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Notation 

I will focus on Simple Graphs  

with multiple edges allowed 
(no values or directions on edges, no values for vertices)  

• N = number of vertices in graph 

• E = number of edges in graph 

N=6 

E=8 
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Notation - Adjacency Matrix  

The Adjacency Matrix Aij is 

• 1 if vertices i and j are attached 

• 0 if vertices i and j are not attached 

V1 

V2 

V3 

V4 

V5 

V6 

vertices V1 V2 V3 V4 V5 V6 

V1 0 1 1 0 0 0 

V2 1 0 1 1 0 0 

V3 1 1 0 1 1 0 

V4 0 1 1 0 1 1 

V5 0 0 1 1 0 0 

V6 0 0 0 1 0 0 
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Notation – degree of a vertex 

Number of edges connected to a vertex is 

called the degree of a vertex 

• k  = degree of a vertex 

• <k> = average degree = (2E / N) 

 

• Degree Distribution 

n(k) = number of vertices with degree k 

p(k) = n(k)/N = normalised distribution 

        = probability a vertex chosen at 

           random (uniformly) has degree k 

Degree k=2 
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Notation – degree distribution 

Degree Distribution is  

n(k) = number of  

          vertices with  

          degree k 

 

The normalised degree distribution is 

   p(k) = n(k)/N  

       = probability a vertex chosen 

          at random (uniformly) has 

          degree k 

k=2 

k=2 



RANDOM GRAPHS 

How to excite a Mathematician –  

give them the simplest model 
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Classical Random Graphs  
[Solomonoff-Rapoport „51, Erdős-Réyni ‟59] 

For every pair of distinct 

vertices add a single 

edge with probability 

  

p = <k>/(N-1) ,  

 

otherwise with 

probability (1-p) no 

edge is added 

 

(1-p) 

p 



Classical Random Graph 

• Gives Binomial Degree Distribution 

 

 

 

 

 with W = N(N-1)/2 number of possible edges 

and <k>=(N-1)p 
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Classical Random Graph 

• which is an approximate Normal Distribution 

 

 

 

 

                                             with <k>=(N-1)p 

• Exponential cutoff so no „hubs‟ 

e.g. N=106, <k>=4.0, typically has k <17 
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Example of Classical Random Graph 

• N=200 

<k>~4.0   

• k < 11 

• In figure  

vertex size  

 k 

• Diffuse, no 

tight cores 
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Generalised Random Graphs – 

The Molloy-Reed Construction [1995,1998] 

i. Fix N vertices 

ii. Attach k stubs to each vertex, where k is 

drawn from given distribution p(k) 

iii. Connect pairs of stubs chosen at random 
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No Vertex-Vertex Correlations 

Generalised Random Graphs have given p(k) but 

otherwise completely random in particular - 

Properties of all vertices are the same  

For any given source vertex, the properties of 

neighbouring vertices independent of properties of the 

source vertex 
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Random Walks on Random Graphs  

The degree distribution of a neighbour is not 

simply p(k)  

You are more likely to arrive at a high 

degree vertex than a low degree one 

)()|( n
n

in kp
k

k
kkp 

Degree of neighbour kn  

independent of degree of starting point ki  

1 2 

3 

kn 

ki 



A random friend is more popular than you 

Give a random friend that life saving vaccine  
(if social networks are random and uncorrelated) 
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Length of Random Walks on Random Graphs 

Suppose we follow a random walk where we 

never go back along the edge we just arrived 

on, then for infinite graphs (N  ∞) 

 

 Walks always end if  

  kn < 2   No GCC 

  

 Walks never end if 

    kn > 2  GCC 
 

(GCC= Giant Connected Component) 

1 

2 

(kn-1) 

IN 

OUT 

kn 
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Length of Random Walks on Random Graphs 

PROVIDED there are no loops. 

