
© Imperial College LondonPage 1

Complex Networks

Six Degrees of 
Separation 

and all That

T.S.Evans
“Complex Networks”

Contemporary Physics 
45 (2004) 455 - 474

Dept Colloquium  9th March 05
Tim Evans

Theoretical Physics



© Imperial College LondonPage 2

Explosion of interest – WHY?

Network* papers on cond-mat

0

50

100

150

200

250

300

350

1997 1998 1999 2000 2001 2002 2003 2004

Year

N
o.

 P
ap

er
s 

   
  .

Since 1997 there has been an explosion of interest in 
networks by physicists.

For instance the 
condensed matter 
electronic preprint 
archives have gone 
from 35 papers in 1997 
with a word starting with 
Network in their title to 
322 last year, an 
increase of 800%

WHY?
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Multidisciplinary Nature
• Mathematics (Graph Theory, Dynamical Systems)

• Physics (Statistical Physics)

• Biology (Genes, Proteins, Disease Spread, Ecology)

• Computing (Web search and ranking algorithms)

• Economics (Knowledge Exchange in Markets)

• Geography (Transport Networks, City Sizes)

• Anthropology (Social Networks)

• Archaeology (Trade Routes)

http://www.iscom.unimo.it/
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Basic Definitions

A Network or Graph is a 
collection of 

N Vertices (nodes),
pairs of which are  
connected by E Edges

This is a SIMPLE graph, it has no other information.
In particular the same network can be shown in several identical ways.

N=5    
E=6

In general networks may have arrows on the edges (directed graphs), different 
values on edges (weighted graphs)  or values to the vertices (coloured graphs).

=
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• Take N vertices then consider every pair of vertices 
and connect each with probability p
Erdős-Reyní (1959).
This is the opposite of the perfectly ordered lattice.

• How do we characterise the differences between these 
types of network?

We need some more concepts first…

Random Networks

(1-p)

p

pN=3
p~2/3
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Network Distance

• Counting one for each edge traversed, we 
can find the shortest path between any two 
vertices, giving a distance between the two.

• The longest of these shortest paths is the 
diameter.

1 1

10
Distances from red vertex

2

Diameter is 3, between red vertices



© Imperial College LondonPage 7

Degree (connectivity)
• The Degree k of a vertex is the number of edges 

attached to it.

• The Degree Distribution n(k) is the number of 
vertices with degree k

Degree
k=4

k=2 3
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Cluster Coefficient

• Clustering coefficient c: 
Fraction of the neighbours which are 
themselves connected
Simple measure of how much local structure 
there is in a network

C=1/3

1

(2)

(3)



© Imperial College LondonPage 9

Lattice vs. Random Networks
• Lattices are Large                          d ~ N1/dim

Random Networks are Small         d ~ log(N)

• Lattices have fixed degrees           k = k0
Random Networks have a small    k <  ~log(N) 

range    

• Lattices have large cluster coef.    c ~ O(1)
Random Networks have very        c ~ <k> / N  
small clustering coefficients

But is the real world ordered or random?
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Social Networks and Small Worlds
• Let each vertex represent a person, 

and let the edges represent friendships
• Friendships are not limited by physical distance 

Milgram (1967) asked people in Omaha 
(Nebraska) and Wichita (Kansas) to 
send packets to people in Cambridge 
MA specified by name, profession and 
rough location only.  Packets were only 
swapped between people who knew 
each other by first name. If the packets 
arrived at the correct person, they had 
been through about five intermediaries. It’s a Small World
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John Guare (1990)

“I read somewhere that everybody 
on this planet is separated by 
only six other people. Six 
degrees of separation. Between 
us and everybody else on this planet. 
The president of the United States. A 
gondolier in Venice. … It's not just the 
big names. It's anyone. A native in a 
rain forest. A Tierra del Fuegan. An 
Eskimo. I am bound to everyone on 
this planet by a trail of six people. It's a 
profound thought. … How every 
person is a new door, opening to other 
worlds. Six degrees of separation 
between me and everyone else on this 
planet.”
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What sort of network is a social network?
• Social Networks have short distances like a 

random network but unlike a lattice (Milgram)
• Social Networks also have local structure as 

my friends often become (or were already) 
friends of each other – high cluster 
coefficients unlike random networks but like 
a lattice

• Friendships are neither purely random nor 
precisely ordered

Need something new…
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Watts and Strogatz’s Small World Network (1998)

• Start with lattice, pick random edge and rewire – move 
it to two link two new vertices chosen at random.

1 dim Lattice Small World Random

Number of rewirings0

5

N=20, E=40,
k=4

200



© Imperial College LondonPage 14

Clustering and Length Scale in WS network
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•As you rewire, distance drops very quickly, clustering does not
Find Small World networks with short distances of random
network, large clustering and local structure like a lattice

Cluster coef

Distance
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Network Comparison so far

So WS Small World might be good for social networks

But what about other physical networks?

