∈C

Aij

kj

kj

W
, (3)

while the probability of finding two independent walkers at nodes in C are

∑

i,j∈C

kikj

(W )2
. (4)

This observation allows us to reinterpret Q as a summation over the communities of

the difference of these two probabilities. This interpretation suggests natural general-

isations of modularity allowing to tune its resolution. Indeed, Q is based on paths of

length one but it can readily be generalised to paths of arbitrary length as

R(A, n) =
1

W

∑

C∈P

∑

i,j∈C

[
(Tn)ijkj −

kikj

W

]
, (5)

where Tij = Aij/kj . This quantity is called the stability of the partition [18]. Because

kj is an eigenvector of eigenvalue one of T, one can show that the symmetric matrix

X(n)ij = (Tn)ijkj corresponds to a time-dependent graph where the degree of node

i is always equal to ki. Therefore R(A, n) can be interpreted as the modularity of

X(n)ij , a matrix that connects more and more distant nodes of the original adjacency

matrix A as time n grows [19]. It can be shown that optimising (5) typically leads

to partitions made of larger and larger communities for increasing times and that the

optimal partition when n →∞ is made of two communities [18,19].
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Fig. 2 Illustration of the two types of random walk considered in this paper. In both cases,
the walkers are situated on the links of a graph, here starting from the central red dashed link.
In (A) the “Link-Link random walk” is shown where the walker jumps (the green dash curves)
to any of the adjacent links with equal probability. In (B) a “Link-Node-Link random walk” is
illustrated. In this case the walker moves first to a neighbouring node with equal probability,
and then moves on to a new link, chosen with equal probability from those new links incident
at the node.

3 Link partition

3.1 Random walking the links

The above discussion suggests that we should look at a random walker moving on the

links of network in order to define the quality of a link partition. Such a walker would

therefore be located on the links instead of the nodes at each time n and move between

adjacent links, i.e. links having one node in common. In the case of the random walk

on the nodes (2), a walker at node i follows one of its links with probability 1/ki, i.e.

all links are treated equally. However, a link between nodes i and j is characterised by

two quantities ki and kj , so a random walk on the links is more subtle. In the following,

we will focus on two different types of dynamical process that account differently for

the degrees ki and kj (see Fig. 2).

In the first process, a walker jumps with the same probability 1/(ki +kj−2) to one

of the links leaving i and j. When ki 6= kj , the walker goes with a different probability

through i or j, and we therefore call this process an “link-link random walk” (see Fig

2A).

In the second process, a walker jumps to one of the two nodes too which it is

attached, say i, then moves to an link attached to that node (excluding the link it came

from). Thus it will arrive at an link leaving node i with a probability 1/(2(ki − 1)),

and similarly it will arrive at a link attached to the other node j with probability

1/(2(kj − 1)). We will refer to this as a “link-node-link random walk” (see Fig 2B).

This process is well-defined unless the link is a leaf, namely one of its extremities has

a degree one, say i. In that case, the walker will jump with a probability 1/(kj − 1) to

one of the links leaving j.

These two types of dynamics are different in general except if the degrees at the

extremities i and j of each link are equal. In the case of a connected graph, this condition

is equivalent to demanding that the graph is regular, i.e. the degree of all the nodes is a

constant. When this condition is not respected, the link-link random walk favours the

passage of the walker through the extremity having the largest degree. The difference

between the two processes will be maximal when the network is strongly disassortative,

namely when links typically relate nodes with very different degrees [21].
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3.2 Projecting the incidence matrix

3.2.1 Bipartite structure

In order to study these two types of random walk more carefully, it is useful to represent

a network G by its incidence matrix B. The elements Biα of this N × L matrix (L is

the number of links) are equal to 1 if link α is related to node i and 0 otherwise. The

incidence matrix of G may be seen as the adjacency matrix of a bipartite network, I(G)

