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Notation 

I will focus on Simple Graphs  
(no values or directions on edges, no multiple edges, no values for vertices)  

• N = number of vertices in graph 

• i,j,.. = indices of vertices  

• E = number of edges in graph 

•  a, b, … = for edge indices 

 

N=6 

E=8 
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Notation – degree of a vertex 

Number of edges connected to a vertex is 

called the degree of a vertex 

• k  = degree of a vertex 

• <k> = average degree = (2E / N) 

 

Degree Distribution 

• n(k) = number of vertices with degree k 

• p(k) = n(k)/N = probability a random 

     vertex has degree k 

Degree k=2 
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Notation - Adjacency Matrix  

The Adjacency Matrix Aij is 

• 1 if vertices i and j are attached 

• 0 if vertices i and j are not attached 

V1 

V2 

V3 

V4 

V5 

V6 

vertices V1 V2 V3 V4 V5 V6 

V1 0 1 1 0 0 0 

V2 1 0 1 1 0 0 

V3 1 1 0 1 1 0 

V4 0 1 1 0 1 1 

V5 0 0 1 1 0 0 

V6 0 0 0 1 0 0 



RANDOM WALKS  

FOR MODEL BUILDING 
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Generalised Random Graphs – 

The Molloy-Reed Construction [1995,1998] 

i. Fix N vertices 

ii. Attach k stubs to each vertex, where k is 

drawn from given distribution p(k) 

iii. Connect pairs of stubs chosen at random 
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No Vertex-Vertex Correlations 

Generalised Random Graphs have given p(k) but 

otherwise completely random in particular - 

Properties of all vertices are the same  

For any given source vertex, the properties of 

neighbouring vertices independent of properties of the 

source vertex 
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Random Walks on Random Graphs  

The degree distribution of a neighbour is not 

simply p(k)  

You are more likely to arrive at a high 

degree vertex than a low degree one 

)()|( n
n

in kp
k

k
kkp 

Degree of neighbour kn  

independent of degree of starting point ki  

1 2 

3 

kn 

ki 



Summary of Generalised Random Graphs 

• These can be reasonable approximations for 

many theoretical models 

• Probably not for real world so then use these as 

a null model.  

• Calculations with random graphs work because 

– lack of correlations between vertices 

– few loops for large sparse graphs,  

graphs are basically trees 

• Accessible analytically so can suggest typical 

behaviour even if very weak e.g. diameter vs N 
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Random Walks for 

Natural Scale Free Networks 
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Long Tails in Real Data 

Degree distribution, eBay Crawl (max 1000)
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Growth with Preferential Attachment 

[Yule 1925, 1944; Simon 1955; Price 1965,1976;  
       Barabasi,Albert 1999 ] 

1. Add new vertex attached to 
one end of  m=½<k> new 
edges 

2. Attach other ends to existing 
vertices chosen with by 
picking random end of an 
existing edge chosen 
randomly, so probability is 

P(k) = k / (2E) 

Preferential Attachment 
“Rich get Richer” 

Result:  

 Scale-Free  

  n(k) ~ k-g  

       g=3 

5/(2E) 

2/(2E) 

4/(2E) 

2/(2E) 

P(k) 
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Growth with Preferential Attachment 

[Yule 1925, 1944; Simon 1955; Price 1965,1976;  

       Barabasi,Albert 1999 ] 

P(k) = k / (2E) 
Preferential Attachment 

“Rich get Richer” 

Result: Scale-Free Network 

  n(k) ~ k-g  

       g=3 

5/(2E) 

2/(2E) 

4/(2E) 

2/(2E) 

P(k) 



© Imperial College London Page 16 

N=200,   <k>~4.0,  vertex size  k 

Classical Random Scale-Free  

  = Power-Law p(k)~ 1/k3 

Tight core of large hubs 

kmax=O(N1/2) 

 

Diffuse, small degree  

vertices kmax=O(ln(N)) 

 



  Attachment probability used was 
 

 

 

  
 

BUT if  limk→∞ P(k)  k
a    for any    a 1   then a  

power law degree distribution is 

not produced! 
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Scale-Free in the Real World 
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Preferential Attachment for Real Networks 
[Saramäki, Kaski 2004; TSE, Saramäki 2004] 

 
1. Add a new vertex with ½<k> 

new edges 

2. Attach to existing vertices, 

found by executing a random 

walk on the network of  

L steps 

Start 

Walk 

Here Probability of arriving at a vertex  

      number of ways of arriving at vertex  

         = k,  the degree  

 Preferential Attachment  g=3 
(Can also mix in random attachment with probability pr) 
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Preferential Attachment for Real Networks 

Probability of arriving at a vertex  

      number of ways of  

         arriving at vertex  

          = k,  the degree  

 

 Preferential Attachment  g=3 

 

Can also mix in random attachment 

with probability pr 

 

 

Start 

Walk 

Here 
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Naturalness of the Random Walk algorithm 

• Gives preferential attachment from any 

network and hence a scale-free network 

• Uses only LOCAL information at each 

vertex 

– Simon/Barabasi-Albert models use global 

information in their normalisation 

• Uses structure of Network to produce the 

networks 

– a self-organising mechanism 
e.g. informal requests for work on the film actor’s social network 

e.g. finding links to other web pages when writing a new one 
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Is the Walk 

Algorithm 

Robust? 