Network
Type

Distance

d

Cluster
Coef.
c

Lattice Large
d ~ N1/dim

~1

WS 
Small World

Small
d ~ log(N)

~ 1

Random Small 
d ~ log(N)

~ 1/N
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• Every web page is a 
vertex, every link is 
an edge

• A few pages have a 
tremendous amount 
of links to them e.g. 
college home page, 
eBay, Google
These are Hubs and 
they are a key aspect 
of how we navigate 
and use the web

The World Wide Web
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N=10^6, K=4 Power Law and Random
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What sort of network has hubs?
N=10^6, K=4 Random Graph
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• Lattices, WS (Watts-
Strogatz) Small World 
and random networks 
have no hubs, e.g. the 
largest degree is 17
for a random network with 
N=106, <k>=4

• Want a network with a 
long tailed degree 
distribution 
e.g. power law ~ k-3

has max. degree ~2520
for N=106 <k>=4
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Scale Free Networks

• Any network with a power law degree distribution
for large degrees

• Always have many large Hubs nodes with many 
edges attached – e.g. routers in the internet

• Scale Free means the number of vertices of degree 
2k with those of degree k, always the same whatever 
k , that is there is no scale for degree

• In practice there are at least two scales for finite N:
O(1) ~ kmin ≤ k ≤ kmax ~  O( N1/(g-1) )

constant
)(
)2(
=

kn
kn

[ ] γ−
∞→ ∝ kknk )(lim
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Network Comparison

How often do we see Scale-Free networks?

Network
Type

Distance

d

Degree
Distrib.
n(k)

Maximum
Degree
kmax

Cluster
Coef.
c

Lattice Large
d ~ N1/dim

No Tail
d(k-k0)

Fixed  k0 ~1

WS Small
World

Small
d ~ log(N)

No Tail
~ d(k-k0)

V.Small 
~ k0

~ 1/N

Random Small 
d ~ log(N)

Short Tail
Poisson
<k>k e-<k> /k!

Small
~log(N)

~ 1/N

Scale-Free Small 
d ~ log(N)

Long Tail
~k-g

Large = HUBS
~k1/(g-1)
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• 2nd Order Phase Transitions 
(e.g. superconductors, superfluids,…)
Long range order = no scale = physical insight
Critical Phenomena – Renormalisation Group

• Scaling in Particle Physics
• Biology 

– Kleiber’s Law (1930’s) metabolic rate r μ m3/4 body mass, 
explained (West, Brown, Enqvist 1997)

• Social Sciences 
– Zipf’s Law (1949) 

City sizes, 
Word frequency, …

file compression

Power Laws in the Real World

This Text’s Word Frequency by Rank
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• Earthquakes
(Gutenberg-Richter Law),

forest fires, 
rice piles, 
rainfall distributions, 
etc etc

Self-Organised 
Criticality

• Still leading to 
further physical 
insights

Scaling in Complex Systems

(Peters, Hertlein, Christensen 2002)
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eBay

• Network from 
buyer/seller 
feedback links

• eBay is dominated 
by a few very large 
hubs.

• The slight curvature due to 
crawling method.

• Fetched 5,000 pages and built 
up a network of 318,000 nodes 
and 670,000 edges

• γ ≈ 2.3

Degree distribution, eBay Crawl (max 1000)
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Scaling with every network
• Friendship networks -

Kevin Bacon game
• Scientific Collaboration 

Networks -
Erdős number

• Scientific Citation 
Networks

• Word Wide Web
• Internet
• Food Webs
• Language Networks

• Protein Interaction 
Networks

• Power Distribution 
Networks

• Imperial Library 
Lending Data
(Laloe, Lunkes, Sooman, 
Warren, Hook, TSE)

• eBay relationships
(Sooman, Warren, TSE)

• Greek Gods
• Marvel Comic Heroes
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Scaling – a health warning

Almost every network is scale free if you believe 
the literature but

• Not many decades of data
e.g. 106 vertex scale free network has largest 
vertex about 1000 so at most two decades of 
large degree scaling

• Data often a single data set no repeats
• Errors unknown in much social science data
• Other long tailed distributions have hubs too
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Models of Scale Free Networks
• Growing with Preferential Attachment

(Barabasi,Albert 1999; Simon 1955)

Add new vertex with <k>/2 new edges 
Attach to existing vertices chosen with probability P
proportional to their degree P ∂ k        
- but P ∂ ka   for any a∫1 fails

• The Walk (TSE, Klauke 2002; Saramäki, Kaski 2004;TSE, Saramäki 2004)

Add a new vertex with <k>/2 new edges 
Attached to existing vertices found by executing a 
random walk on the network 
- automatically generates scale-free

A self-organising mechanism?
e.g. rumours propagating on a friendship network
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Applications

• Understand better how some complex 
systems work if we can understand the 
patterns in their networks 
e.g. proteins in biological systems

• Spread of viruses better studied on more 
realistic networks, better preventative 
methods?

• Search Algorithms – how did Milgram’s 
letters reach their destination?  Why did 
80% fail to arrive?
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Applications: Network Resilience

• Resilience of Networks, if remove vertices 
(hardware failure, virus attack) when does a 
network split into small disconnected pieces?