(see Fig.3B), the incidence graph1 of G where the two types of nodes correspond to

the nodes and the links of the original graph G. By construction, all the information of

the graph is incorporated in B. For instance, the degree ki of a node i and the number

of nodes kα attached to a link α (always equal to two) are given by

ki =
∑
α

Biα , kα =
∑

i

Biα (6)

The N ×N adjacency matrix A of the graph G can also be obtained

Aij =
∑
α

BiαBjα − kiδij . (7)

This operation (7) can be interpreted as a projection of the bipartite incidence graph

I(G) onto the unipartite network G [22,23]. In a similar way, an adjacency matrix for

the links can be obtained by projecting the bipartite network onto its links. In the

following, we will focus on two standard types of projection that, as we will show, are

directly related to the two random walks introduced above.

3.2.2 Line graph

The simplest way to project a bipartite graph consists of taking all the nodes of one

type for the nodes of the projected graph. A link is added between two nodes in this

projected graph if these two nodes had at least one node of the other type in common

in the original bipartite graph. The operation (7) is of this type. When applied to the

links α of the graph G, the second type of vertex in the bipartite incidence graph I(G),

it leads to the L× L adjacency matrix C whose elements are

Cαβ =
∑

i

BiαBiβ(1− δαβ). (8)

It is easy to verify that this adjacency matrix is symmetric and that its elements are

equal to 1 if two links have one node in common, and zero otherwise. It is interesting

to note that this adjacency matrix corresponds to another well known graph, usually

called the line graph of G [24] and denoted by L(G) (see Fig.3C). It is a simple graph

with L nodes. By construction, each node i of degree ki of the original graph G corre-

sponds to a ki fully connected clique in L(G). Thus it has
∑

i ki(ki−1)/2 = O(〈k2〉N)

links. Line graphs have been studied extensively and among their well-known prop-

erties, Whitney’s uniqueness theorem states that the structure of G can be recovered

1 An incidence graph is usually defined in terms of the incidence of a set of lines with a set
of points in a Euclidean space of finite dimension. Here we have a special case where we imbed
our graph G in some Euclidean space of no particular interest, and each link of G is a line
which always intersects with exactly two points.
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Fig. 3 The information of the Bow Tie graph in (A), as encoded by the adjacency matrix A
of Eqn. (7), has other equivalent graph representations. In (B) the incidence matrix (B of Eqn.
(7)) of the Bow Tie is shown as a bipartite network, the incidence graph I(G). The line graph
of the Bow Tie, L(G), is the unweighted version of the graph labelled (C,D), with adjacency
matrix C of Eqn. (8). The weighted version in diagram (C,D) has an adjacency matrix D of
Eqn. (11). The weighted line graph with self loops, labelled (E) has an adjacency matrix E
of Eqn. (14). Circles represent entities which correspond to nodes of the original graph, while
triangles come from links in the original graph.

completely from its line graph L(G), for any graph other than a triangle or a star net-

work of four nodes [25]. This result implies that projecting the incidence matrix onto

L(G) does not lead to any loss of information from the network structure. This is a

remarkable result that is not generally true when projecting generic bipartite networks.

It is now straightforward to express the dynamics of link-link random walk (Fig.2A)

in terms of the projected adjacency matrix C

pα;n+1 =
∑

β

Cαβ

kβ
pβ;n. (9)

Now pα;n is the density of random walkers on link α at step n, kα =
∑

β Cαβ =

(ki+kj−2) and where i and j are the extremities of α. This dynamical process therefore

only depends on the sum of the degrees i and j. The stationary solution is found to

be p∗α = kα/W , where W =
∑

αβ Cαβ . When G is simple, then W =
∑

i(ki − 1)ki.

By reapplying the steps described in [19], it is now straightforward to derive a quality

function for the link partition P of the graph G

Q(C) =
1

W

∑

C∈P

∑

α,β∈C

[
Cαβ −

kαkβ

W

]
. (10)

This is just the usual modularity (1) for a graph with adjacency matrix C.

