Imperial College

Are Copying and Innovation Enough?

Doug Plato, Institute for Mathematical Science Tim Evans, Theoretical Physics

Tevong You, Physics Dept.

ECMI2008

UCL

Outline

- Part 1: Simple Copying Model
- Why Copying?
- Introduce a simple network model with only copying and innovation
- Show how this model can be solved exactly for all times
- Properties of the network: Homogeneity
- Part 2: Generalisations
- Additional vertex graphs
- Update Dynamics
- Additional Vertex types (time permitting!)

Why Copying?

Local process yet produces macroscopic features

- Copying can lead to preferential attachment i.e. with probability proportional to degree k [e.g. T.S. Evans \& J.P. Sarämaki (2005)] \rightarrow scale free behaviour

Copying and Innovation natural mechanisms in many models

- Gene Frequencies: Inheritance and Mutation [M. Kimura \& J.F. Crow (1964)]
- Urn models
- Voter Models: e.g. Language Extinction [Stauffer et al. (2007)]
- Cultural Transmission: Baby names, dog breeds, pop music... [e.g. Bentley et al. 2007]
Interesting from a mathematical point of view - simple models with just copying and innovation can be exactly solved.

Model - Simple non-growing bi-partite network

- Edges fixed to Individuals but Artifact side free to rewire
- Choose an Individual to remove edge, with probability π_{R}

- Choose Artifact to attach edge to, with probability π_{A}

E Individuals

- Only then perform rewiring

Model - Mean Degree Distribution Master Equation

- Interested in degree distribution $\mathrm{n}(\mathrm{k}, \mathrm{t})$ (and $p(k, t)=n(k, t) / N)$ of Artifact Vertices.
Mean Field Equation:

$$
n(k, t+1)-n(k, t)=+n(k+1, t) \Pi_{R}(k+1)\left[1-\Pi_{A}(k+1)\right]
$$

$$
-n(k, t) \Pi_{A}(k)\left[1-\Pi_{A}(k)\right]
$$

$$
-n(k, t) \Pi . R(k)[1-\Pi R(k)]
$$

$$
\begin{aligned}
& \quad \begin{array}{l}
\because+n(k-1, t) \Pi_{A}(k-1) \\
\text { Number of edges } \\
\text { attachina to vertex }
\end{array}
\end{aligned}
$$ attaching to vertex

of degree ($k-1$)

Probability of
NOT reattaching to same vertex

Model - Mean Degree Distribution Master Equation

- Good approximation when vertex correlations small
- For Probabilities $\propto \mathrm{k}^{\beta} / \mathrm{z}_{\beta}$, exact when normalisations constant, i.e.

$$
\sum_{k} n_{i}(k) k^{\beta}=\left\langle\sum_{k} n_{i}(k) k^{\beta}\right\rangle
$$

- ONLY when $\beta=0$ or $\beta=1$, thus most general π_{R} and π_{A}

$$
\Pi_{R}=\frac{k}{E}, \quad \Pi_{A}=p_{r} \frac{1}{N}+p_{p} \frac{k}{E}
$$

Only Random or Preferential Attachment $\left(\mathrm{p}_{\mathrm{r}}+\mathrm{p}_{\mathrm{p}}=1\right)$

Model - Solutions

- Mean-field equation is linear
\rightarrow Encode degree distribution in Generating function

$$
G(z, t)=\sum_{k=0}^{E} z^{k} n(k, t)=\sum_{m=0}^{E} c_{m}\left(\lambda_{m}\right)^{t} G^{(m)}(z)
$$

- Re-write mean-field equation as differential equation:

$$
\begin{aligned}
z(1-z) G^{(m)^{\prime}}(z) & +[c-(a+b+1) z] G^{(m)^{\prime}}(z) \\
& -\left[a b-\frac{\left(\lambda_{m}-1\right)}{1-z} b(c-a-1)\right] G^{(m)}(z)=0
\end{aligned}
$$

Coefficients: $a=\frac{p_{r}}{p_{p}}\langle k\rangle, b=-E, \quad c=1+a+b-\frac{p_{r}}{p_{p}} E$

Model - Solutions

- Expand $G^{(m)}(z)$ as a polynomial in (1-z). Leads to Hypergeometric differential equations with solutions

$$
\mathrm{G}^{(m)}(z)=(1-z)^{m} \mathrm{~F}(a+m, b+m ; c ; z)
$$

and Eigenvalues given by

$$
\lambda_{m}=1-m(m-1) \frac{p_{p}}{E^{2}}-m \frac{p_{r}}{E}
$$

$$
\lambda_{m} \geq \lambda_{m+1}
$$

Model - Equilibrium Distribution

- Can recover degree distribution from generating function.

$$
\begin{array}{r}
n(k)=\left.\frac{1}{k!} \frac{d^{k} G(z)}{d z^{k}}\right|_{z=0}=A \frac{\Gamma(k+\bar{K})}{\Gamma(k+1)} \frac{\Gamma(E-\bar{E}-\bar{K}-k)}{\Gamma(E+1-k)} \\
\bar{K}=\frac{p r}{p_{p}}\langle k\rangle \quad \bar{E}=\frac{p r}{p_{p}} E
\end{array}
$$

A - Normalisation. Ratio of Gamma functions.

- Exact for all parameter values of E, N and p_{r}.