True for sparse random graphs in limit of 

infinite size (N  ∞) 

 

 Walks always end if  

  kn < 2   No GCC 

  

 Walks never end if 

    kn > 2  GCC 
 

(GCC= Giant Connected Component) 

1 

2 

(kn-1) 

IN 

OUT 

kn 



© Imperial College London Page 18 

GCC (Giant Connected Component) transition 

GCC exists if  z>1  where 
 

 

 

 

  

= Fractional measure of how much 

more popular your friends are 

11

2


k

k

k

k
z n

GCC= Giant Connected Component, 

where a finite fraction of vertices in 

infinite graph are connected 

1 

2 

(kn-1) 

IN 

OUT 

kn 
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Other properties of General Random Graphs 

All global properties depend on same  

 

 

 

 

e.g. GCC size,  

    component distribution,   

    average path lengths 

1

2


k

k
z



Average Path Length in MR Random Graph 

• For any random graph has an average 

shortest length which scales as 

c
z

N
d 

)ln(

)ln(



Six Degrees of Separation 
[John Guare 1990] 

“I read somewhere that 

everybody on this 

planet is separated 

by only six other 

people. Six degrees 

of separation.” 



Small World 

• A Small World network is one where the 

average shortest distance is   <d> ~ O(ln(N)) 

• All random graphs are small world 

• In fact most complex networks are small world 

• c.f. a regular lattice in d-dimensions where the 

distance scales as  <d> ~ O(N1/d) 



Watts and Strogatz‟s Small World Model (1998) 

Start with lattice, pick random edge and rewire – 

move it to two link two new vertices chosen at 

random. 

1 dim Lattice Small World Random 

Number of rewirings 

0 5 200 

N=20,  

E=40, 

k=4 



Clustering and Length Scale in WS network 

• Average distance drops very quickly,  

• Loss of local lattice structure much slower 

 

Small World 

Lattice 

Classical 

Random 

Graph 

N=100, k=4, 

1-Dim lattice 

start,  

100 runs 

Cluster coef 

Distance 



Ensembles of Graphs 

Mathematically we do not consider a single 

instance of a random graph but an 

ensemble of random graphs 
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Ensembles of Graphs 

e.g. The probability of creating a particular simple 

graph with E edges and Ē empty edges is 
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Ensemble Averages 

Averages of quantities are strictly over both  

a) different graphs and  

b) over some element of a graph e.g. vertices  
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Exponential Random Graphs (p* models) 

General ensemble of graphs, those with highest 

probability obey any given constraints  
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Example Graph Hamiltonians H(G) 

•  

Classical random graph with p=2E/(N(N-1)) 

 

•  

 

Random Graph with given degree distribution. 

 

In both cases Lagrange multipliers b, bv  fixed by 

specifying desired values of < E > and < kv > 
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Summary of Random Graphs 

• Calculations work because 

– lack of correlations between vertices 

– few loops for large sparse graphs,  

graphs are basically trees 

• Accessible analytically so can suggest typical 

behaviour even if very weak e.g. diameter vs N 

• These can be reasonable approximations for 

many theoretical models 

• Probably not for real world so then use these as 

a null model. 



SCALE FREE MODELS 

How to excite a physicist – 

give them a power law 
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Long Tails in Real Data 

Degree distribution, eBay Crawl (max 1000)
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Growth with Preferential Attachment 

[Yule 1925, 1944; Simon 1955; Price 1965,1976;  
       Barabasi,Albert 1999 ] 

1. Add new vertex attached to 
one end of  m=½<k> new 
edges 

2. Attach other ends to existing 
vertices chosen with by 
picking random end of an 
existing edge chosen 
randomly, so probability is 

P(k) = k / (2E) 

Preferential Attachment 
“Rich get Richer” 

Result:  

 Scale-Free  

  n(k) ~ k-g  

       g=3 

5/(2E) 

2/(2E) 

4/(2E) 

2/(2E) 

P(k) 
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Growth with Preferential Attachment 

[Yule 1925, 1944; Simon 1955; Price 1965,1976;  

       Barabasi,Albert 1999 ] 

P(k) = k / (2E) 
Preferential Attachment 

“Rich get Richer” 

Result: Scale-Free Network 

  n(k) ~ k-g  

       g=3 

5/(2E) 

2/(2E) 

4/(2E) 

2/(2E) 

P(k) 
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N=200,   <k>~4.0,  vertex size  k 

Classical Random Scale-Free  

  = Power-Law p(k)~ 1/k3 

Tight core of large hubs 

kmax=O(N1/2) 

 

Diffuse, small degree  

vertices kmax=O(ln(N)) 

 



Master Equation Approach 

Let n(k,t) represent the average number of 

vertices at time t.          (I should really use <n(k,t)>) 

Again average means we look at an ensemble of 

such networks. 