YES - Good Power Laws  

   but NOT Universal values - 10% or 20% variation 

               L=0  

Pure Random  

Attachment 

exponential  

   graph L=7 

L=1 

<d>~5 I varied: 

•Length of walks 

•<k> 

•Starting point 

  of walks 

•Length distribution  

  of walks 

• ….. 

  



RANDOM WALKS AND 

COMMUNITY DETECTION 

Vertex Communities 
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Modularity Q  [Girvan & Newman 2002] 

1. Assign each vertex i to community ci  

and for each community:- 

2. Add the fraction of edges IN community ci 

3. Subtract the number of edges in null model 

• generalised random graph with same degree distribution 
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where 



Random Walk Transition Matrix 

The transition matrix for a simple unbiased 

random walk on a network is T where the 

probability of moving from vertex j  

                                      to vertex i is 
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Probability of following an edge 
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is 0.25 

0.25 
j 

i 

j i 


i

ijj Akwith strength 



Random walk as linear algebra 

Let wi(t) be the number of random walkers  

     at vertex i at time t 
(or the probability of finding one walker at i ) 

then the evolution is simply 

© Imperial College London Page 25 

)(.)1( twTtw





j

jiji twTtw )()1(



Equilibrium 

Equilibrium reached is eigenvector P1 with 

largest eigenvalue as 
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For simple networks only we have trivial solution 



Modularity as Random Walk [Delvenne et al, 2008,2010] 

1. Assign each vertex i to community ci  

and for each community:- 

2. Add fraction of equilibrium walkers remaining in 

community after one step 

3. Subtract fraction of equilibrium walkers in community 

after infinite number of steps 
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Modularity for any network 

1. Assign each vertex i to community ci  

and for each community:- 

2. Add fraction of equilibrium walkers remaining in 

community after one step 

3. Subtract fraction of equilibrium walkers in community 

after infinite number of steps 
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RANDOM WALKS AND 

COMMUNITY DETECTION 

Overlapping Communities 
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Vertex Centric Viewpoint 

A network is 

  

1. a set of vertices     

 

AND 

 

2. a set of edges 

 

We tend to have a very VERTEX centred viewpoint 
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Word Frequencies in Network Review 
Word Rank Count Word Rank Count 

network 1 254 distribut 21 34 

vertic 2 107 scale 21 34 

edg 3 86 problem 24 33 

random 3 86 simpl 24 33 

graph 5 81 idea 26 30 

degre 6 78 physic 26 30 

power 7 68 size 26 30 

lattic 8 67 find 29 29 

law 9 65 real 29 29 

vertex 10 61 type 31 27 

number 11 58 case 32 26 

distanc 12 48 hub 33 25 

model 13 47 show 33 25 

connect 14 46 area 35 24 

data 15 40 neighbour 35 24 

link 16 38 studi 35 24 

world 16 38 point 38 23 

larg 18 37 term 38 23 

small 19 36 figur 40 22 

averag 20 35 form 40 22 

comput 21 34 site 40 22 

Stop words removed, stemmed, from T.S.Evans “Complex Networks” Contemporary Physics, 2004, 45, 455-474, cond-mat/0405123 
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Vertex Centric Communities – Vertex Partitions 
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Community 

detection via 

modularity 

 

Vertex partition 

 of Karate club graph 

 with optimal modularity 

[Agarwal & Kempe 2007] 

= partition of  

VERTEX set 



Random walk on edges 

Consider how random walkers pass through 

edges 
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Random walk on edges 

Edge to Edge transition matrix Tab is just 

© Imperial College London Page 34 

a b 

2

1

jk

1

j 

jk
T

1

2

1
ab

aj j b 



Random walk on edges 

Edge-Edge transition matrix Tab defines an 

adjacency matrix of a Weighted Line Graph 

        WL(G) 
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Vertices of a Line Graph 

1. For every edge a in original graph G 

create a vertex a in the line graph L(G) 
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2. Connect the vertices a and b in the  

Line graph L’(G) if the corresponding 

edges in original graph G were coincident 

 

Edges of a Line Graph 
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3. Weight the edge between the line graph 

vertices a and b by the inverse of the 

degree of the vertex coincident on both 

edges a and b in the original  

                           graph G 

 

Weights of a Weighted Line Graph 
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g 

a 

b 

i 

G 

b 

a 

g 

WL(G) 

1/ki 

1/ki 

1/ki 

1/ki 

1/ki 

1/ki 

[Evans,  

 Lambiotte 

 PRE, 2009] 



Traditional Line Graph Problem 

Original graph G vertex of degree k 

produces k-cliques in line graph 
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[Evans & Lambiotte PRE 2009] 

G 

L(G) 

Degree k vertex 
Total weight  

k(k-1) 

Weight 

1 

Strength 

(k-1) 



Traditional Line Graph Problem 

Original graph G vertex of degree k 

produces k-cliques in line graph 
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[Evans & Lambiotte, PRE 2009] 

G 
WL(G) 

Degree k vertex 

Total weight  

k 

Weight 

1/k 

Strength 

1 



Weighted Line Graph and Random Walks 

            [Evans & Lambiotte 2009] 

• Simple Random walk process on original graph 

G is reproduced exactly on Weighted Line 

graph WL(G) 

• Any vertex analysis tool using random walks 

can be used without bias on WL(G) but now 

this analyses the edges of original graph G. 

