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I. Introduction 

A fundamental ingredient of archaeological analysis is an understanding of spatial relationships. 
We concur with Renfrew (Renfrew 1981, p268) that 
 
“the very activity of examining the spatial correlates of early social structure has the useful effect 

of posing important problems in general and simple terms”. 

Posed as generally as this, it is not altogether surprising that different authors have provided 
almost as many answers as there are questions and to shape the discussion which follows we 
have chosen to put a heavy emphasis upon the Bronze Age Aegean, the period for which our 
own models (Knappett et al. 2008; 2011; Evans et al. 2009) of maritime trade and exchange 
routes were devised. This is because the act of constructing and developing them has 
illuminated problems common to many approaches.   
 
The original focus of our work was the southern Aegean in the Middle (MBA) and early Late 
Bronze Age. This is well bounded in time, concluding with the „burning of the palaces‟ some time 
after the eruption of Thera. The archaeological record poses some interesting questions. On the 
one hand, we wanted to understand why some sites, like Knossos on Crete, grew to be so large 
and influential. On the other hand, we wanted to understand how the volcanic eruption of Thera 
seemed to have such little immediate effect on the exchange between Minoan Crete and the 
surrounding regions despite destroying Akrotiri, which might have been anticipated as the main 
gateway from Knossos into the Cyclades, Peloponnese and the Greek mainland.  
 
Although both address spatial issues, superficially these questions seem very different. Thus, 
the emergence and characteristics of sites like Knossos are partially explained in local terms, 
with these local conditions only then facilitating exchange with other sites. The global stability of 
the Minoan exchange network, meanwhile, might be thought of as explicable in terms of Aegean 
geography and marine technology, since the appearance of the sail from about 2000 BC 
facilitated new levels of inter-regional interaction. However, to separate local power from global 
organisation too strongly is to set up a false dichotomy, since the centres of local power are also 
likely to be key players in global exchange. The same routes that enable these centres to 
maintain their influence are also conduits for the entwined cultural and economic connections 
between them. As a result, their growth and importance will be conditioned by the 
characteristics of the larger networks to which they belong, leading to what Batty terms an 
„archaeology of relations‟ (Batty 2005, p149).  
 
In our Aegean work we have argued that network models can provide the natural framework to 
transcend this dualism between physical and relational space.  Networks are, in essence, no 
more than a set of nodes or vertices connected by links or edges. Most simply, in archaeology 
we identify nodes with archaeological sites and the communities that inhabited these sites, and 
links with the exchange between them. Networks thus have the potential, in an almost self-
evident way, of encoding „spatial correlates‟ by incorporating both the local attributes of sites 
together with their global interactions and showing the reciprocal effect of the one on the other.  
It is no surprise that island archipelagos lend themselves to network analysis. With a dominant 
means of interaction (sea travel) and, typically, a dominant sailing technology (canoe or sailing 
vessels) they allow for simple connectivity. 
 
In this article we are primarily interested in how networks of relationships are conditioned by 
what, in shorthand, we might term ‟geographical space‟.  In the next section we give an 
overview of some of the issues that arise in constructing network models for archaeology that 



rely heavily on the basic attributes of physical geography; distance and topography. Null models 
are useful in this, in helping to provide simple benchmarks.  This prefigures the most 
substantive part of the Chapter, an analysis of how „optimisation‟ models, which add „agency‟ to 
„geography‟, might be useful in Aegean prehistory.  Although such modelling has obvious 
limitations, in its stress on the material circumstances of human-environment interaction on 
social change, it allows for a „restricted set of spatial variables to play a role in shaping historical 
transformations‟, (Smith, 2003, p53). As a result, in a step by step way, we can construct 
tractable quantitative models amenable to simulation.  
 
In trying to decide whether and how such models „work‟, it is hard to improve upon the 
sentiment in Rihll and Wilson (Rihll and Wilson 1991, p62) that 
 
“The purpose of a good model is to formulate simple concepts and hypotheses concerning 
them, and to demonstrate that, despite their simplicity, they give approximate accounts of 
otherwise complex behaviour of phenomena. If a model „works‟ (faithfully represents the known 
evidence) then it shows that the assumptions and hypotheses built into the model contribute to 
an explanation of the phenomena” 
 
Unfortunately, although the „evidence‟, the archaeological record, may be good for some eras, 
for the prehistoric era of our models it is sufficiently patchy in both space and time as to be 
ambiguous. If the data sets were good, whether the model could be made to „work‟ would 
become apparent quite quickly. Unfortunately, with the data as incomplete as it is, we might 
expect to find so many choices of model to be commensurate with the data that it would not be 
clear how to proceed. In practice, this is not the case.  A simple touchstone is that the models 
should produce a range of site occupancies and a range of site activity that go beyond the 
range of potential resources. Despite this seeming generality we stress that there is no universal 
behaviour implied by network models and this alone turns out to be a surprisingly good 
discriminant. Different models give different patterns of exchange and we need to choose the 
model type appropriately, with even a poor record in mind, before we look further at the detailed 
behaviour that they can suggest. This, in turn, requires further assumptions about (marine) 
technology and social organization specific to the period in question. There are then yet further 
issues about determinacy, and to what extent we should understand outcomes statistically, that 
we shall do our best to address in the space at our disposal. 
 
Although motivated by the MBA S. Aegean, this article is more an overview of methods and we 
shall not attempt to address the archaeological record in detail. Steps towards this are given 
elsewhere (Knappett et al. 2011). 
 
. 

II. The Role of Geographic Space: First Thoughts  
 
One attribute common to most network models is that they are construed dynamically. Links 
describe the flows between sites; goods, raw materials, people, ideas, both the sinews and 
synapses of inter-site relationships. In the most simple networks, links are non-directional and 
either switched on or off, i.e. all we are concerned with is whether two sites interact or not. At a 
more sophisticated level, links are both directional (i.e. the relationship of A to B is not the same 
as B to A) and are „weighted‟ (i.e. vary from strong to weak, where the weight is a measure of 
the „flow‟).  
 
