Imperial College London

Making Sense of Data - Theory and Practice NCAF Summer meeting Guildford, 12th July 2010 Tim Evans

Theoretical Physics

Give cliques a chance: line graphs, clique graphs and overlapping communities

© Imperial College London

- Graphs, Data and our Vertex Centric Viewpoint
- Clique Graphs
- Overlapping Communities
- Line Graphs and Overlapping Communities
- Conclusions

Network/Graph Notation

I will focus on Simple Graphs

(no values or directions on edges, no values for vertices)

- **N** = number of vertices in graph
- *E* = number of edges in graph
- **k** = degree of a vertex
- <k> = average degree = 2E/N
- Degree Distribution

 n(k) = number of vertices with degree k
 p(k) = n(k)/N = normalised distribution

Page 3

Graphs and "Making Sense of Data"

Many data sets can be represented by a graph
 e.g. vertex = distinct value in a database field
 edge = two values in same record

Originator	Receiver	Time	Duration
020 7594 7837	020 7925 0918	2010.07.09:11.10	360
020 7594 7837	01332 240470	2010.07.09:11.17	415

Graphs as Data Reduction

Disadvantages

- Loss of Information
 - User Account Information, ...
- No unique graph representation
 - Edge directions, edge weights, ...

Advantages

- Graphs are simpler
- Universal representations
 - Comparison to other networks, standard libraries, ...

\Rightarrow Making Sense of Data

Vertex Centric Viewpoint

The focus in the literature is often on the vertices:-

26)-

- Distributions of *vertex* degree
- Cluster coefficient of vertices
- Vertex partitions as communities

Vertex partition of Karate club graph with optimal modularity [Agarwal & Kempe 2007]

Vertex Centric – Degree Distributions p(k)

Vertex Centric – Vertex Partitions

Word Count of Network Review [Evans '04]

Stem	Rank	Count	Stem	Rank	Count
network	1	254	number	11	58
vertic	2	107	distanc	12	48
edg	3	86	model	13	47
random	3	86	connect	14	46
graph	5	81	data	15	40
degre	6	78	link	16	38
power	7	68	world	16	38
lattic	8	67	hub	33	25
law	9	65	point	38	23
vertex	10	61	site	40	22

Stop words removed then stemming

© Imperial College London

Word Count - Approximate Ratios

Network	Vertex	Edge
Words	Words	Words
6	3	2

Word count shows focus on vertices

© Imperial College London

How can we compensate for vertex bias?

One Answer:-

Represent structures in the original graph
 A (edges, cliques, motifs, ...)
 as vertices in a new graph

2. Analyse new graph as usual

⇒ Vertex bias on new graph = emphasis on other structures in original graph

- Graphs, Data and our Vertex Centric Viewpoint
- Clique Graphs
- Overlapping Communities
- Line Graphs and Overlapping Communities
- Conclusions

Cliques – complete subgraphs

- Name originates from representation of cliques of people in social science [Luce and Perry '49]
- Theory of Triadic Closure [Granovetter, '73]
- Maximal Clique and Clique Cover problems [Bron-Kerbosch algorithm, '73]

.....

- Clustering/Community detection [Freeman '92, '96; Palla et al, '05; Yan & Gregory '10]
- Structure Analysis [Samudrala & Moult, '98; Takemote et al. '07]

Give Cliques a Chance – a clique centric viewpoint

Shift our viewpoint from vertices to cliques using a Clique Graph

- New Vertices = original cliques
- New Edges = overlap of cliques
- Basic idea also used in social science [Everett and Borgatti, '98]

Example

- three cliques of order 3 = triangles, triads – labelled α, β, γ .
- nine cliques of order 2 = edges

I will only use cliques of one order unlike most Social Science work.

Clique-Vertex Bipartite Graph Construction

Α

Usual Clique Overlap Graph W⁽ⁿ⁾

Vertices unchanged

Α

• Edge weights equal to the number of *n*-cliques containing that edge in in the original graph *A*.

Unweighted *W*⁽³⁾ is isomorphic to an *n*-regular hypergraph

α

W(3)

Clique Overlap Graph W⁽ⁿ⁾

 In Social Science clique overlap is usually studied with cliques of several orders (e.g. subset of maximal cliques)

$$W_{ij} = \Sigma_n W^{(n)}_{ij}$$

W⁽ⁿ⁾ without weights is isomorphic to an *n*-uniform hypergraph

Drawback of $W^{(3)}$ is that the vertices remain the same \Rightarrow same old vertex centric viewpoint Definition of the Basic Clique Graph $C^{(n)}$

Project bipartite graph onto clique vertices.

