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The Model
• Bipartite network 

E individual vertices each with one edge 
connected to N individual vertices

• Study degree k of artifact vertices
n(k) = degree distribution, 
p(k) = n(k)/N = degree probability distribution

N artifacts

E individuals

k=1 k=0 k=2 k=0

E edges

k degree 
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The Model - rewiring
• Removal: Choose an artifact with probability ΠR and

select one of its edges at random for rewiring.
• Attachment: Choose an artifact with probability ΠA

ready to accept edge.
• Rewire: Only after these choices are made is the

rewiring performed.

N artifacts

E individuals

ΠA ΠR

E edges
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E edges

Equivalence to other network rewiring models
• Directed/Undirected Network:  

Join edges of individual vertices (2i) and (2i+1).
[Watts and Strogatz, 1998]

N artifacts

E individuals

• Directed Network version 2:
(N=E) Merge each individual vertex with one artifact vertex 
and let edges point from the individual to the artifact end. [Park et al. 2005]

(E/2) edges
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Relationship to Statistical Physics Models

Some parameter values of other models are 
equivalent to our model:

• Backgammon/Balls-in-Boxes
applied to glasses [Ritort 1995], wealth distributions, simplicical gravity

• Urn Models [Ohkubo et al. 2005]

• Zero Range Processes (Misanthrope version)

[M.R.Evans & Hanney 2005]

1 2 3 1 2

3

A B C D

Individuals
A B C D

Artifacts Boxes

Balls
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Relationship to Other Systems

• Minority Game variant [Anghel et al, 2004]
Agents (individual vertices) copy best strategy 
(artifacts) of their neighbours in an additional 
individual network.  
Number of people following a given strategy is 
effectively n(k) of our model.

• Gene Frequencies [Kimura and Crow, 1964]
Organisms (individuals) inherit (preferential 
attachment) copy of a gene (alleles = artifacts) 
leading to drift in genetic frequencies.  Alternatively 
they gain a new mutation (random attachment).

• Family Names [Zanette and Manrubia, 2001]
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tennis star celebration action (?!)

• Cultural Transmission [Bentley et al., 2004]
Individuals copy (pp) the choice of artifact made by 
others or innovate (pr)
e.g. choice of pedigree dog, 

baby names, 
archaeological pottery types,

Relationship to Other Systems

J.Connors
1991
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Mean Field Degree Distribution Master Equation

Mean field approximation very accurate for 
many models (low vertex correlations)
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NOT reattaching 
to same vertex

Probability of attaching 
to a vertex

of degree (k-1)

(1-Π) terms
Invariably
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Solvable Case
To be able to solve exactly we limit the 

attachment and removal probabilities, ΠR and 
ΠA, to be linear in degree.

• ΠR (k)= k / E
Choose edge to be removed, or an individual, at random

• ΠA (k)= [ ppk + pr<k> ] / E
Fraction pp of the time use preferential attachment, i.e. 
choose an artifact with probability proportional to its 
popularity (degree)
Fraction pr of the time choose attach to an artifact chosen 
randomly
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Exact Equilibrium Solution

• Simple ratios of Γ functions
• Similar to those found for growing networks but 

second fraction is only found  for network 
rewiring

• Only approximate solutions known previously
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Large Degree Equilibrium Behaviour – Large pr Case

For pr > p* ~ 1/E  
(on average at least one edge attached to a randomly
chosen artifact per generation)

[ ] )exp()(lim kkkn
k

ζγ −= −

∞→

k
p
p

p

r
−=1γ Power below one but in data 

indistinguishable from one

)ln( pp−=ζ Exponential Cutoff
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Large Degree Equilibrium Behaviour – Small pr Case

For pr < p* ~ 1/E  
(on average if all edges have been rewired once no
edge is attached to a randomly chosen artifact per
generation)

2nd Γ function blows up for large degree k
⇒Degree distribution rises near k=E
⇒In extreme case pr=0 all the edges are 

attached to ONE artifact
- a CONDENSATION or FIXATION
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Equilibrium Behaviour Numerical Results
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Time Dependence

Can solve these mean field equations exactly for 
all times!

• Equivalent to a Markov process for vector
n(k) = (n(0),n(1),…,n(E))

• Evolves as
n(k,t+1) = M n(k,t)

where M is an (E+1)-dimensional tridiagonal
matrix 

• M is constant only if  ΠR and  ΠA are both of 
form (ak+b)
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Solution
Best solved using the generating function
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Normalisation

• Only eigenfunction number zero (m=0) 
contributes to the zero-th moment, 
i.e. the normalisation of the degree

distribution is time independent as λ0=1
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First Moment - E
• Only eigenfunction number zero and one 

(m=0,1) contribute to the first moment, 
i.e. the number of edges
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To ensure E is time independent we must set 
c1 = 0

⇒ eigenfunction m=1 never contributes
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Homegeneity Measures Fn

• n-th derivatives of generating function 
gives measures of homegeneity related to 
n-th moment of degree distribution
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• These are simple known ratios of Γ functions

• Equals the probability of choosing n different
individuals connected to the same artifact

⇒ Fn = 0  if no artifact chosen more than once
Fn = 1  if all individuals attached to same artifact
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Does the distribution change definition of an  
artifact altered for the same data set?
Example [Morgan & Swanell]:
• The shoes of 200 male physicists are photographed as 

they leave a lecture
• These are put into categories by 6 different people e.g. 

by TSE using colour, type, fastening
• Even with the same categorisation different people will 

produces different results 
- what is blue, what is a trainer?

• Small data set yet the results all seem to be consistent 
with the model 
– long tails at least power law and cutoff fit reasonably
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Scaling

• Rewire network as before
• Study the distribution of artifact pairs

Pair artifacts at random.
Consider degree distribution of artifact pairs n2(k).

⇒ Equations as 
before with no.
vertices N→N/2

Shape of distribution same, 
only cutoff altered
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Minority Game Example - Leaders and Followers
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k

Plot n(k) the average of the number of strategies (of 
some leader)  used by k individuals (followers). 
Various system sizes and various ER random graphs. 

Individuals choose best strategy (each artifact
is a strategy) from their neighbours in an ER 
random graph of individuals [Anghel et al. 2004]
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Result exactly 
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⇒ Random
Copying

Line slope -1
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Summary

• Made connections between rewiring of bipartite 
network and many other network, statistical 
physics and social science models.
Some connections made in some existing papers.

• More accurate mean field equation.
Only now is behaviour at boundary k=E correct.

• Exact equilibrium solutions.
Previous results for large degree k, large systems N,E.

• Exact solutions for all times in terms of standard 
functions.
I know of no other network solutions for arbitrary time and 
arbitrary size.
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Mean Field Solutions

• Assume behaviour of the 
average number of vertices 
of degree k given by the 
average properties of the 
network

• These are excellent for 
pure preferential 
attachment (Simon/BA)
‹
correlations in degrees of 
neighbouring vertices 
insignificant
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Finite Size Effects for pure preferential attachment
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