In an archaeological context nodes, thought of as sites, have two different attributes.  At one 
level we can interpret them as junctions for flows, without needing any of their local physical and 



geographical properties beyond, say, position, which determines their accessibility to other sites.  
In this sense they are rather like traffic intersections, or airports, only acquiring their local 
significance from the network as a whole. This permits a variety of classifications, of which the 
simplest orders nodes by their „busyness‟, the total flow through them. However, we should not 
ignore their local properties. In fact, our original interest in networks was triggered by the use of 
networks to explain the mismatch between local resources and exchange in the Early Bronze 
Age Cyclades (Broodbank 2000). In some models (our first null models) sites are treated 
equally but, more realistically, are ranked by their local properties (e.g. populations) as well as 
their properties derived from the global behaviour of the network as a whole. 

 
As we said earlier, our main interest is to see to what extent exchange networks reflect or 
transcend what we have termed geographical space.  Such „space‟ has several facets, which 
we shall delineate later but, as a first guess, by looking at the site map, could we infer which 
sites are most significant, both from their intrinsic properties (e.g. resources) and their position 
in the network? We also need to identify the most important links since they will reflect the 
distribution of artefacts. We begin this discussion by presenting two null models, each of which 
uses only physical geography, qualified by basic assumptions about travel, against which to test 
the more sophisticated hypotheses that we shall propose later. 
 

 
A question of ‘distance’: Fixed radius model 
 
The map of the S. Aegean whose networks we are considering is given in Fig.1. On it we have 
labelled 39 of the most significant sites in the MBA. Names and details of the sites are given in 
the Appendix in Table 1.  In general we do not need them, since we are mainly using the 
resulting networks for comparative purposes, and will not address the record in any detail. In the 
first instance, what we see is four regional groupings; Crete, the Cyclades, the Peloponnese 
and the Dodecanese. One of the tests for the importance of geography lies in the extent to 
which the exchange networks reflect these regional groupings. 
 
To convert these qualitative regional groupings into something more quantitative we have shown 
a dendrogram of site separations in Fig.2. However, it would have been too simplistic to have 
constructed it with a compass, using just geographical distances. For exchange networks the 
relevant distances are those taken by the travellers who provide the exchange, which requires 
an understanding of how they travel. For the period in question, the MBA, communication is by 
sailing ships which do not remain at sea at night. Our distances are not line-of-sight distances 
but correspond to the best sea routes, negotiating headlands where necessary. Even that is not 
sufficient, since land travel may produce routes which are shorter and some sites are inland, 
notably Knossos and Mycenae Given the slow and laborious nature of land travel in this era, we 
introduce a `frictional coefficient‟ that penalises land travel over sea travel. This isolates many 
sites situated on large islands or on the mainland so that they behave rather like islands 
themselves. For instance the direct routes between some sites on the North and South coast of 
Crete are not optimal for reasonable friction coefficients.  Sea travel round the Eastern or 
Western tips, or at least to a narrower part of the island, is often easier in our terms. Given our 
choice of optimal routes, we have used a variety of frictional coefficients and find that our 
conclusions are largely insensitive to them. For the sake of argument we have taken a frictional 
coefficient of three in all that follows. Given this relative insensitivity, our distance estimates 
were obtained by analysing the physical geography by hand at a scale of around a few km, an 
appropriate level of error given the other uncertainties in our knowledge. One of these is how, or 
if, to take into account the prevailing winds and currents or the daily fluctuations in conditions. 
For the moment we assume that these average out on a yearly cycle. Our effective distances 



thus reflect averaged time-of-travel and we use the same estimates in all the models discussed 
below. 

 

 
Fig. 1: 

Important 

sites, for the 

MBA 

Aegean, 

including 

Knossos (1) 

and Thera 

(10). The 

sea journey 

from the N. 

Cretan coast 

to Thera is a 

little over 

100km. 

 

 

 

Table 1. The sites enumerated in Fig.1 

and the size of their local resource base, 

with (S), (M), (L) denoting „small‟, 

medium‟ or „large‟ respectively in terms 

of their resource base (input). This is to 

be distinguished from their „populations‟, 

which are outputs. 

 
 
 
 

 
Our first model is preposterously simple. It asks what networks would occur if travel was 
restricted to journeys up to a specified distance, in the sense above. This is the quantitative way 
of defining regional clusters. In order to identify the important travel distance scales for the sites 
of Fig.1, the simplest way is to connect sites only if they are less than a certain distance D apart 
(e.g. 100km), as encoded in the dendrogram shown in Fig.2. A horizontal line at some fixed 
distance scale D cuts the tree into a number of smaller branches lying below the line, each 
defining a separate cluster of sites.  Only sites within the same cluster are connected to each 
other by paths in which each section is less than the distance D apart.   
 