• Variations for slightly different random walks 

on original graph G.      

 

Edges G  Vertices WL(G)  

Random Walk 
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Application:- 

  Overlapping Communities 

Vertex partition 

on line graph is an 

edge partition. 

Individuals vertices 

can be members  

of more than one 

community. 
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Ford-Fulkerson  

partition  

of Zachary 

Zachary’s Karate Club 

[Zachary 1977] 



Weighted Line graph (D) Weighted Line Graph (E1) 

Vertex Partition  Unweighted Line Graph (C) 
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South 

Florida 

Word 
Association 

Data 
Only 
showing 
vertices 
which have 
90% of 
edges in 
one edge 
community 
except for 
BRIGHT 

 



Edge Partition of Word in Paper Titles  

• Some words have 

all edges in one 

partition  

– they define these 

   communities  

   e.g. cassini 

• Other words have 

edges in several 

communities  

– stop words  

   e.g. signature 
© Imperial College London Page 45 

Stem Total k k in C 

interplanetari 78 78 

cassini 62 62 

heliospher 59 59 

magnetopaus 53 53 

spacecraft 52 52 

signatur 91 32 

solitari 30 10 

radar 21 7 

mhd 18 6 

[TSE, Unpublished] 



Weighted Line Graph and Random Walks 

• Variations for slightly different random walks 

    [Evans & Lambiotte, PRE 2009] 

• Generalisation to any original graph G 

including weighted and directed  

    [Evans & Lambiotte, EPJB 2010] 

• Extensions to work in terms of overlap of units 

other than edges  

e.g. triads=triangles for social networks 

      [Evans, J.Stat.Mech 2010] 
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RANDOM WALKS FOR  

EVERYTHING 
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Biased Random Walks 

Not all random walks treat all vertices 

equally in a simple graph. 

 

Consider a bias where probability of a 

random walker visiting vertex i in G is 

proportional to some bias factor bi  
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Biased Random Walks 

Vertices are not identical on a simple graph. 

 

Consider a bias where probability of a random 

walker visiting vertex i in G is proportional to 

some bias factor bi  

Examples:-  

• bi = (centrality measure of vertex i )g 

• bi = (degree of vertex i )g 

• bi = page rank of vertex i 
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Biased Random Walk Transition Matrix 

The transition matrix for a biased random 

walk on a network is T where the 

probability of moving from vertex j  

                                      to vertex i is 
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Probability of following an edge 

from j to any vertex i  

is bi  

bi 
j 

i 

j i 

with normalisation 
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Biased Random Walk as Unbiased Walk 

        [Lambiotte et al, PRE 2011] 

The biased random walk on graph G is an 

unbiased random walk on a flow graph 

F(G) whose adjacency matrix is 
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• If G is symmetric then so is F(G)  

j i 

jijiij bAbF  bi bj 

j 

i 



Random Walks and Other Network Tools 

• Page Rank [Brin & Page 1998] 

• Betweenness centrality based on electric 

current analogy [Newman 2005] 

• Map equation (infomap) approach to 

community detection  

       [Rosvall & Bergstrom 2008] 

 

 



PageRank for Mathematicians 

Using bibliographies of over 2000 

mathematicians we find a physicist is the 

best mathematician 
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[Clarke, Hopkins, 

 MSci Theses 2010] 

N.B. Also Mark Newman is the “mathematician”  

with most recent citations 



RANDOM WALKS AND 

ENTROPY 
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From Random Walks to Entropy 

Find the adjacency matrix Fij of null models by 

maximising Entropy constrained by given 

minimum information 
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Maximum Entropy 

Minimise entropy to find most likely configuration 
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0
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Walkers are spread equally across all  

edges subject to constraints that input and  

output at each site are given by ui and vi. 

Not always realisable as a simple random walk. 



Random Walks and Entropy 

1. Undirected graph  

ui = vi = ki  degree 

Fij randomised graph same degree 

    distribution  

–  usual modularity null model with 

                       random walk interpretation 
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Random Walks and Entropy 

2. Directed graph  

ui = vi = Pi  = location of random walkers after 

infinite number of steps 

 Fij randomised graph same degree 

    distribution  

–  good modularity null model, with   

   random walk interpretation 

© Imperial College London Page 58 

W
F

ji

ij

PP




Entropy and Spatial Constraints 

3. Graph Constrained by Space  

 Fij = number of random walkers on edge 

(i,j) if average number of walkers 

travelling same distance as i to j is 

constrained to be equal to that found in 

the data 
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Entropy and Spatial Constraints 

Provides best null models given minimum 

        information 
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Entropy and Spatial Constraints 

3. Graph Constrained by Space  
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 Null model of Expert et al, PNAS 2011 



THANKS 
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