 \Rightarrow Weight of an edge in the basic Clique Graph $C^{(n)}$ records the number of vertices common to two *n*-cliques in the original graph *A*.

$$C_{\alpha\beta}^{(n)} = \sum_{i} B_{i\alpha}^{(n)} B_{i\beta}^{(n)} \left(1 - \delta_{\alpha\beta} \right)$$

$$i = \text{vertex } A$$

$$\alpha, \beta = n \text{-cliques in } A$$

(Rarely used in the Social Science literature)

Edge Weights in Basic Clique Graph

Weight of an edge in the basic Clique Graph *C* records the number of vertices common to two *n*-cliques in in the original graph *A*.

Clique Percolation Graph Construction

Threshold edges of clique Graph with (n-1)

i.e. only retain cliques which in original graph A share all but one vertex with another clique

Basic Clique Graph Weights – A problem

- The weight of basic Clique Graph C⁽³⁾ records the number of vertices common to two *n*-cliques in in the original graph A.
- Thus a vertex which is in k⁽ⁿ⁾ cliques will contribute a total weight of k⁽ⁿ⁾ (k⁽ⁿ⁾ -1)/2 to the basic clique graph C⁽³⁾.

Basic Clique Graph Weights – A problem

A vertex in a large number of cliques contributes too much weight to the clique graph *C*.

The Problem for *n***=2** Edges/2-cliques

High degree vertices in original graph G over represented by edges in Line Graph $C^{(2)}(A)$.

k(k-1)/2 edges

© Imperial College London

Better Clique Graph Weight Construction

A vertex common to a pair of cliques contributes a weight equal to $1/(k^{(n)}-1)$ to an edge in the new weighted Clique Graph $D^{(n)}$.

$$D_{\alpha\beta}^{(n)} = \sum_{i} \frac{B_{i\beta}^{(n)} B_{i\beta}^{(n)}}{k^{(n)} - 1} \left(1 - \delta_{\alpha\beta}\right)$$

(vertex is in $k^{(n)}$ *n*-cliques)

Better Clique Graph Weight Construction

A vertex common to a pair of cliques contributes a weight equal to $1/(k^{(n)}-1)$

to an edge in the new weighted Clique Graph $D^{(3)}$. (vertex is in $k^{(n)}$ *n*-cliques)

Better Clique Graph Weight Construction

Now each vertex *i* in the original graph A contributes a weight to the new weighted Clique Graph $D^{(n)}$ proportional to the number of cliques containing that vertex, $k^{(n)}$.

Applications

Now apply **ANY** standard vertex based algorithm to vertices of clique graph $C^{(n)}$ or $D^{(n)}$ or other weighted version

- Degree distribution \Rightarrow clique overlap distribution
- Cluster coefficient \Rightarrow overlap of order *n* cliques
- Community detection \Rightarrow clique communities
- etc, etc

- Graphs, Data and our Vertex Centric Viewpoint
- Clique Graphs
- Overlapping Communities
- Line Graphs and Overlapping Communities
- Conclusions

Communities in Networks

Rough definition:-

A *community* is a subgraph which is more tightly connected than average

Community = cluster

= cohesive subgroup

Advantages of Vertex Partition Communities

- Simplest way of assigning communities across whole graph
- Appropriate for some problems
 e.g. assigning pixels in image analysis
- Vast amount of development of theory and methods
 - e.g. free code works on graph of 10⁸ vertices in 20min
 - (Louvain method, Blondel et al. 2008)

Limitations of Vertex Partition Communities

In many applications it is too simplistic to assign one vertex to one community

Examples:

- Friendship networks
- Academic papers

Who am I? Communities in Friendship Networks

- Friendship networks have:-
- people as vertices
- edges if friends
- We all have different types of friends:-
- Family
- Neighbours
- Work Colleagues

I am not just an Evans or an Imperial employee

What am I? Communities from Academic Papers

Coauthorship Networks:-

- authors as vertices
- edges between coauthors of a paper

Academics who work across boundaries always assigned to one community

Clique Graphs for Community Detection

- Produce Clique graph
- Use favourite vertex partition method in clique graph
- Hence assign each clique to a single community
- Deduce community membership of vertices and edges of original graph from clique membership.
- ⇒Thus vertices and edges maybe part of more than one community.
- \Rightarrow Overlapping Communities.