We should not think of D too precisely, both because of the uncertainty in the calculation of 
effective distances and because of the simplistic nature of a discrete distance cutoff. However, 

1.       Knossos (L) 14.     Kea (M) 27.     Mycenae (L) 

2.        Malia (L) 15.     Karpathos (S) 28.     Ayios Stephanos (L) 

3.        Phaistos (L) 16.     Rhodes (L) 29.     Lavrion (M) 

4.        Kommos (M) 17.     Kos (M) 30.     Kasos (S) 

5.        Ayia Triadha (L) 18.     Miletus (L) 31.     Kalymnos (S) 

6.        Palaikastro (L) 19.     Iasos (M) 32.     Myndus (M) 

7.        Zakros (M) 20.     Samos (M) 33.     Cesme (M) 

8.        Gournia (L) 21.     Petras (L) 34.     Akbuk (M) 

9.        Chania (L) 22.     Rethymnon (L) 35.     Menelaion (S) 

10.     Thera (M) 23.     Paroikia (M) 36.     Argos (M) 

11.     Phylakopi (M) 24.     Amorgos (S) 37.     Lerna (M) 

12.     Kastri (M) 25.     Ios (S) 38.     Asine (S) 

13.     Naxos (L) 26.     Aegina (M) 39.     Eleusis (M) 



in Fig.2 we see a transition occurs if we go from below 110km to above 130km (the effective 
distance between Knossos and Akrotiri is about 130km, once land travel is taken into account).  
At 110km the sites are split into the four isolated zones we would expect; Crete, the Cyclades, 
the Dodecanese and the Peloponnese (itself fractured into adjacent parts). On the other hand, 
almost all the sites are connected by routes involving steps of 130km or more.  This structure 
becomes very clear if, as a complementary approach, we show the network for different 
distance scales, as in Fig.3. The dark links correspond to distances up to the specified distance. 
 

 
Fig. 2: Dendrogram for the sites of Fig.1, using an effective shortest distance between sites in which sea 

travel is counted in physical kilometres but land travel is penalised by a `friction‟ factor of 3.0.  A horizontal 

line cutting the vertical axis at distance scale D cuts the dendrogram into a number of disconnected 

branches below the horizontal line.  Each of these separate branches defines a cluster (or community) of 

sites within which any pair of sites are separated by an effective distance of D or less.  It is not possible to 

move between sites in different branches without following a link effective length greater than D. 

 



Simple as this model is, one thing we take from it is the very striking fact that the distance scale 
D≈120km at which we move from a fragmented network to one in which can be traversed easily, 
albeit in several steps, is more or less the maximum distance scale we would expect from MBA 
sailing vessels for a single journey, on the assumption that boats did just that in travelling from 
the N. Cretan coast to Thera. 

 

 

 
Figs. 3. Fixed Radius Networks for the sites of Fig.1.  Sites are placed at their geographical location. 
Distances between sites are judged via shortest sensible routes with land travel penalised by a factor of 
3.0 but without taking currents, winds etc in to account. Two sites are linked (dark links) if the effective 
distance is less than D, where D = 70km, 100km, 130km and 150km. Light grey links are edges which are 
longer than D but by no more than 20%.  Sites of same colour are connected by routes via black links (i.e. 
all hops are less than D km). 

 



The arrival of sail in the MBA makes the Aegean a „Goldilocks‟ sea1 in the sense that the 
technology is just right for the appearance of an active trading network with a handful of key 
sites.  Too small a journey distance D and the network is overwhelmed by the prevailing 
geography, as is the case for the EBA, for which canoes have a distance scale more like 30km, 
requiring the Cyclades and other regions to be relatively self-contained (Broodbank 2000), as 
seen in the leftmost diagram in Figs.2. Too large a distance scale, as happens with modern 
ferries, and the whole region becomes over-connected in the sense that there are many more 
links than are necessary to make the network negotiable. Thus our MBA networks live in the 
transition between social organisation being strongly influenced by geography and it being much 
less relevant. Moreover, this distance scale is more a function of inter-island separation than a 
function of where sites arise and, without it being a circular argument it is for this reason that we 
have taken MBA sites in Fig.1. Our choice of 39 sites is informed but debateable.  However we 
note that the inclusion of more sites would not affect the result that we move from an under-
connected to an over-connected network at D≈120km. 

 
 
Proximal Point Analysis (PPA) 
 
A very different null model is provided by Proximal Point Analysis (PPA), again not quite simple 
enough to be done with ruler and compass, but requiring nothing more than the effective 
distances above and rudimentary ideas about social interaction. Rather than look for clustering 
the aim in PPA is, primarily, to decide which sites have a more prominent role in regional 
interactions. This is determined by „connectivity‟, the number of links that a site has with its 
network neighbours. There are several variations on this theme but, most simply, sites are taken 
to be similar (unweighted). If the premise of our previous model is that communities need to 
interact but it is just too difficult to travel far (as controlled by D), the premise of PPA is that 
communities need to interact, but it is just too difficult to sustain more than a few important 
interactions -- a Dunbar number for communities, rather than individuals (Dunbar 1992). 
However, the neighbours with which it does interact are defined by distance. To perform the 
analysis links are drawn outward from each site to a specified number k of nearest neighbours 
(typically three or four). By „nearest‟ is meant geographically closest once headlands and land 
travel are taken into account as before.  If, when this is completed, directional arrows are 
removed from the links, some sites will emerge as being more connected than others, with five, 
six, or more, links to other sites. These sites possess greater „centrality‟ in the network, and are 
anticipated to be more dominant in regional interactions. In fact, our interest in archaeological 
networks was fired by the application of PPA to the Early Bronze Age Cyclades by Broodbank 
(Broodbank 2000).  Of course, as we have already implied, networks do not just form for the 
sake of it, but arise because of a mixture of imperatives. Broodbank suggests that the EBA 
Cyclades were agriculturally marginal, requiring social storage networks.  
 