As we noted, a single node i in G leads to a connected clique of ki(ki − 1)/2 links

in the line graph L(G). This seems to suggest that the line graph L(G) gives too much

prominence to the high degree nodes of the original graph G. This led Ahn, Bagrow,
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and Lehmann [17] to abandon line graphs and to define link partitions in a different

manner. However our response [16] is to define a weighted line graph whose links are

scaled by a factor of O(1/ki).

3.2.3 Weighted line graph

In order to derive the quality of a link partition associated to the link-node-link random

walk, it is useful to project the incidence matrix in a different way and to define another

graph D(G) with a symmetric adjacency matrix given by

Dαβ =
∑

i,ki>1

BiαBiβ

ki − 1
(1− δαβ). (11)

This weighted line graph has the intuitive property that the degree kα =
∑

β Dαβ of a

link α is equal to two (a link always has two extremities) unless α is a leaf in G (then

kα = 1 except for one trivial case). For example this weighted line graph of the Bow

Tie network is shown in Fig.3D. Only if G is regular will this weighted line graph D(G)

be equivalent (up to an overall scale) to the original unweighted line-graph L(G).

This construction is a well-known method for projecting bipartite networks. For

instance in the case of collaboration networks [11] the (ki−1) normalisation is justified

by the desire that two authors should be less connected if they wrote a joint paper

with many co-authors than a paper with few authors.

This weighted line graph allows us to write the dynamics of the link-node-link

random walk in a natural way

pα;n+1 =
∑

β

Dαβ

kβ
pβ;n (12)

and, by reusing the above arguments to define another quality function for the link

partition P of a graph

Q(D) =
1

W

∑

C∈P

∑

α,β∈C

[
Dαβ −

kαkβ

W

]
, (13)

where W =
∑

αβ Dαβ = 2L− Lleaf is twice the number of links L minus the number

of leaves in the original graph G, Lleaf . Again, this is the same functional form as the

usual modularity, Q(A) of (1), only the adjacency matrix has changed.

3.3 Projection of a node random walk

The random walks proposed in the previous sections have been defined on the line

graph, and therefore consist of walkers moving among adjacent links of the original

graph G. However, such processes can not be related to the original random walk (3)

on the nodes of G, because a walker moving on links can pass at two subsequent steps

through the same node of G while such self-loops are forbidden in (3). This observation

suggests an alternative approach where the dynamics would be driven by the original

random walk (3) but would be projected on the links of the network. To do so, let us

assume that a walker has not moved yet and is located at node i. In that case, it is
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reasonable to assume that all the neighbouring links of i are connected by a weight

1/ki. The corresponding adjacency matrix E for the links is therefore given by

Eαβ =
∑

i,ki>0

BiαBiβ

ki
, (14)

and is based on an unconstrained unbiased two-step random walk on the bipartite

incidence graph I(G)2. Unlike our previous line graph constructions, C of (8) and D

of (11), this weighted line graph E(G) has self loops. It is illustrated for the Bow Tie

graph in Fig.3E. All nodes α in E(G) have strength two,
∑

β Eαβ = 2, reflecting the

fact that the links in the original graph G all have two ends.

E is constructed when a walker is located on a node and has not moved yet. The

motion of the walker according to (3) generates a new adjacency matrix, E1, defined

as

E1;αβ =
∑

i,ki>0

BiαAijBiβ

kikj
, (15)

where we note that E1 = EE − E. The corresponding graph is still regular with kα =∑
β E1;αβ = 2, and it is again weighted with self-loops. The quality function associated

with this dynamics is simply

Q(E1) =
1

W

∑

C∈P

∑

α,β∈C

[
E1;αβ − 4

W

]
, (16)

where again W = 2L.

This quality function is particularly interesting because it has a simple relationship

to the modularity of the original graph, Q(A) of (1). To show this let us assign a weight

Vαc representing the strength of the membership of link α in community c. Such weights

may be defined and constrained in many ways. For instance, in a link partition we have

VαcVαd = δcd for any α, i.e. every link α belongs to just one community. In order to

translate Vαc into a community structure on the nodes, it is natural to use the incidence

matrix, B of (7) and to define the rectangular matrix Vic through

Vic =
∑
α

Biα

ki
Vαc . (17)

If Vαc is an link partition then the projected node community structure Vic is simply

the fraction of links in community c incident at node i. Also if
∑

c Vαc = 1 then so is∑
c Vic = 1.