The master equation the equation for evolution 

of the degree distribution averaged over 

different instances of network in the ensemble   

n(k,t) to n(k,t+1)  
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Master Equation Processes 

n(k,t) changes in one of three ways:- 

• Increases as we add an edge to existing 

vertex of degree (k-1). 

• Decreases as we add an edge to existing 

vertex of degree k. 

• Number of vertices of degree k=m= ½<k> 

always increase by 1 as add new vertex. 
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Mean Field Degree Distribution Master Equation 

mk

kmtkn

kmtkn

,

)(),(
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
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P ),()1,( tkntkn

P(k) = Probability of attaching to a vertex of 

         degree k  

          k  in simplest preferential attachment 

                                                             models 

 

           

k(k-1) 

(k-1)k 

new vertex 
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The Mean Field Approach is an Approximation 
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If P(k) is a function of degree k then 

normalisation of this probability is different in 

each instance of a network in the ensemble at 

a single time t. 
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Ensemble Invariants 
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Adding one vertex and m= ½<k> edges at each 

time means that the 

• number of edges    E(t) = mt + E(0) 

• number of vertices N(t) = t + N(0)  

   are the same for all instances of network in the 

ensemble at any one time t. 
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The Mean Field Approach Can Be Exact 
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• Note probability so 

• Lowest degree is 

 

• Thus 

Exact Solution of Master Equation 
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• Look for asymptotic solutions 

 

 

• Find for k > m = ½<k>  

Exact Solution of Master Equation 
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Exact Solution of Master Equation 

Hence 

)1(

)(
)(

bak

ak
Akp






Large k limit:- 

k

A
kpk  )(lim

,
2

,
pp

r

p
b

p

kp
a 

2
2

1 
pp



where 

& 



© Imperial College London Page 45 

• Illustrates use of master equations and their 

approximations  statistical physics experience 

• Exact solutions for ensemble average asymptotic value 

of degree distribution p(k) if 

 

• Interpretation of parameters – pp>1 allowed 

• Finite Size effects? – real networks are mesoscopic 

          [TSE, Saramäki 2004] 

• Fluctuations in ensemble? 

• Network not essential – k=frequency of previous choices 

• Growth not essential – network rewiring      g ~ 1.0 

                                  [Moran model, see TSE,Plato, 2008] 

Scale-Free Growing Model comments 
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  Attachment probability used was 
 

 

 

  
 

BUT if  limk→∞ P(k)  k
a    for any    a 1   then a  

power law degree distribution is 

not produced! 
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Scale-Free in the Real World 
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Preferential Attachment for Real Networks 
[Saramäki, Kaski 2004; TSE, Saramäki 2004] 

 
1. Add a new vertex with ½<k> 

new edges 

2. Attach to existing vertices, 

found by executing a random 

walk on the network of  

L steps 

Start 

Walk 

Here Probability of arriving at a vertex  

      number of ways of arriving at vertex  

         = k,  the degree  

 Preferential Attachment  g=3 
(Can also mix in random attachment with probability pr) 
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Preferential Attachment for Real Networks 

Probability of arriving at a vertex  

      number of ways of  

         arriving at vertex  

          = k,  the degree  

 

 Preferential Attachment  =3 

 

Can also mix in random attachment 

with probability pr 

 

 

Start 

Walk 

Here 
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Naturalness of the Random Walk algorithm 

• Gives preferential attachment from any 

network and hence a scale-free network 

• Uses only LOCAL information at each 

vertex 

– Simon/Barabasi-Albert models use global 

information in their normalisation 

• Uses structure of Network to produce the 

networks 

– a self-organising mechanism 
e.g. informal requests for work on the film actor‟s social network 

e.g. finding links to other web pages when writing a new one 
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Is the Walk 

Algorithm 

Robust? 