Island archipelagos lend themselves to PPA network analysis, because of the clear separation 
of sites. In particular, their early application was to anthropological networks in Oceania (Terrell 
1977; Irwin 1983; Hage & Harary 1991, 1996). Coastal sites are equally amenable to a PPA 
analysis (Terrell 2010). However, some PPA models are for land-based networks (Collar 2007) 
of sites that are discrete. Networks built on PPA have a strong emphasis on local geography 

                                            
1
 The notion of a „Goldilocks‟ economic environment, one that in terms of exchange is „not too hot and not 

too cold‟, is ubiquitous in macroeconomics (for instance see Gordon 1998), where it was first coined to 
describe the US economy in the late „80s. It has a parallel usage in astrophysics, originally literally, for 
describing habitable planets but now more generally, in the context of anthropic approaches to the 
physical constants of the natural world. 



because most neighbours are relatively close. However, there is also the contrary effect that 
even isolated sites will interact with the same number of neighbours, however far they are 
removed from them. The end result is that interactions are inclined to lie in „strings‟ of sites, 
including remote sites on the periphery, rather than the clustering of the previous model. We 
have shown this for our sites in Fig. 4, in which we join each site to its three or four nearest 
neighbours.  
 
For k=3 nearest neighbours we see a Western „string‟ encompassing Crete and the 
Peloponnese (with a separated northern part). The Cyclades and Dodecanese, just simply 
connected to each other, have no connection to N. Crete. If we were to join each site to its four 
nearest neighbours, the Cyclades becomes connected to the East. This has a counterpart in the 
previous model on varying D. Unlike for that case, this connectivity is not stable to our initial 
choice of sites, our only other input. This is primarily because we have chosen so few (39) sites. 
If we were to double the number of sites, the Cyclades would become disconnected again for k 
=4. However, we think of the number of connections that a site will make as something intrinsic 
to the nature of society, a Dunbar number, whereas the number of sites on the map is purely 
artificial, perhaps a reflection of our knowledge. We need to distinguish between conclusions 
that follow from the principles of the model and conclusions that are a consequence of our 
ignorance about the record, an issue that will recur again. This is not to damn PPA as a 
qualitative guide for those cases, in its applications such as contemporary and recent 
anthropology (see Terrell 2010), for which the record is very good. 

 

 
Fig. 4: PPA for the S.Aegean sites of Fig.1, joining each site to either three or four nearest neighbours 
(thick black links).  Thin grey links indicate links to fifth and sixth nearest neighbours. Sites of same colour 
are connected by routes via thick black links. 

 
Agency: Optimisation 
 
Our null models assumed that sites would like to interact directly with other sites for the 
purposes of exchange but are limited in doing so, either because it is difficult to travel too far, or 
difficult to sustain too many exchanges. This need to establish a balance has an element of truth 
and suggests that social networks are „optimal‟ in some sense. We need to be careful that we 
do not create too simplistic a Panglossian „best of all possible worlds‟ but recent years have 
seen a revival of the idea that social networks do evolve to some form of „best‟ behaviour, 



particularly in economic theory (Jackson 2008). While not always correct, the simplicity of the 
approach gives us a more sophisticated set of models than those we have considered so far.  
 
There are two different approaches. The first looks to identify the „best‟ network with the „most 
likely‟ network. The second of these is more social utilitarian, and identifies „best‟ with „most 
efficient‟. These further attributes of networks take us beyond the null models discussed above 
and allow us to get away from the simple geographical/social determinism embodied in them. 
 

 
III. The ‘Most Likely’ Networks 

 
The first optimisation approach looks to identify the „best‟ network with the „most likely‟ network, 
all other things being equal, within the constraints of our knowledge.  There is a long literature to 
this approach, which maximises „information‟, understood as Shannon entropy. To choose less 
likely networks would, in some sense, correspond to assuming information that we did not have 
(Batty 2010). In particular, models of this type have been used extensively in modelling transport 
flows (Erlander and Stewart 1990) and we shall just pick out those aspects that might be 
relevant to the „flows‟ of Aegean maritime networks. The discussion that follows is fairly 
technical, probably not enough so for readers really wanting to understand the models, and too 
much for readers uncomfortable with algebra. For the former more details about the approach 
can be found elsewhere in our work (Knappett et al. 2008; Evans et al. 2009).  
 

Maximum entropy: Basic models 

Define Fij as the „flow‟ from site i to site j where, for our Aegean network of Fig.1, i and j take 
values from 1 to 39.  We can think of Fij as, say, the number of vessels per year travelling from i 
to j, or some equivalent measure of exchange. The greater the flows through a site the more 
significant we expect it to be in the network and an estimation of the flows is one of the main 
goals of network modelling. As a baseline, the null models in the simple form posed above have 
identical (unweighted) flows when they exist, being switched on or off according to distance or 
neighbourliness.  
 
In the `doubly constrained‟ entropy model, the total outflow from a site i, Oi (e.g. the total 
number of vessels leaving i in a year), and the total inflow to a site j, Ij (e.g. number of vessels 
arriving) are inputs to be specified: 
 
                            (1) 

 
Likewise the „cost‟ of sustaining each link has to be specified, say cij, which we assume to be a 
function of site separation, the effective distance dij (once headlands and land travel are taken 
into account). Finally, the total „cost‟ of maintaining a given network is fixed at some value C: 

         
   

 

The idea is that the most likely pattern of flows is that which maximises the entropy S 
 

                     

   

 

(e.g. see Ball 2004, Batty 2010) subject to the constraints on flows and costs given above.  That 
is, one finds the most likely flows if trips between sites are themselves equally likely, provided 



the total pattern conforms to the specified constraints. This is the simplest assumption to make 
and has found wide applicability in a variety of transport models. Under these constraints one 
can prove that the optimal network of flows is of the form (Batty 2010) 
 
                        (2) 

 
Here the parameters Ai and Bj are self-consistently determined by the constraints on the input 
and output flows (1) as 
 
  

  
                      

 

  
                  , (3) 

while choosing the parameter β is equivalent to setting the total cost C.  This has the form of a 
generalised Gravity Model (e.g. see Jensen-Butler 1972 as one of many summaries), in that the 
flow is related to a product of the attributes of the sites, falling off as some function of their 
separation.  For this reason this model is usually termed the „doubly constrained‟ gravity model. 
This is one step beyond more conventional gravity models which specify the form of the flow to 
be that of equation (2) by fiat, where we define Ai Oi and Bj Ij to be the populations of i and j 
respectively, with no internal consistency. For example, see Alden (1979) for an application of 
simple gravity models to Toltec networks.  
 

