Warwick 22nd September 2009 **Imperial College** ECCS09 London Overlapping Communities, **Edge Partitions &** 23 31 Line Graphs 26 29 28 20 3 33 22 10 15 32 Tim Evans, 0 18 **IMS and Theoretical** 5 14 4 Physics, 21 30 19 **Imperial College ์16** 6 **์17** London Page 1 © Imperial College London

- Our Node Centric Viewpoint
- Line Graphs
- Application to Community Detection
- Conclusions

Node Centric Viewpoint

A network is

1. a set of nodes

AND

2. a set of vertices

We tend to have a very NODE centred viewpoint

Node Centric - Scale Free Networks

Node Centric – Node Partitions

Edge Centric Viewpoint?

- A graph is both a set of nodes AND a set of edges
- However we naturally focus on nodes not edges
- Can we find a trick to help us shift our viewpoint from nodes to edges?

- Our Node Centric Viewpoint
- Line Graphs
- Application to Community Detection
- Conclusions

Nodes of a Line Graph

1. For every edge α in original graph **G** create a node α in the line graph **L(G)**

Edges of a Line Graph

 Connect the nodes α and β in the line graph L(G) if the corresponding edges in original graph G were coincident

Properties of a Line Graph

- Not usually a duality transformation $L(L(G)) \neq G$
- (Almost) always reversible [Whitney 1932] $L(G) \rightarrow G$

The Problem with a Standard Line Graph High degree nodes in original graph *G* over represented by edges in Line Graph *L(G)*.

Page 11

[Evans & Lambiotte 2009]

Solution – Weighted Line Graphs

 Original graph node of degree k produces line graph edges of weight 1/(k-1)

- Our Node Centric Viewpoint
- Line Graphs
- Application to Community Detection
- Conclusions

Community Detection - Node Centric version

- Partition nodes into communities
- Perform random walk on nodes
- Compare number of random walkers which stay within community after one step against number which remain within communities after infinite number of steps

Optimisation of Modularity [Girvan & Newman 2002; Lambiotte, Delvenne & Barahona 2008]

Community Detection - Edge Centric version

- Partition edges into communities
- Perform random walk on edges
 = Random walk on line graph vertices
- Compare number of random walkers which stay within community after one step against number which remain within communities after infinite number of steps
 - = Optimisation of Modularity of Weighted Line Graph [Evans & Lambiotte 2009]

Karate Club

Edge partition means individuals nodes can be members of more than one community

Karate Club Analysis

Nodes in One Edge Community

		Fraction k	
#	k	In Green C	
5	4	100%	
6	4	100%	
10	3	100%	
4	3	100%	
16	2	100%	
0			
(Mr_Hi)	16	25%	

Karate Club Edge Partition

Nodes can be members of many communities

An overlapping community structure for nodes

Name	Community	Total k	k in C
0 Mr Hi	0	16	10
	1		4
	2		1
	3		1
33 John A	3	17	12
	0		3
	2		2

Edge Partition of Word in Paper Titles

- Some words have all edges in one partition
 - they define these communities
 e.g. cassini
- Other words have edges in several communities
 - stop words
 e.g. signature

Stem	Total k	k in C
interplanetari	78	78
cassini	62	62
heliospher	59	59
magnetopaus	53	53
spacecraft	52	52
signatur	91	32
solitari	30	10
radar	21	7
mhd	18	6

- Our Node Centric Viewpoint
- Line Graphs
- Application to Community Detection
- Conclusions

Conclusions

- Line graphs move focus from nodes to edges with minimal effort
- Weighted line graphs avoid problem of over representation of high degree nodes
- Community detection on line graph produces overlapping node communities for original graph

Evans & Lambiotte, Phys.Rev.E 80 (2009) 016105

http://theory.ic.ac.uk/~time/networks/

Additional Material

Weighted Line graph D

Weighted Line Graph E1