• For random vertex removal:  
Random Network fails when 2E/N =<k>=1
A Scale Free g<3 never fails

• Remove biggest hubs first:
Scale Free Networks fail very quickly

Build a scale free network but 
make sure the hubs have the 

best protection!
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Applications: Communities

• Communities – close 
relationships vertices 
revealed only though 
analysis of network
e.g. undiscovered 
collaboration opportunities 
from library lending patterns

(Sooman, Warren, TSE)

e.g. Quantitative tools to 
analyse social networks
(can use Q-state Potts model)

Friendship Cohesion in an 
American high school
Moody, White (2003)

7th grade

11-12th grade

10th grade

9th

Social embeddedness in nested cohesive 
subgroups applied to high school friendship 
network.  Red individuals are cores of most 

cohesive subgroups, only trans-grade for 
older kids
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Applications: Historical patterns
• Ceremonial        Pig exchange networks in

Polynesia (Hage & Harary)

• Central role of Delos in           ancient Greek 
culture (Davis)

• Spread of Minoan influence as seen through early 
bronze age pottery record (TSE, Knappett, Rivers)
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Summary
• New network models over last 7 years

often more realistic than older ones
• New tools to analyse networks

many from statistical physics
• Extensive experience in other fields

not to be dismissed as methodology techniques often 
quite different

• New results, new applications, new views 
of old problems

• Deep insights still awaited
where do the power laws in social sciences come 
from?
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I couldn’t have done this without …

• Project Students
Seb Klauke, JB Laloë, Christian Lunkes, 
Karl Sooman, Alex Warren

• ISCOM organisers
David Lane, Sander van der Leeuw, 
Geoff West and all the ISCOM participants 

• Collaborators
Daniel Hook, Carl Knappet, Ray Rivers, 
Jari Saramäki

… but I’ve only got myself to blame
T.S.Evans, “Complex Networks”, 
Contemporary Physics 
45 (2004) 455 - 474
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The start of graph theory (and topology)

In 1735 the great Swiss 
mathematician Euler showed that 
it was impossible to walk around 
the city of Königsburg (now 
Kaliningrad) crossing the 7 
bridges over the river Pregel
once and only once.

A Network or Graph
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Visualisation
In many networks the location of vertices in figures has no 
meaning.  A Graph records relationships between vertices as 
edges which may have no simple numerical value or at least 
no simple interpretation as a distance (no metric) 

e.g. friendship networks.
Networks have no dimension, live in no obvious (Euclidean) 

space

Periodic Lattice Same network with
vertices arranged in 
regular order.

Same network with
vertices arranged in 
random orderN=20, E=40
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Degree

Periodic so always
degree 4 

Random but always 
degree 4

Random but average 
degree 4

The Degree k of a vertex is the 
number of edges attached to it.

Degree
k=4
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Watts and Strogatz’s original diagram
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Scaling in Biology
• e.g. Kleiber’s Law (1930’s)

From cells to blue whales 
metabolic rate r, body mass m

• Explanation in terms of physics of 
space-filling networks needed to 
deliver energy to all parts of an 
organism, from particle theorist 
(where scaling is a vital concept)

Geoff West 
and biology colleagues
(West, Brown, Enqvist 1997)

4/3mr ∝
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Scaling in Social Sciences
• Zipf law (1949) – City Sizes, Text Frequencies,…
• Pareto’s 80:20 rule (1890’s)

Ranked US City Size
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Imperial Library

• Used to detect groups from 
lending patterns

Period 2 (excluding Haldane), degree distribution
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Network Comparison

But is the real world ordered or random?

Network
Type

Distance

d

Degree
Distrib.
n(k)

Maximum
Degree
kmax

Cluster
Coef.
c

Lattice Large
d ~ N1/dim

No Tail
d(k-k0)

Fixed  k0 ~1

WS Small
World

Small
d ~ log(N)

No Tail
~ d(k-k0)

V.Small
~ k0

~ 1/N

Random Small 
d ~ log(N)

Short Tail
Poisson
e-k

Small
~log(N)

~ 1/N

Scale-Free Small 
d ~ log(N)

Long Tail
~k-g

Large HUBS 
~k1/(g-1)

~ 



© Imperial College LondonPage 41

Network Comparison

But is the real world ordered or random?

Network
Type

Distance

d

Degree
Distrib.
n(k)

Maximum
Degree
kmax

Cluster
Coef.
c

Lattice Large
d ~ N1/dim

No Tail
d(k-k0)

Fixed  k0 ~1

WS Small
World

Small
d ~ log(N)

No Tail
~ d(k-k0)

V.Small
~ k0

~ 1/N

Random Small 
d ~ log(N)

Short Tail
Poisson
e-k

Small
~log(N)

~ 1/N

Scale-Free Small 
d ~ log(N)

Long Tail
~k-g

Large HUBS 
~k1/(g-1)

~ 
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Power Laws in the Real World

These are a sure way to get a physicist over excited, 
and increasingly others too

• 2nd Order Phase Transitions 
(e.g. superconductors, superfluids,…)

• Long range order = no scale = physical insight
Critical Phenomena – Renormalisation Group
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