 
Fig.5 Interaction 
potentials as a function 
of distance d, where 
x=d/D and D is a fixed 
distance scale. By 
construction V(0) = 1 and 
V(1) = 0.5. The solid red 
line is V(x)=1/(1+x

4
) as 

used in this work.  The 
dashed blue line is 

V(x)=exp(-x)=2
-x
 with 

=ln(2)/D as used in 
many Gravity Models. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
In archaeology we rarely have a direct handle on the flows in and out of a site.  Given our lack 
of knowledge we consider the simple default case, in which, on a site by site basis, the inflow  Ij  



and outflow Oj are equal to each other, dependent on site „size‟. „Size‟ has many meanings e.g. 
the area occupied, size of key monuments (Renfrew 1981; Renfrew and Level 1979) or 
available local resources (Broodbank 2000). We shall distinguish between population and 
resources (carrying capacities). Here we use the latter as our proxy for size and take the flows 
proportional to these resources.  For our MBA  Aegean example we have classified our sites as 
large, medium or small (see Appendix for details) and taken their resource bases Si to have 
relative values 1, ½ or 1/3 respectively. We find that outcomes are not very sensitive to different 
definitions of large, medium and small.  

 

 

Fig.6. The doubly constrained gravity model, a maximum entropy model, for D=70km, 100km, 130km and 

150km (reading from left to right then top to bottom). For each site i the outflow Oi and inflow Ii are both 

fixed equal to the fixed site size Si. (taking values 1/3,1/2,  or 1.0, see table 1). Only edges with flow over 

1/39  0.0256 are included. Vertices of same colour are connected by the edges shown. Note the flows 

are symmetric, a necessary property of solutions if dij=dji and Oi = Ii. 

 



In many problems, including archaeological ones, the „costs‟ are not known.  Nonetheless, we 
expect that, the longer the distance between two sites, the higher the „cost‟ of making the 

journey.  In our work we have chosen our costs such that                       where the dij 

are the effective distances we introduced earlier, and D is the distance scale for maritime travel 
introduced earlier (it plays a similar role to  ). For the moment we can think of V(x) as a single 
journey „likelihood function‟ or an „ease-of-travel‟ function that quantifies the fuzziness that we 
argued for in the fixed radius model. We choose V to have the form shown in Fig.5. This shape 
means that all short journeys, dij<<D, are easy (V close to 1) and have a cost close to the 
minimum possible.  All long journeys, dij>>D, are difficult (V close to 0) and are of high cost. For 
intermediate distances, dij~D, the function falls smoothly but rapidly. 
 
 

Maximum entropy: An enhanced model 

However, a variant of the gravity model does produce a much wider range of site activity. This 
model, originally designed for urban planning (Wilson 1967, 1970) was applied by Rihll and 
Wilson (Rihll and Wilson 1987, 1991) to an archaeological context, that of Iron Age Mainland 
Greek city states.  In this variant entropy is maximised as before for fixed total cost, with 
outflows again proportional to site size. However, rather than impose inflows on a site by site 
basis a priori we choose a constraint that allows them to fluctuate.  The result is that the flows 
are given by 
 
           

 
         , (4) 

 
where   determines what is called site `attractiveness‟. As before the Ai are determined self-
consistently as above. The inflow Ij  is now identified as the „attractiveness‟ of site j, no longer a 
fixed input parameter. The new input parameter   is usually chosen to be a little above 1.0.  As 
we take larger and larger values for  , we find fewer and fewer sites attract larger and larger 
fractions of the total flow into their sites which must therefore come from sites further and further 
away.  Thus this parameter controls the nature of this `rich get richer‟ phenomena. A smaller and 
smaller D counteracts this effect, especially for the sharp exponential fall off for V(x) used by 
Rihll and Wilson, also displayed in Fig.5 but rejected by us for maritime networks. 
 

We have applied the RW model to our context, using the V(x) adopted before.  The results are 
shown in Fig.7.  The networks produced by this model tend to have star-like structures as a 
small number of sites (`terminals‟ in the language of Rihll and Wilson 1987; 1991) suck in most 
of the flow from a neighborhood and their output is directed between themselves.  Conversely, 
most sites have no input and all their output is focused on the nearest terminal site. The origins 
of this model in providing, among other things, a description of the replacement of corner shops 
by shopping malls in contemporary towns and cities is clear. We do not think this is a useful 
model for describing exchange in the MBA. While we expect dominant trading centres to 
emerge, and exchange to be unbalanced at many sites, we would still expect to see some level 
of exchange to occur at all levels. Indeed it does not matter how remote a site is, or how high its 
interaction costs are – in the RW model it will always maintain a flow to the nearest terminal site. 
Where this model may have a role in archaeology is if we adopt a sociopolitical rather than 
socioeconomic framework, as a star is a possible representation of the domination of a local 
region by a single site if we think in terms of tribute, rather than exchange. As such it is perhaps 
better considered alongside models such as the XTent model (Renfrew and Level 1979; Bevan 
2010). 
 
 



IV. The ‘Most Efficient’ Networks 
 
An alternative approach to optimisation is to adopt a social utilitarian principle and interpret 
„best‟ as „most beneficial‟, or „most efficient‟ (although these may not be synonymous).  These 
models are common in socioeconomics, or any system of exchange in which there are 
identifiable costs and benefits, for which „most beneficial „ or „most efficient‟ means achieving the 
greatest benefits relative to the costs. Even simple networks suggest a spectrum of benefits that 
encompass social storage, exogamy, acquisition of raw materials, distribution of prestige goods, 
cultural exchange and trade and it is not unreasonable to assume that networks evolve to 
accrue higher benefits.  
 

