Exact Solutions for Models of Network Rewiring

T.S.Evans

- "Exact Solutions for Network Rewiring Models" [cond-mat/0607196]
T.S.Evans, A.D.K.Plato
- "Exact Solutions for Models of Cultural Transmission and Network Rewiring"
[physics/0608052]
- "Exact Solution for the Time Evolution of Network Rewiring Models"
- Bipartite network

E individual vertices each with one edge connected to N individual vertices

- Study degree k of artifact vertices
$n(k)=$ degree distribution,
$p(k)=n(k) / N=$ degree probability distribution

The Model - rewiring

- Removal: Choose an artifact with probability Π_{R} and select one of its edges at random for rewiring.
- Attachment: Choose an artifact with probability Π_{A} ready to accept edge.
- Rewire: Only after these choices are made is the rewiring performed.

N artifacts
 E edges

E individuals

Equivalence to other network rewiring models

- Directed/Undirected Network: Join edges of individual vertices (2i) and (2i+1). [Watts and Strogatz, 1998]

N artifacts

(E individuals

- Directed Network version 2 :
($\mathrm{N}=\mathrm{E}$) Merge each individual vertex with one artifact vertex and let edges point from the individual to the artifact end. [Park et al. 2005] Page 4
© Imperial College London

Relationship to Statistical Physics Models

Some parameter values of other models are equivalent to our model:

- Backgammon/Balls-in-Boxes
applied to glasses [Ritort 1995], wealth distributions, simplicical gravity
- Urn Models [ohkubo et al. 2005]
- Zero Range Processes (Misanthrope version)
[M.R.Evans \& Hanney 2005]

Relationship to Other Systems

- Minority Game variant [Anghel et al, 2004] Agents (individual vertices) copy best strategy (artifacts) of their neighbours in an additional individual network.
Number of people following a given strategy is effectively $n(k)$ of our model.
- Gene Frequencies [Kimura and Crow, 1964]

Organisms (individuals) inherit (preferential attachment) copy of a gene (alleles = artifacts) leading to drift in genetic frequencies. Alternatively they gain a new mutation (random attachment).

- Family Names [Zanette and Manrubia, 2001]

Relationship to Other Systems

- Cultural Transmission [Bentley et al., 2004] Individuals copy $\left(p_{p}\right)$ the choice of artifact made by others or innovate $\left(p_{r}\right)$ e.g. choice of pedigree dog, baby names, archaeological pottery ty tennis star celebration a

Mean Field Degree Distribution Master Equation

Mean field approximation very accurate for many models (low vertex correlations)

Probability of attaching to a vertex of degree ($k-1$)

Probability of NOT reattaching to same vertex

Solvable Case

To be able to solve exactly we limit the attachment and removal probabilities, Π_{R} and Π_{A}, to be linear in degree.

- $\Pi_{\mathrm{R}}(\mathrm{k})=\mathrm{k} / \mathrm{E}$

Choose edge to be removed, or an individual, at random

- $\Pi_{\mathrm{A}}(\mathrm{k})=\left[\mathrm{p}_{\mathrm{p}} \mathrm{k}+\mathrm{p}_{\mathrm{r}}<\mathrm{k}>\right] / \mathrm{E}$

Fraction p_{p} of the time use preferential attachment, i.e. choose an artifact with probability proportional to its popularity (degree)
Fraction p_{r} of the time choose attach to an artifact chosen randomly

Exact Equilibrium Solution

A is ratio of four Γ functions

- Simple ratios of Γ functions
- Similar to those found for growing networks but second fraction is only found for network rewiring
- Only approximate solutions known previously

Large Degree Equilibrium Behaviour - Large p_{r} Case

For $p_{r}>p_{*} \sim 1 / E$
(on average at least one edge attached to a randomly chosen artifact per generation)
$\lim _{k \rightarrow \infty}[n(k)]=k^{-\gamma} \exp (-\zeta k)$

$$
\gamma=1-\frac{p_{r}}{p_{p}}\langle k\rangle
$$

Power below one but in data indistinguishable from one

$$
\zeta=-\ln \left(p_{p}\right)
$$

Exponential Cutoff

Large Degree Equilibrium Behaviour - Small p_{r} Case

$$
n(k)=A \frac{\Gamma(k+\bar{K})}{\Gamma(k+1)} \frac{\Gamma(E-\bar{E}-\bar{K}-k)}{\Gamma(E+1-k)}
$$

For $p_{r}<p_{*} \sim 1 / E$
(on average if all edges have been rewired once no edge is attached to a randomly chosen artifact per generation)
$2^{\text {nd }} \Gamma$ function blows up for large degree k \Rightarrow Degree distribution rises near $\mathrm{k}=\mathrm{E}$ \Rightarrow In extreme case $\mathrm{p}_{\mathrm{r}}=0$ all the edges are attached to ONE artifact - a CONDENSATION or FIXATION

Equilibrium Behaviour Numerical Results

$\mathrm{N}=\mathrm{E}=100$

Points: 10^{5} data runs
Lines: exact mean field solution

$$
p_{r}=0.001<p_{*}
$$

Time Dependence

Can solve these mean field equations exactly for all times!