YES - Good Power Laws  

   but NOT Universal values - 10% or 20% variation 

               L=0  

Pure Random  

Attachment 

exponential  

   graph L=7 

L=1 

<d>~5 I varied: 

•Length of walks 

•<k> 

•Starting point 

  of walks 

•Length distribution  

  of walks 

• ….. 

  



Finite Size Effects 

Networks are mesoscopic systems 

 

In practice a network of N ~ 1 million is still 

not large since many quatitities scale with 

the logarithm of system size 

e.g. Diameter scales as log(N) ~ 6. 
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Finite Size Effects for pure preferential attachment 

Scaling 

Function 
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Mean Field Exact Finite Size Scaling 

           Function Fs   
                (pure pref.attach.) 

Can calculate the finite 

size effects in the 

mean field 

approximation to find 

   


















2

3

3,1

2

)(H)1(1
!

8
2

)exp(

)erfc()(

m

n

n

n

nm

s

xxm
n

x
x

xxF




Hermite Polynomials 

Asymptotic analytic solution 

and two numerical solutions 

to mean field equations 

2m=<k> 
(TSE+Saramäki, 2005;  

 generalisation of Krapivsky and Redner, 2002)  

 



RANDOM WALKS 

What can physicsts and mathematicians do well? 
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Properties of irreducible non-negative matrices (1) 

Will phrase this in terms of  

Adjacency Matrix Aij for a network 

 

• Aij = Aji = 1  for edges in simple graphs 

 

• Aij is the weight of edge from j to i for  

     weighted network 

 

• Aij ≠ Aji (symmetric matrix) if  

     directed network 
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Definition of irreducible non-negative matrices (1) 

In terms of an Adjacency Matrix Aij for a network 

 

• A non-negative matrix is Aij0  

 

• Irreducible if there is a path from each vertex 

to every other vertex 
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Properties of irreducible non-negative matrices (2) 

• Largest eigenvalue (l1) is real and positive 

• Largest eigenvalue is bounded by largest and 

smallest sums of each row and each column 

• Eigenvector of largest eigenvalue has only 

positive entries 

• Entries in all other eigenvectors differ in sign  
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Random Walk Transition Matrix 

The transition matrix for a simple unbiased 

random walk on a network is T where the 

probability of moving from vertex j  

                                      to vertex i is 
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Random Walk Transition Matrix (2) 

Another useful form is 
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Probability of following an edge 

from j to any vertex i  

is 0.25 

0.25 
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Transition matrix properties (1) 

• Adjacency matrices of networks are non-

negative (almost always) 

• Irreducible if network fully connected  

(or add some weak links to make it so)  

• Transition matrix is also non-negative and 

irreducible 
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Transition matrix properties (2) 

• Transition matrix columns always sum to 1 

 

 

 

 

 

Transition matrix has unique largest 

  eigenvalue equal to 1=l1 
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Transition matrix properties (3) 

• Eigenvector of largest eigenvalue of transition 

matrix, v1, of undirected network is just ki. 

  

 

 

i.e. Flow in = Flow Out is equilibrium reached if 

flow along each edge is equal to the weight of 

the edge 
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Transition matrix properties (4) 

• Flow in = Flow Out is equilibrium reached 

if flow along each edge is equal to the 

weight of the edge 
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For simple graph, 

ONE walker passes  

along each edge  

in each direction at  

each time step 

 

k walkers arrive  

    and leave each vertex 

1 

*** NOT solution if number of in- and out-edges different 



Random walk as linear algebra 

Let wi(t) be the number of random walkers  

     at vertex i at time t 
(or the probability of finding one walker at i ) 

then the evolution is simply 
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Random walk as linear algebra 

Decompose wi(t) in terms of eigenvectors vn as  

 

 

then the evolution is simply 
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Equilibrium 

Equilibrium reached is eigenvector with 

largest eigenvalue as 
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PageRank 

• Google ranks web pages using v1 

• Follows links between web pages like a 

random walker 

• Google makes money because the web is 

a directed graph so largest eigenvector, 

v1, is not trivial 
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PageRank for Mathematicians 

Using MacTutor bibliography of over 200 

mathematicians finds 
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[Clarke, TSE, Hopkins, 2010] 



Centrality Measures 

The closer a vertex is to the “centre” of a 

network, the higher its Centrality Measures:- 

• Degree 

• PageRank 

• Betweenness  

Simple Betweenness = number of shortest 

paths passing through each vertex 

• etc. 

