NetSci 2010 13th May 2010

Imperial College London

Vertex Centric Viewpoint

The focus in the literature is often on the vertices:-

26)-

- Distributions of *vertex* degree
- Cluster coefficient of vertices
- Vertex partitions as communities

Vertex partition of Karate club graph with optimal modularity [Agarwal & Kempe 2007]

Cliques – complete subgraphs

- Name originates from representation of cliques of people in social science [Luce and Perry '49]
- Theory of Triadic Closure
- Maximal Clique and Clique Cover problems [Bron-Kerbosch algorithm, '73]

......

- Community detection [Palla et al, 05; Yan & Gregory '10]
- Structure Analysis [Samudrala & Moult, 98; Takemote et al. 07]

Give Cliques a Chance – a clique centric viewpoint

Can we shift out view point from vertices to cliques?

Use a **Clique Graph** to represent the way that *n*-cliques overlap.

> **Example** Graph **A** has three 3-cliques = triangles

Clique-Vertex Bipartite Graph Construction

Definition of the Basic Clique Graph C

Project bipartite graph onto clique vertices.

 \Rightarrow Weight of an edge in the basic Clique Graph *C* records the number of vertices common to two *n*-cliques in in the original graph *A*.

$$C_{\alpha\beta} = \sum_{i} B_{i\alpha} B_{i\beta} \left(1 - \delta_{\alpha\beta} \right)$$

$$\stackrel{i}{\underset{i = \text{vertex } A}{\underset{\alpha,\beta = n-\text{cliques in } A}}$$

Edge Weights in Basic Clique Graph

Weight of an edge in the basic Clique Graph *C* records the number of vertices common to two *n*-cliques in in the original graph *A*.

Clique Percolation Graph Construction

Threshold edges of clique Graph with (n-1)

i.e. only retain cliques which in original graph A share all but one vertex with another clique

Basic Clique Graph Weights – A problem

- The weight of basic Clique Graph C records the number of vertices common to two n-cliques in in the original graph A.
- Thus a vertex which is in k⁽ⁿ⁾ cliques will contribute a total weight of k⁽ⁿ⁾ (k⁽ⁿ⁾ -1)/2 to the basic clique graph C.

Basic Clique Graph Weights – A problem

A vertex in a large number of cliques contributes too much weight to the clique graph *C*.

Better Clique Graph Weight Construction

A vertex common to a pair of cliques contributes a weight equal to $1/(k^{(n)}-1)$ to an edge in the new weighted Clique

Graph D.

$$D_{\alpha\beta} = \sum_{i} \frac{B_{i\alpha}B_{i\beta}}{k^{(n)} - 1} \left(1 - \delta_{\alpha\beta}\right)$$

(vertex is in $k^{(n)}$ *n*-cliques)

Better Clique Graph Weight Construction

A vertex common to a pair of cliques contributes a weight equal to $1/(k^{(n)}-1)$

to an edge in the new weighted Clique Graph D. (vertex is in $k^{(n)}$ *n*-cliques)

Better Clique Graph Weight Construction

Now each vertex *i* in the original graph A contributes a weight to the new weighted Clique Graph *D* proportional to the number of cliques containing that vertex, $k^{(n)}$.

Applications

Now apply **ANY** standard vertex based algorithm to vertices of clique graph **C** or **D** or other weighted version

- Degree distribution \Rightarrow clique overlap distribution
- Cluster coefficient \Rightarrow overlap of 3 cliques
- Community detection ⇒ clique communities
- Etc, etc

Clique Graphs for Community Detection

- Produce Clique graph
- Use favourite vertex partition method in clique graph
- Hence assign each clique to a single community
- Deduce community membership of vertices and edges of original graph from clique membership.
- ⇒Thus vertices and edges maybe part of more than one community.
- \Rightarrow Overlapping Communities.

Cliques in Karate Club

Almost everything is in a 3-clique
just 2 vertices and 9 edges not in 3-cliques

• One group of 6 vertices centred on Instructor have two percolating 5-cliques

•Two other 4-cliques centred on chief officers, non-percolating

Analysis of Karate Club Results

- Clique percolation doesn't work here
- Despite the fact that almost everything is in a 3-clique, vertex partitioning of a clique graph works extremely well.

http://theory.ic.ac.uk/~time/networks/

Conclusions

- Clique graphs move focus from vertices to cliques with minimal effort
- Altering weights avoids problem of over representation of high degree vertices
- 2-clique graphs are Weighted Line Graphs [Evans and Lambiotte, 09]
- Generalisation to motifs straightforward
- Community detection on clique graph produces overlapping vertex communities for original graph