- Equivalent to a Markov process for vector

$$
\underline{n}(\mathrm{k})=(\mathrm{n}(0), \mathrm{n}(1), \ldots, \mathrm{n}(\mathrm{E}))
$$

- Evolves as

$$
\underline{\underline{n}}(\mathrm{k}, \mathrm{t}+1)=\mathrm{M} \underline{\underline{n}}(\mathrm{k}, \mathrm{t})
$$

where M is an ($E+1$)-dimensional tridiagonal matrix

- M is constant only if Π_{R} and Π_{A} are both of form (ak+b)

Solution

Best solved using the generating function

$$
\mathrm{G}(z, t)=\sum_{k=0}^{E}(z)^{k} \mathrm{n}(k, t)=\sum_{m=0}^{E} c_{m}\left(\lambda_{m}\right)^{t} \mathrm{G}^{(m)}(z)
$$

where:-

- Eigenfunctions $\mathrm{G}^{(m)}(z)=(1-z)^{m} \mathrm{~F}(a+m, b+m ; c ; z)$

Hypergeometric function

$$
a=\frac{p_{r}}{p_{p}}\langle k\rangle, \quad b=-E, \quad c=1+a+b-\frac{p_{r}}{p_{p}} E
$$

- Eigenvalues $\lambda_{m}=1-m(m-1) \frac{p_{p}}{E^{2}}-m \frac{p_{r}}{E}$
- c_{m} are constants fixed by initial conditions

Normalisation

- Only eigenfunction number zero ($m=0$) contributes to the zero-th moment, i.e. the normalisation of the degree distribution is time independent as $\lambda_{0}=1$
$N=\mathrm{G}(\mathrm{z}=1, \mathrm{t})$
$=\sum_{k=0}^{E} \mathrm{n}(k, t)=\sum_{m=0}^{E} c_{m}\left(\lambda_{m}\right)^{t} \mathrm{G}^{(m)}(1)$
$=c_{0} \mathrm{~F}(a, b ; c ; 1) \quad$ i.e. Simple ratio of Γ functions

First Moment - E

- Only eigenfunction number zero and one $(m=0,1)$ contribute to the first moment, i.e. the number of edges

$$
\left.E=\left.\frac{d \mathrm{G}(\mathrm{z}, \mathrm{t})}{d z}\right|_{z=1}=\left.c_{0} \frac{d \mathrm{G}^{(0)}}{d z}\right|_{z=1}+c_{1} \stackrel{\left(\lambda_{1}\right)}{t}\right)\left.^{t} \frac{d \mathrm{G}^{(1)}}{d z}\right|_{z=1}
$$

To ensure E is time independent we must set

$$
c_{1}=0
$$

\Rightarrow eigenfunction $\mathrm{m}=1$ never contributes

Homegeneity Measures F_{n}

- n-th derivatives of generating function gives measures of homegeneity related to n-th moment of degree distribution
$\mathrm{F}_{n}(t):=\left.\frac{\Gamma(E+1-n)}{\Gamma(E+1)} \frac{d^{n} \mathrm{G}(z, t)}{d z^{n}}\right|_{z=1}=\sum_{k=0}^{E} \frac{k}{E} \frac{(k-1)}{(E-1)} \cdots \frac{(k-n+1)}{(E-n+1)} \mathrm{n}(k)$
- These are simple known ratios of Γ functions
- Equals the probability of choosing n different individuals connected to the same artifact
$\Rightarrow F_{n}=0$ if no artifact chosen more than once $\mathrm{F}_{\mathrm{n}}=1$ if all individuals attached to same artifact
$E=N=100, p_{r}=0.01 \cong p_{*}$,
F_{n} numerical results
Points: average of 10^{5} simulations
Lines: exact mean field prediction Start: $n(k)=\delta_{k, 1}$

Does the distribution change definition of an artifact altered for the same data set?

Example [Morgan \& Swanell]:

- The shoes of 200 male physicists are photographed as they leave a lecture
- These are put into categories by 6 different people e.g. by TSE using colour, type, fastening
- Even with the same categorisation different people will produces different results - what is blue, what is a trainer?
- Small data set yet the results all seem to be consistent with the model
- long tails at least power law and cutoff fit reasonably

Scaling

- Rewire network as before
- Study the distribution of artifact pairs Pair artifacts at random.
Consider degree distribution of artifact pairs $\mathrm{n}_{2}(\mathrm{k})$.
\Rightarrow Equations as before with no. vertices $\mathrm{N} \rightarrow \mathrm{N} / 2$

Shape of distribution same,

Minority Game Example - Leaders and Followers

 Individuals choose best strategy (each artifactis a strategy) from their neighbours in an ER
random graph of individuals [Anghel et al. 2004]
Plot $n(k)$ the average of the number of strategies (of some leader) used by k individuals (followers).
Various system sizes and variọus ER random graphs.

Summary

- Made connections between rewiring of bipartite network and many other network, statistical physics and social science models. Some connections made in some existing papers.
- More accurate mean field equation. Only now is behaviour at boundary $\mathrm{k}=\mathrm{E}$ correct.
- Exact equilibrium solutions.

Previous results for large degree k, large systems N,E.

- Exact solutions for all times in terms of standard functions.
I know of no other network solutions for arbitrary time and arbitrary size.

Mean Field Solutions

- Assume behaviour of the average number of vertices of degree k given by the average properties of the network
- These are excellent for pure preferential attachment (Simon/BA)
correlations in degrees of neighbouring vertices insignificant

Fractional deviation of data from one run of pure pref. attachment model against mean field solution

$n\left(k_{\text {cont }}\right):=1$
$k_{\text {cont }}=O\left(N^{1 / 3}\right)$
Limit of good data

Finite Size Effects for pure preferential attachment
$p(k)=p_{\infty}(k) \cdot F_{S}\left(\frac{k}{N^{1 / 2}}\right), \quad p_{\infty}(k)=\frac{\langle k\rangle(\langle k\rangle+2)}{2 k(k+1)(k+2)}$
Scaling Function F_{s}
$F_{S}(x) \approx 1 \quad$ if $\quad x<1$
$\rightarrow \frac{1}{k^{3}}$

Page 25

100 runs to get enough data near k_{1}