Now using the definition of the adjacency matrix in (7), we find that the modularity

of the original graph G for some node community Vic is

Q(E1; {Vαc}) =
1

W

∑

c,d

∑

α,β

Vαc

[
E1;αβ − 4

W

]
Vβd (18)

=
1

W

∑

c,d

∑

i,j

Vic

[
Aij −

kikj

W

]
Vjd (19)

= Q(A; {Vic}) (20)

2 One might also try to argue that since an undirected link is both incoming and outgoing, we
might deem it appropriate to allow α to α transitions in the link-link walk of Fig.2A. That is we
could define an unweighted line graph with self loops with adjacency matrix C̃αβ =

∑
i BiαBiβ .

Since it differs from the standard unweighted line graph L(G) only by the addition of a self-
loop to every node α, this can be interpreted within the scheme of [26] who add self-loops to
control the number and size of communities found.
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Thus finding modularity optimal link partitions of the line graph with adjacency matrix

E1 of (15), is equivalent to the optimisation of the modularity of the original graph

but with a different constraint on the node community Vic from that imposed when

finding node partitions.

4 Empirical analysis

4.1 Methodology

In the previous sections, we have proposed three quality functions Q(C), Q(D) and

Q(E1) for the partition of the links of a network G. Each represents a different dynam-

ical process and therefore explores the structure of the original graph G in a different

way. In order to tune the resolution of the optimal partitions, it is straightforward to

define the stabilities R(C, n), R(D, n) and R(E1, n) of the three processes by generalis-

ing the concept of modularity to paths of arbitrary length (see section II). The optimal

partitions of these quality functions can be found by applying standard modularity

optimisation algorithms to the corresponding line graphs. In this paper, we have used

two different algorithms [7,8] and have verified that both algorithms give consistent

results.

As a first check, let us look at the Bow Tie graph of Figure 1. The optimisation of

the three quality functions Q(C), Q(D) and Q(E1) lead to the expected partition into

two triangles, with the values Q(C)=0.1, Q(D) = 0.278, Q(E1) = 0.167. In this case,

the central node belongs equally to the two link communities, a situation which is a far

superior way to split the network than a node partition. The best node partition gives

Q(A) = 0.111 when three nodes in one triangle form one community and the remaining

two nodes form a second community.

In order to compare node partitions and link partitions in the following, we will

use the idea of a ‘boundary link’ and a ‘boundary node’. A boundary link of a node

partition is one which connects two nodes from different communities. We will then

define a boundary node of an link partition to be a node which is connected to links

from more than one link community. Thus the central node of the Bow Tie graph is a

boundary node.

4.2 Karate Club

A less contrived graph is the Karate club of Zachary [2], which is made of thirty four

members. Historically this split into two distinct factions. It is standard to compare the

partition produced by a community detection method to the actual split of the club.

The node partition having the largest value of modularity Q(A) = 0.420 contains four

communities, but the resolution can be lowered by optimising the stability R(A, n) for

larger values of n. When n is large enough, the optimal partition is always made of two

communities (see Figure 4), e.g. R(A, 11) = 0.078, that agree with Zachary’s partition

into “sink” and “source” communities [2] using the Ford-Fulkerson binary community

algorithm [27].

The link partitions found by optimising Q(C) = 0.5, Q(D) = 0.53 and Q(E1) = 0.36

are shown in Fig. 5. They are respectively made of 4, 7 and 3 communities. These

three partitions are consistent with the historical two-way split of the network, as the
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Fig. 4 Optimal node partitions for the unweighted Karate Club data of Zachary, notation
as in [2]. On the left is the partition into two communities made by Zachary [2] using the
Ford-Fulkerson binary community algorithm [27]. It is also produced by optimising R(A, 11)
of (5). The right hand figure shows the node partition with optimal Q(A) = 0.420 [28] which
contains four communities.