© Imperial College London Page 69 



Simple Betweenness 

1. Calculate the shortest paths between all 

pairs of vertices. 

2. Betweenness = number of shortest 

paths passing through each vertex 
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BUT ONLY defined for simple graphs 

Example 



Electric Current Betweenness 

Treat undirected network as resistors, with 

• Conductivity of resistor edge weights = Aij =Aij 

• Voltage at vertex i = Vi 

• External current flowing into vertex i = Ii 
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Betweenness and Currents (2) 

where Dij =ki ij  a diagonal matrix using degree 
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Betweenness and Currents (3) 

where T =AD-1
  is the random walker transition 

matrix 
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Betweenness and Currents (4) 

Define the net flow of current through a vertex 

to be Fi  so 
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Betweenness and Currents (5) 

So net flow of current  Fi through vertex i is 
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Betweenness and Currents (6) 

However in terms of random walkers 
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Betweenness and Currents (7) 

The total current put into the circuit must match 

the current taken out 
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In terms of the transition matrix, this means  

this vector Ii does not contain the equilibrium 

eigenvector with eigenvalue 1  

 

Thus                                                is well defined 

                                              if p<1 or if acts on I. 
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Betweenness and Currents (8) 

Suppose 

• we put one unit of current in at source vertex s 

• we take one unit of current out at target vertex t 
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Betweenness and Currents (9) 

The net flow in terms of positive (from s) and 

negative (from t) random walkers is 
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and ij is the number of random walkers starting from 

k passing from j to i after n steps 

Betweenness and Currents (10) 

Newman suggests a centrality measure of 

summing over all possible source and sink 

currents 
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with 



Betweenness and Currents Summary 

• Uses negative random walkers 

• Random walker picture works for directed graphs 

• Does not use equilibrium eigenvector 

– unlike PageRank, Modularity for community detection, ... 

• Can introduce distance scale d= p/(1-p) 

– Walkers move on with probability p, stop with probability 

(1-p).  Replace TpT and (1-T)-1(1-p)/(1-pT)  

• Can introduce biased random walks 

– e.g.  
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and ij is the number of random walkers starting from 

k passing from j to i after n steps 

Betweenness and Currents Summary 

Newman suggests a centrality measure of 

summing over all possible source and sink 

currents 
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THANKS 
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Conclusions 

Considerable input possible 

from from a mathematical 

approach to networks 
 

 

 

Google “Tim Evans Networks”  

to find my web pages on networks 



Average Path Length in MR Random Graph 

• Let pij(x) be the probability that a random 

walk (never returning along last step) 

starting at vertex i passes through vertex j 

at least once after x steps 

• Number of different walks of length x from 

i to j,  if no loops, is  

             W(i,x) = ki (kn-1)x-1 

kn kn 

ki 

kn 

Initial  

vertex i 

Final 

vertex j 

[Fronczak  

et al,  

2005] 



Average Path Length in MR Random Graph (2) 

• Probability of not arriving at j on any one 

step = 1- (kj /2E) 

 Probability that a random walk does not 

   arrive at j after x steps is 
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Average Path Length in MR Random Graph (3) 

• Probability that walker first arrives after x steps 

is  pij(x-1) - pij(x)  

Average path length from i to j is 

 

 
  

 Average path length <d> is (after some work) 

  



01

)()()1(
x

ij

x

ijijij xpxpxpxd

2

1

)ln(

)ln()ln()ln(





z

kzN
d


[Fronczak et al,2005] 



Average Path Length in MR Random Graph (4) 

• For any random graph has an average 

shortest length which scales as 
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