. 

Fig.7. Rihll and Wilson model for values D = 100km on the top row with β = 1.04 (on the left) and β= 1.30 
(on the right).  D = 150km on the second row, for β=1.04. Note how the number of weak links decreases 
as β increases.  For each site i only the outflow Oi is fixed equal to the site size Si. (taking values 1/3,1/2,  

or 1.0, see table 1). Only edges with flow over 1/39  0.0256 are shown. 

 
Utility functions or social potentials 
 
To each network we associate what in economics we would call a „cost/benefit‟ or „utility‟ 
function (Jackson 2008) and in sociology a „social potential‟ (e.g. Bejan and Merkx 2007). With 



two of us as physicists, we call it a „Hamiltonian‟ H.  Whatever it is called, it describes the „costs‟ 
minus the „benefits‟ of the network. If we assume that the network adjusts so as to increase the 
surplus of benefits over costs or increase utility, we are seeking to find the networks that 
minimise H. This notion is referred to as „strong efficiency‟. See Jackson (2008) for discussions 
of this and other definitions of efficiency. 

 
At the very least, H contains two types of term; those describing the benefits of exchange and 
local resources and those describing the cost of maintaining the resulting network. Since only 
relative magnitudes matter, the simplest choice is a two-term model, choosing just the direct 
benefits of exchange and a cost proportional to activity (e.g. Jackson 2008). This gives us a 
situation as for the RW model with one parameter to vary.  We have not been exhaustive but, 
empirically, we find that such models lurch from over-connectedness (with the star-like structure 
of the RW model) to collapse („boom‟ to „bust‟), in which sites switch on or off without the 
variation that we would expect.  
 
Neither these nor previous models pay due regard to ability of the communities to exploit the 
local resources and we have adopted a more sophisticated model in which the Hamiltonian 
utility function H, which characterises each configuration of the system, separates into four 
terms 
 

H = – κ S - λ E + (j P + μ F).       (5)         

With all coefficients positive, E represents the benefits of exchange and F the cost of 
maintaining the network mentioned above. In addition, the first term S represents the benefits of 
local resources and P the cost of maintaining the population. The parameters κ, λ, j, μ which 
control H are measures of site self-sufficiency, constraints on population size, etc.  All other 
things being equal, increasing λ enhances the importance of inter-site interaction, whereas 
increasing κ augments the importance of single site behaviour. On the other hand, increasing j 
effectively corresponds to reducing population, and increasing μ reduces exchange. 
 
As with the entropy models, beyond these generalised constraints, the model‟s inputs are the 
sites‟ fixed carrying capacities Si and the intersite „potentials‟ V(dij /D) of Fig.5, again understood 
as a measure of the difficulty to travel from site i to site j in a single journey.  The direct model 
outputs are again the flows Fij between sites i and j. Unlike for gravity models the total output 
from a site is not fixed but is allowed to vary.  First we allow the „site weight‟ (actual site size or 
population) Pi to vary, though its behaviour is linked to the fixed model input Si which now 
represents the fixed carrying capacity of each site. In another departure from the gravity model 
approach we also allow the total output flow from a site to be less than to its site weight, 
          . So we may think of the combination (Fij/Si) as the likelihood that an individual (or 

vessel) at site i travels to site j.  The advantage over the gravity model description is that if 
exchange between one isolated site and all others is very expensive, no interaction need occur 
and that remote site can exist on its own resources and be of a reasonable size. As we have 
noted before, in a constrained gravity model, every site will always have an output, regardless of 
how inefficient trade may be. 
 
These outputs relate only to the local properties of the sites and links. We have also constructed 
outputs which reflect the effect of the network on individual sites. The most important of these is 
site rank, a variation of PageRank (Brin and Page, 1998) which is the basis of the algorithm 
used by Google™ to rank web pages. This is a measure of the global flow of people/trade 
passing through a site, its „busyness‟, an attribute of how the network functions as a whole. 



Sites with high ranking in comparison to their site weights have high impact and are, literally, 
punching above their weight. See our work elsewhere (Knappett et al. 2008; 2011). 
 
In detail, 
 

                describes the benefits of local resources. As such, it is a sum of terms, 

one for each site, which describes the exploitation of the site as a function of its „population‟. 
The detail is not crucial, as long as over-exploitation of resources incurs an increasingly non-
linear cost, whereas under-exploitation permits growth.  
 

                        denotes the benefits from exchange. It is a sum of terms for every pair of 

sites. It takes into account the fact that direct long distance single journeys are unlikely to 
appear in our simulations; if not impossible. We expect exchange over long distances to be 
effected through a series of more manageable shorter steps. With the size of any flow out of site 
i, Fij, limited by its population, it is likely to scale with Pi.  Thus the form of E is „gravitational‟, 
based on the premise that it is advantageous, in cultural exchange or trade, if both a site and its 
exchange partner, are large. 
 
The final terms (in brackets) enable us to control the total population size        and the total 
amount of exchange (and/or journeys made)            

 

 
Is almost the best good enough? 
 

The act of finding the most „efficient network‟ looks highly deterministic, as in (2) and (3), but the 
reality should be more subtle. We are familiar in our personal lives with the experience of 
wanting to make the best choice, but finding very little to distinguish between several of the 
choices available, and perhaps making a final choice with the toss of a coin. Our „efficient‟ 
models reflect this. We can think of H as describing a „landscape‟, both for our model and 
constrained gravity models (and interpret H as minus the constrained entropy in these maximum 
entropy models). Each network that we can write down is a point on that landscape. What 
optimisation does is to look for the lowest part of the landscape, its global minimum, the network 
describing that point being the „best‟ network. In practice, the landscape has many dimensions 
and is full of dips and bumps. As a result, there are several local minima offering significant 
improvements on our starting point but otherwise being comparably good. 
 