Karate Club [Zachary 1977]

- Community of 34 members of a Karate Club
- Split into two parts during study
 - Group centred on Club Officers
 - Group centred on instructor
- Zachary partitioned vertices into two subsets using Ford-Fulkerson algorithm (source-sink) which matched actual split except for one individual

Cliques in Karate Club

Almost everything is in a 3-clique
just 2 vertices and 9 edges not in 3-cliques

- One group of 6 vertices centred on Instructor have two 5-cliques with 4 common vertices (percolating)
- •Two other 4-cliques centred on chief officers, only 2 common vertices (non-percolating)

Analysis of Karate Club Results for Triangles

- Clique percolation doesn't work here
- Despite the fact that almost everything is in a 3-clique, vertex partitioning of a 3-clique graph *D*⁽³⁾ works extremely well.

- Graphs, Data and our Vertex Centric Viewpoint
- Clique Graphs
- Overlapping Communities
- Line Graphs and Overlapping Communities
- Conclusions

2-Clique Graph = Line Graph

- The 2-clique (=edge) graph C⁽²⁾ is an unweighted graph called a Line Graph L(A)
 - Long history
 [Whitney, '32; Krausz '43; Harary & Norman '60]
 - Much work in mathematical literature
- The 2-clique (=edge) graph *D*⁽²⁾ is a Weighted Line Graph *WL(A)* [TSE+Lambiotte '09]

Graph A

Weighted Line Graph $WL(A) = D^{(2)}$

Edges 6 Strength 2

© Imperial College London

Nice Property of Weighted Line Graph

- Strength of each vertex in WL(A) is usually 2 since every edge in A has two ends
- Exception for edges of "leaves" in **A** which produce strength **1** vertices in **WL(A)**.

Page 44

From a Vertex to an Edge Centric Viewpoint

- Take your graph A with N vertices and <k> edges
- Make a Weighted Line Graph WL(A) with N<k> vertices and O(N<k²>) edges
- Run any vertex based algorithm on *WL(A)* and you are running it on the edges of *G*.

Overlapping Communities

Use weighted line graphs to study edge colourings and hence to deduce overlapping communities

- Karate Club
- South Florida Words Association Data
- Words from Titles of Scientific Papers

Karate Club [Zachary 1977]

- Community of 34 members of a Karate Club
- Split into two parts during study
 - Group centred on Club Officers
 - Group centred on instructor
- Zachary partitioned vertices into two subsets using Ford-Fulkerson algorithm (source-sink) which matched actual split except for one individual

Weighted Line graph (D)

Weighted Line Graph (E₁)

Karate Club Analysis

Vertices in One Edge Community

		Fraction k
#	k	In Green C
5	4	100%
6	4	100%
10	3	100%
4	3	100%
16	2	100%
0		
(Mr_Hi)	16	25%

Karate Club Edge Partition

Vertices can be members of many communities

An overlapping community structure for vertices

Name	Community	Total k	k in C
0 Mr Hi	0	16	10
	1		4
	2		1
	3		1
33 John A	3	17	12
	0		3
	2		2

South Florida Word Association Data

Data from 6,000 participants, nearly threequarters of a million responses to 5,019 stimulus words.

- Original graph A has
- Stimulus words as vertices
- Edges connecting words if paired in data more than a specified threshold.

http://w3.usf.edu/FreeAssociation/

Title of Papers Data

Data based on collection of science papers from a single institution over several years. Forms a bipartite graph of:-

- 26255 vertices representing the papers
- 17761 vertices representing terms stemmed words from titles after stop words removed
- 210229 edges

Edge Partition of Terms in Paper Titles

- Some words have all edges in one partition
 - they define these communities
 e.g. cassini
- Other words have edges in several communities
 - stop words
 e.g. signature

Stem	Total k	k in C
interplanetari	78	78
cassini	62	62
heliospher	59	59
magnetopaus	53	53
spacecraft	52	52
signatur	91	32
solitari	30	10
radar	21	7
mhd	18	6

- Graphs, Data and our Vertex Centric Viewpoint
- Clique Graphs
- Overlapping Communities
- Line Graphs and Overlapping Communities
- Conclusions

http://theory.ic.ac.uk/~time/networks/

Conclusions

- Clique graphs move focus from vertices to cliques with minimal effort
- Altering weights avoids problem of over representation of high degree vertices
- 2-clique graphs are Weighted Line Graphs [Evans and Lambiotte, 09]
- Generalisation to motifs straightforward
- Community detection on clique graph produces overlapping vertex communities for original graph