Fig. 5 From the left to the right, optimal partitions of Q(C), Q(D) and Q(E1) for the Karate
Club.

boundary links of the two-way partition of Fig. 4 are always connected to a boundary

node of a link partition. In general, however, the three optimal partitions are as different

as their corresponding dynamical processes are. The most striking difference is observed

around node 1. In the node partition optimising Q(A), this node is connected to several

boundary links and connects the community of nodes (5,6,7,11,17) to the rest of the

network. Such a position is consistent with the link partitions obtained from Q(D) and

Q(E1), but not with the link partition optimising Q(C). In this latter case, one observes

that node 1 is rather the focus of one of the link communities on the left hand side in

Fig. 5. This difference originates from the high degree of node 1 which implies that a

link-link random walk is biased to pass through this node (see Fig. 2), and therefore

heavily connects its adjacent links. This is a general problem of the unweighted line

graph C that gives too much emphasis to high degree nodes and therefore tends to

produces communities centred around hubs. Such a problem does not take place for

the weighted line graphs D and E1, and in both these cases node 1 is a boundary node,

part of several communities. The main difference between the optimal partitions of

Q(D) and Q(E1) is the number of the communities in each, as expected because the

line graph E1 connects more distance links of the original graph than D. Let us also

note that the optimal partition of Q(E1) resembles very much the one of Q(A), as

suggested by (20).

Before concluding, let illustrate how longer random walks can be used to tune the

resolution of the link partition. We focus on the weighted line graph D, whose optimal

partition into seven communities is difficult to compare against the standard two and

four community node partitions of Fig. 4. Let us therefore focus on the stability R(D, n),

which is based on paths of length n of a random walker on D. As expected, larger and
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Fig. 6 Optimal partition into two communities of the stability R(D, 10) of the Karate club.

larger communities are uncovered when n is increased and, when n is large enough, we

obtain a two way link partition (see Fig.6) that shows a perfect match with the node

partition shown in Fig.4.

4.3 Word Associations

As an example of an application to a large network, we use the University of South

Florida Free Association Norms data set [29] to create a simple network3 in the manner

of [13]. We obtain a link partition by optimising the modularity for the weighted line

graph D of (11) but where the null model term (kαkβ)/W 2 has been scaled by a factor

of 10.0 in order to control the resolution [9] and in this case obtain 321 communities

in the whole network. The corresponding quality function can be seen as a linear

approximation of the stability R(D, n) [19]. It is easier to optimise for large networks.

In Fig.7 we show part of the network near the word ‘bright’ which is part of eleven

communities4. The topology of our communities is much less constrained than those

of k-clique percolation [13] which means we can pick out a wider range of structures.

There are some tight clique-like subsets, e.g. the names of the planets. At the other

extreme the method finds more tree like structures such as the sequence ‘lit-on-switch-

lever-handle’ which is the backbone of another community linked to bright. On the

other hand this flexibility in the structure can produce a confusing picture since many

words are members of several communities though mostly having just one or two links

per community. For instance for the word ‘bright’, it is linked to eight of its eleven

communities by just one link. However one can exploit this feature to start to define

3 We take the sum of the two forward strengths of all pairs of normed word and add a link
only if the total is greater than 0.025. We end up with 5018 words connected by 58536 links
and from this a line graph with 1266910 links is created.