As always, there are several ways to proceed. Consider the analogous optimal problem of 
putting a ball on our model „landscape‟ of hills, mountains and plains and wanting to find the 
lowest point as it rolls under gravity. One possibility is to put the ball in some given initial 
position, and then „shake‟ the landscape, giving the ball every incentive to roll downhill. After a 
while it gets trapped in some local minimum, which network we identify. We then repeat the 
process, either beginning from the same initial state or from a different one. Since we are trying 
to get as far downhill as possible, it shouldn‟t really matter where we begin. Final outcomes will 
vary even if we start from the same position each time, as we find networks that are comparably 
efficient but, if the initial shaking has been good enough, they will be commensurate with the 
undiscovered best. However, locally they may differ significantly and we have to interpret them 
statistically. Technically we adopt the standard procedure of using a Boltzmann distribution to 
assign to each network G a probability p(G).exp(-βH(G)) where   is a large constant, the 
inverse volatility.  The implicit statistical fluctuations in the networks we construct reflect the 
normal variations in a real world system. In principle this same approach could be used for 



Gravity model solutions, that look to maximise entropy, but in practice a deterministic approach 
is typically used there so that the same initial conditions always lead to a unique solution. 
 
For those readers familiar with statistical mechanics, j and μ are „chemical potentials‟ and, in our 
cost/benefit analysis we are working with a Grand Canonical ensemble (with „volatility‟ playing 
the role of „temperature‟). On the other hand, maximum entropy models correspond to working 
with microcanonical ensembles. We have already discussed the advantage of canonical 
ensembles over microcanonical ensembles in that, for the former, only the network-wide total of 
exchange/trade is fixed and we do not have to impose inflows or outflows on a site by site basis, 
for which we don‟t have the knowledge anyway (and for which we chose as proportional to the 
carrying capacity by default). As a result, we do not find ourselves in the peculiar position of 
having to enforce long single journeys over unreasonable distances to balance flows, as 
happens in Fig.7. [The other global constraint, on population, has no counterpart in entropy 
models.] 
 
Two examples are given in Figs.8 in which we have taken D = 120km and begin from the same 
initial conditions. We have chosen a set of parameter values that best seems to mimic what we 
see archaeologically, setting the costs of trade low with respect to its benefits, with a sufficient 
exploitation of resources. This stimulates connectivity and encourages a number of 'weak' ties 
between clusters, this number increasing as the benefits of local resources increases. The 
outputs are the „site weights‟ (populations) Pi, and the „link weights‟ Fij. In Fig.8, the sizes of the 
nodes are proportional to the former and the thicknesses of the lines to the latter. We will not 
display the site ranks. We merely observe that, for these networks, Thera and the states of N. 
Crete have among the highest impact, in terms of exchange per capita, but slightly differently in 
the two cases.  As for our original concerns regarding Knossos, statistically Knossos is capable 
of being among the most important sites, perhaps the most important in some histories. 

 

 
Fig. 8. Two runs of our model for values D = 100km with identical input parameters (λ =3, κ=1, µ=0.1, j=-
2.0). Akrotiri and Knossos are important in each. The size of vertex is proportional to the site weight Pi, 
with an edge shown if the flow along that edge, Fij, is greater than 0.1. 
 

If we were to set D=70 km in our model for the same parameter values as in Fig.8 it becomes 
almost indistinguishable from the D=70 km figure of our original geographic model of Fig.3, and 
totally unlike the contortions required by our constrained entropy models.  



 
 

V. Does It Work? 
 
As we have said, with the data as poor as it is, we might expect to find so many choices of 
parameters (i.e. a large part of „parameter space‟) to be commensurate with the data that it 
would not be clear how to proceed.  
 
This is where optimization comes to our rescue, for which the Hamiltonians are non-linear.  A 
non-linear system is one in which, on prodding it, the response is not proportional to the 
strength of the prod. For our „efficient‟ networks the non-linearities are the conventional ones 
that arise when the disproportionate benefits that large sites accrue from interacting with other 
large sites (the „gravitational‟ benefit) are swamped by the disproportionate costs of shortages 
due to high population. In the Rihll and Wilson models the non-linearities lie in the constraints 
upon the entropy, manifest in the non-linear benefits of site „attraction‟.  
 
Let us return to the „efficient‟ networks of Fig.8. Once the nature of the terms in (5) is given it 
looks as if, through the relative values of their coefficients, that we have added three new 
parameters to the geographic inputs. In practice this is not quite the case, with there being some 
tradeoff between varying the total population, varying total exchange activity and varying the 
relative strength of the benefits of exchange in comparison to the benefits of exploiting local 
resources. On taking this into account, our model turns out to be very sensitive to the parameter 
values (having fixed D), only giving a picture of healthy networks for very limited choices of them 
as we tread a fine line between „boom‟ and „bust‟. This is commensurate with the observation by 
Broodbank et al. (2005, p95): 
 

“For the southern Aegean islands in the late Second and Third Palace periods, an 
age of intensifying trans-Mediterranean linkage and expanding political units, there 
may often have been precariously little middle ground to hold between the two 
poles of (i) high profile connectivity, wealth and population, or (ii) an obscurity and 
relative poverty in terms of population and access to wealth that did not carry with 
it even the compensation of safety from external groups”. 

 
Empirically, this is a first sign that our model „works‟. Not primarily because we are looking for 
societal collapse, although that seems to happen all too easily, but because models 
incorporating instability tend to lead to settlements with a wide variety of population. If we 
change their form to make them structurally more stable it becomes increasingly difficult to 
generate a wide enough range of site sizes („populations‟) to match the record. More details are 
given elsewhere (Knappett et al. 2008; 2011). 
 
