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Outline

• Part 1: Simple Copying Model

– Why Copying?

– Introduce a simple network model with only copying and innovation

– Show how this model can be solved exactly for all times

– Properties of the network: Homogeneity

• Part 2: Generalisations

– Additional vertex graphs

– Update Dynamics

– Additional Vertex types (time permitting!)
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Why Copying?

Local process yet produces macroscopic features

• Copying can lead to preferential attachment i.e. with probability    
proportional to degree k [e.g. T.S. Evans & J.P. Sarämaki (2005)]→ 
scale free behaviour

Copying and Innovation natural mechanisms in many models

• Gene Frequencies: Inheritance and Mutation [M. Kimura & J.F. Crow 
(1964)] 

• Urn models

• Voter Models: e.g. Language Extinction [Stauffer et al. (2007)]

• Cultural Transmission: Baby names, dog breeds, pop music… [e.g. 
Bentley et al. 2007]

Interesting from a mathematical point of view – simple models with 
just copying and innovation can be exactly solved.
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Model - Simple non-growing bi-partite network

• Edges fixed to Individuals 
but Artifact side free to 
rewire

• Choose an Individual to 
remove edge, with 
probability πR

• Choose Artifact to attach 
edge to, with probability πA

• Only then perform rewiring

A B C D H N

1 2 3 4 E

N Artifacts

E Individuals

πRπA
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Model - Mean Degree Distribution Master Equation

• Interested in degree distribution n(k,t) (and 

p(k,t)=n(k,t)/N) of Artifact Vertices.

Mean Field Equation:

)]1(1)[1(),1(

)](1)[(),(

)](1)[(),(

)]1(1)[1(),1(









kktkn

kktkn

kktkn

kktkn

RA

RR

AA

AR ),()1,( tkntkn

Number of edges 

attaching to vertex 

of degree (k-1)
Probability of 

NOT reattaching 

to same vertex



© Imperial College LondonPage 6

Model - Mean Degree Distribution Master Equation

• Good approximation when vertex correlations small

• For Probabilities  kβ/zβ, exact when normalisations 
constant, i.e.

• ONLY when β=0 or β=1, thus most general πR and πA

Only Random or Preferential Attachment (pr + pp=1)
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Model - Solutions

• Mean-field equation is linear

→ Encode degree distribution in Generating function

• Re-write mean-field equation as differential equation:

Coefficients: 
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Model - Solutions

• Expand G(m)(z) as a polynomial in (1-z). Leads to 

Hypergeometric differential equations with 

solutions

and Eigenvalues given by
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Model - Equilibrium Distribution

• Can recover degree distribution from generating function.

A – Normalisation. Ratio of Gamma functions.

• Exact for all parameter values of E, N and pr.
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E=N=100

n
(k

)/
n

(1
)

k

pr=0.001

pr=0.1

pr=0.01

pr=0.005

Model - Equilibrium Distribution

• Numerical: Averaged 

over 105 realisations 

Lines: Analytic Results

• pr ≥ 1/E: power law

with power

and exponential cutoff
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Homogeneity Measures

• Call the probability that two distinct edges chosen at 

random connected to same Artifact, F2(t)

• E fixes c1=0

• Generalise to n distinct edges

• gn
(m): nth derivatives of G(m)(z) at z=1. Only non zero for 

m≤n so contributions only from first n+1 eigenfunctions:
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Homogeneity Measures

• Fn measures can fix 

coefficients cm iteratively

• Network becomes more 

homogenous with time
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Time Dependence

• Low Eigenvalue contribution to the degree distribution 

evolution
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Part II:

Generalisations

• Add a graph to the Individuals Vertices

• Different update dynamics

– Simple example: 2 step update

– Multi edge rewiring

• Different Types of Individuals
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Network of Individuals

• Individuals vertices now 

connected by a graph

• Choose removal edge with 

πR=k/E

• Preferential Attachment is 

replaced by a random walk 

on Individuals network

• Copy vertex choice

• Rewire

A B C D H N

1 2 3 4 E

N Artifacts

E Individuals 

on a graph

πRπA

walk

w
a
lk
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Network of Individuals – Homogeneity

• N=2: traditional Voter Model with randomness

• Average interface density ‹ρ›t

• (1-F2(t)) vs. ‹ρ›t ↔ Global vs. local

N=2, E=729, pr=1/E

1D
2D
3D

1D

2D
3D Complete graph

Local ‹ρ›

Global (1-F2)

• Randomness prevents 

consensus
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Network of Individuals – Degree Distribution

• Degree Distribution similar except for 1D lattice

Barabási-Albert

Exponential
Erdős-Réyni

p
(k

)

N=E=100, pr=1/E

2D lattice

1D lattice

k

Black line 

complete graph 

analytic result
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Alternate Update dynamics – two step update

Simple Example. Step 1: Remove edge

Step 2: Attach new edge

• New attachment probability: 

• Modified master equation.

However…

Solution still similar to before

Minor change in parameters
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Alternate Update dynamics – Multi Edge Rewiring

In more realistic models up to date information may not be

available for each entity

• Parameter X controls number of distinct edges to be 

rewired at each timestep

• Now choose edges at Random or Sequentially

• Extremes: X=1 → Simple Copy Model already discussed

X=E → Bentley et al. generational rewiring,

Fisher-Wright Model
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Alternate Update dynamics – Multi Edge Rewiring

Rewirings

Sequential and Random updates. 

E=N=100, pr=1/E
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• Numerical results:

• X=1: Equilibrium 
identical, but 
sequential update 
faster

• X=E/2: Similar 
timescales, but 
different Equilibrium 
F2

• X=E: Sequential 
=Random
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Alternate Update dynamics – Multi Edge Rewiring

• Homogeneity 
decreases with 
number of edges 
rewired

X

E=N=100, pr=1/E

F
2
(∞

)

S

R

Random, no repeats
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Two Individual Types

Artifacts have kx and ky 

degree and now four 

independent probabilities:

prx+ppxx+ppxy=1, 

pry+ppyy+ppyx=1.

• Complete solutions not 

available EX X-Individuals

A B C D H

1 2 Ex

N Artifacts

1 2 Ey

N

Ey Y-Individuals

• Some progress can be made on Fmn measures,  

but lead to lengthy algebraic solutions 



© Imperial College LondonPage 23

Summary

• Simple models can be solved Exactly

• Even with just copying and innovation, a large 

amount of variation in modelling is possible

• Rewiring dynamics is important

• Many other models can be mapped to a simple 

network model, and some properties studied 

analytically, e.g. Voter Model
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Solutions – Time Dependence

• Now 

• Must include contribution from all eigenvalues

• Cumbersome, but can in principle gives full time 

dependence exactly
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