4 The eleven communities which contain ‘bright’ are well characterised by the following sub-
sets of words:- (‘brave’, ‘bold’, ‘daring’), (‘bright’, ‘light’, ‘sunshine’), (‘gone’, ‘fade’, ‘dim’),
(‘power’, ‘electric’, ‘lightening’, ‘flash’), (‘brain’, ‘intelligence’, ‘brilliant’), (‘great’, ‘wonder-
ful’, ‘gifted’), (‘pen’, ‘paper’, ‘highlight’), (‘handle’, ‘lit’, ‘on’, ‘switch’, ‘lever’), (‘cloudy’,
‘gray’, ‘shiny’, ‘sunny’), (‘space’, ‘sky’, ‘moonlight’, ‘stars’), (‘assume’, ‘illusion’, ‘imagination’,
‘vivid’). However ‘bright’ has sixteen of its twenty nine links in the community containing
‘sunshine’ and ‘light’ with just a single link to eight of its eleven communities.
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Fig. 7 The simple graph created from the South Florida Free Association Norms data [29],
in the manner of [13]. The link partition shown is produced by optimising a modified version
of the modularity Q(D) where the null model factor was 10.0× (kαkβ)/W 2. This controls the
number of communities found [9]. The subgraph shown contains the word ‘bright’ along with
nodes which have at least 90% of their links in one of the communities connected to ‘bright’.

Fig. 8 This is part of the weighted undirected graph created from coauthorships in network
science [30]. The link partition shown is produced by optimising a modified version of the
modularity Q(D) where the null model factor was 10.0×(kαkβ)/W 2. This controls the number
of communities found [9].

strength of membership in different communities. For instance for visualisation, we

have found it useful to view only those words which have a large number of links

within one community, as in Fig.7.

4.4 Network Science

Coauthorships in network science have been used to create a weighted undirected graph

[30]. All our methods can be adapted trivially for weighted graphs. For instance ki of a

node i in G is now the strength of that node. The result of for a subgraph is shown in

Fig.8. Again we see that a partition of the nodes of the weighted line graph produces

sensible edge partitions.

5 Discussion

When describing a network, there seems to be a natural tendency to put the emphasis

on its nodes whereas a graph is a both a set of nodes and a set of links. It is therefore

not surprising that node partitioning has been studied extensively in recent years while
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link partitioning has been overlooked so far. In this paper, we have shown that the

quality of a link partition can be evaluated by the modularity of its corresponding line

graph. We have highlighted that optimising the modularity of some of our weighted

line graphs uncovers meaningful link partitions. Our approach has several advantages.

A key criticism of the popular node partitioning methods is that a node must be in

one single community whereas it is often more appropriate to attribute a node to

several different communities. Link partitioning overcomes this limitation in a natural

way. Ahn, Bagrow, and Lehmann [17] came independently to the same conclusion.

However, because the unweighted line graph L(G) puts too much emphasis on nodes of

high degrees, the link partitions of [17] are constructed in a completely different way.

A big advantage of our approach [16] is that it is easy to implement. The equiva-

lence of a link partition of a graph G with the node partitioning of the corresponding

line graph L(G) means that one can use existing node partitioning code with only the

expense of producing a line graph transformation and an O(〈k2〉/〈k〉) increase in mem-

ory to accommodate the larger line graph. Even the memory cost can be reduced to

be O(1) since we have shown our link partitioning is equivalent to a process occurring

on the links of the original graph G, so a line graph need not be produced explicitly.

Our method can be seen as a generalisation of the popular k-clique percolation

[13], which finds sets of connected k-cliques. By way of comparison we find collections

of two-cliques which are more densely connected than expected in an equivalent null

model. Thus the link partitioning of our paper can be seen as an extension of two-clique

percolation that allows for the uncovering of finer modules, i.e. two-clique percolation

trivially uncovers connected components. An interesting generalisation would be to

apply our approach to the case of triangles, 4-cliques, etc. To do so, one has to replace

the incidence matrix (relating nodes and links) by a more general bipartite graph,

representing the membership of nodes in a clique of interest. Our random walk analysis

in terms of this bipartite graph would then proceed in the same fashion, and should

allow to uncover finer modules than those obtained by k-clique percolation.

All our expressions also hold for the case of weighted networks as illustrated in

Fig.8. Even multiedges can be accommodated if we start from the incidence matrix,

B. However the beauty of our approach is that for any type of graph analysis, be it

community structure or something else, can be applied to a line graph rather than the

original graph. In this way, one can view a network from a completely different angle

yet use well established techniques to obtain fresh information about its structure.
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