This narrow path between „boom and bust‟ plays an important role in the evolution of exchange 
networks. As to how the networks evolve in time, systems evolve for a variety of reasons. The 
models we have considered here are not subtle enough to bootstrap themselves and we have 
to enforce change exogenously, usually by varying the parameters smoothly, distorting the 
landscape. Thus, for example, as populations grow or total trade volume increases, the optimal 
network (lowest energy configuration) changes.  It is not surprising that the model shows „tipping 
points‟ as „valley bottoms‟ rise and new valleys are formed. „Boom‟ and „bust‟ is a feature of non-
linear systems. Again it can be useful to adopt the language of statistical ensembles, where the 
notion of a phase transition is familiar and these collapses constitute just such a change (Wilson 
2008; Wilson and Dearden 2010).  
 



 

 

 

 Fig. 9. The effect of increasing the cost of an edge in 
our model. From left to right, then top to bottom, the 
parameter µ is raised from 0.1, to 0.3, 0.5, 1.0 and 
finally 1.5.  For D = 120km (λ =3, κ=1, j=-2.0).  
 
 
 
 
 
 
 
 
 
 

 

 



Empirically, what seems to keep the model networks together is its „weak‟ links. Such links, for 
which the exchange of goods and people is small, leave little or no archaeological trace, but it 
was proposed by Granovetter (Granovetter 1973, 1983) many years ago in a seminal paper that 
they play an important role in social networks for facilitating the exchange of information and 
facilitating innovation. This proposition has been continually examined since and borne its 
weight.  More generally, it has been argued (Csermely 2004, p332) that “weak links stabilize 
complex systems”, of which networks are but one type. There are different definitions of stability, 
but there are certainly many examples where the presence of many weak links does indeed aid 
stability (Csermely 2004), including our models. If, for example, beginning from a typical network 
of Fig.9, we increase the costs of trade we find the network puts its eggs in fewer baskets. The 
weak links are unrewarding to maintain and trading becomes confined to fewer and fewer 
networks until it collapses. This is one way to understand the short-term stability of the S. 
Aegean network after the eruption of Thera prior to its ultimate collapse (Knappett et al. 2011). 
 
We should not assume that instability is inevitable as the networks evolve. There is still enough 
room in the parameter space to stay in an area of stability and evolve with gentle growth or 
decline but the opportunity both for collapse and rapid growth (equally unstable) is always there. 
It is in circumstances like this that social space and geographical space come together before 
going violently apart. The benign networks of Fig.8 in some sense go beyond the geography 
while being strongly conditioned by it, in giving details that we could not have predicted (albeit 
stochastically) with some outriders punching above their weight. However, regional geography 
reinstates itself in primitive form as we move towards instability, almost along the lines of our 
null models, with only a few strong links between collapsing regional clusters. 
 

 
 
 

VI. Summary 
 
We began this article with a general question; does the S. Aegean exchange network reflect the 
geographical space in which it is embedded? We have argued how conditional this is on MBA 
marine technology, which makes the S. Aegean a Goldilocks environment for the appearance of 
trading networks, with single journey distance correlated to the scale separating the main 
regional clusterings.  
 
The bulk of our analysis has been devoted to a discussion of optimal networks, with „optimal‟ 
meaning „most likely‟ or „most efficient‟. The former, used in town planning and transport 
networks, adopts a microcanonical approach in arguing for a maximisation of constrained 
network entropy, essentially information. It seems, in general, that the constraints in terms of 
inflows and outflows on a site by site basis that are conventionally imposed are too strong to 
permit networks that could match the record.  Reasons why they will fail for some maritime 
networks include the highly implausible result that imposing constraints on a site by site basis 
requires sites to connect directly willy-nilly, even to sites that are inaccessible by simple sea-
travel.  In this regard the models have something in common with PPA, which argues for a 
maximum number of connections, rather a minimum separation. [Further, there is a tendency for 
sites to become important by becoming recipients of exchange, with little or no reciprocity.] 
 
„Most efficient‟ or cost/benefit models are used widely in socioeconomics and avoid constraints 
on a site by site basis by adopting a canonical ensemble approach.  As a result, we get 
networks that, in general, are strongly conditioned by geography. However, a characteristic of 
the optimal models we have discussed here is that they are prone to instabilities, and the links 



to geographic space make themselves starkly evident before they break down if we begin to 
walk off the delicate line between „boom‟ and „bust‟ that they embody. 
 
We conclude with two points that we have not discussed so far. The first is that gravitational 
models help minimise the effects of our ignorance about site details because of a patchy record. 
This deserves a much greater discussion than space permits here, and we refer the reader to 
Evans et al. 2009, where it is analysed for „efficient‟ networks in greater detail. Suffice to say 
that Newtonian gravity is remarkable in that breaking up the masses into smaller parts does not 
change the result as long as the position of the centres of mass is unchanged. Our gravity 
models go some way in providing an island counterpart to this, in which the contribution of the 
communities on an island to the utility function largely depends only on its total population. With 
carrying capacity as given input and population as output, how this population is distributed is 
largely immaterial. 
 
This, coupled with the ensemble approach, leads to a way of considering the smallest scale of 
the social hierarchy, the household, or individual, which is complementary to that of Agent 
Based Modelling (ABM). This complementarity is familiar in describing physical systems like 
gases, say, where we have the option to work with the individual gas atoms in a statistical way 
(statistical mechanics) or through the behaviour of bulk properties of the system, like pressure 
and free energy (thermodynamics). In this language our approach is thermodynamical, and 
motivated the Boltzmann distribution quoted earlier. 
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