Model - Equilibrium Distribution

- Numerical: Averaged over 10^{5} realisations Lines: Analytic Results
- $p_{r} \geq 1 / E:$ power law
$\lim n(k)=k^{-\gamma} \exp (-\zeta k)$ $k \rightarrow \infty$
with power $\gamma=1-\frac{p_{r}}{p_{p}}\langle k\rangle$

and exponential cutoff $\zeta=-\ln \left(p_{p}\right)$

Homogeneity Measures

- Call the probability that two distinct edges chosen at random connected to same Artifact, $\mathrm{F}_{2}(\mathrm{t})$

$$
F_{2}(t)=\sum_{k=0}^{E} \frac{k(k-1)}{E(E-1)} n(k, t)=\left.\frac{1}{E(E-1)} \frac{d^{2} G(x, t)}{d x^{2}}\right|_{x=1}
$$

- E fixes $\mathrm{C}_{1}=0$

$$
\begin{aligned}
\longrightarrow \quad F_{2}(t) & =F_{2}(\infty)+\left(\lambda_{2}\right)^{t}\left(F_{2}(0)-F_{2}(\infty)\right) \\
F_{2}(\infty) & =\frac{1+p_{r}(\langle k\rangle-1)}{1+p_{r}(E-1)}
\end{aligned}
$$

$F_{2}(0)$ fixed by initial conditions

- Generalise to n distinct edges $\quad F_{n}(t)=\left.\frac{\Gamma(E+1-n)}{\Gamma(E+1)} \frac{d^{n} G(x, t)}{d x^{n}}\right|_{x=1}$
- $g_{n}{ }^{(m)}: n^{\text {th }}$ derivatives of $G^{(m)}(z)$ at $z=1$. Only non zero for $m \leq n$ so contributions only from first $n+1$ eigenfunctions:

Homogeneity Measures

- F_{n} measures can fix coefficients C_{m} iteratively

$$
\begin{gathered}
\mathrm{E}=\mathrm{N}=100, \mathrm{p}_{\mathrm{r}}=1 / \mathrm{E} . \mathrm{n}(\mathrm{k})=\delta_{\mathrm{k}, 1} \text { averaged } \\
\text { over } 10^{5} \text { runs }
\end{gathered}
$$

$$
\frac{\Gamma(E+1-n)}{\Gamma(E+1)} \sum_{m=0}^{n} c_{m} g_{n}^{(m)}=F_{n}(0)
$$

$$
g_{n}^{(m)}=0, \quad m>n
$$

- Network becomes more homogenous with time

Time Dependence

- Low Eigenvalue contribution to the degree distribution evolution

$$
\mathrm{N}=\mathrm{E}=100, \mathrm{pr}=1 / \mathrm{E}
$$

Part II:

Generalisations

- Add a graph to the Individuals Vertices
- Different update dynamics
- Simple example: 2 step update
- Multi edge rewiring
- Different Types of Individuals

Network of Individuals

- Individuals vertices now connected by a graph
- Choose removal edge with $\Pi_{R}=k / E$
- Preferential Attachment is replaced by a random walk on Individuals network
- Copy vertex choice

E Individuals on a graph

- Rewire

Network of Individuals - Homogeneity

- $N=2$: traditional Voter Model with randomness
- Average interface density $\langle\rho\rangle_{\mathrm{t}}$
- ($\left.1-F_{2}(\mathrm{t})\right)$ vs. $\langle\rho\rangle_{\mathrm{t}} \leftrightarrow$ Global vs. local

Network of Individuals - Degree Distribution

- Degree Distribution similar except for 1D lattice

Alternate Update dynamics - two step update

Simple Example. Step 1: Remove edge

Step 2: Attach new edge

- New attachment probability: $\tilde{\Pi}_{\mathrm{A}}=p_{r} \frac{1}{N}+p_{p} \frac{k}{E-1}$
- Modified master equation.

However...
Solution still similar to before

$$
\mathrm{G}^{(m)}(z)=(1-z)^{m} \mathrm{~F}(\tilde{a}+m, b+m ; \tilde{c} ; z)
$$

Minor change in parameters $a \rightarrow \tilde{a}=\frac{p_{r}}{p_{p}} \frac{E-1}{N}, \quad b=-E$,

$$
c \rightarrow \tilde{c}=1+\tilde{a}+b-\frac{p_{r}}{p_{p}} E
$$

Alternate Update dynamics - Multi Edge Rewiring

In more realistic models up to date information may not be available for each entity

- Parameter X controls number of distinct edges to be rewired at each timestep
- Now choose edges at Random or Sequentially
- Extremes: $\mathrm{X}=1 \rightarrow$ Simple Copy Model already discussed $X=E \rightarrow$ Bentley et al. generational rewiring, Fisher-Wright Model

Alternate Update dynamics - Multi Edge Rewiring

 Sequential and Random updates.- Numerical results:

$$
E=N=100, p_{r}=1 / E
$$

- $\mathrm{X}=1$: Equilibrium identical, but sequential update faster
- X=E/2: Similar timescales, but different Equilibrium F_{2}

Rewirings

- X=E: : Sequential $\rightarrow F_{2}(\infty)=\frac{p_{p}^{2}+\left(1-p_{p}^{2}\right)\langle k\rangle}{p_{p}^{2}+\left(1-p_{p}^{2}\right) E} \quad \lambda_{2}=\frac{p_{\rho}^{2}(E-1)}{E}$

Alternate Update dynamics - Multi Edge Rewiring

- Homogeneity decreases with number of edges rewired

Two Individual Types

Artifacts have k_{x} and k_{y} degree and now four independent probabilities:

$$
\begin{aligned}
& p_{r x}+p_{p x x}+p_{p x y}=1, \\
& p_{r y}+p_{p y y}+p_{p y x}=1 .
\end{aligned}
$$

- Complete solutions not available $\mathrm{E}_{\mathrm{X}} \mathrm{X}$-Individuals $\mathrm{E}_{\mathrm{y}} \mathrm{Y}$-Individuals
- Some progress can be made on $F_{m n}$ measures, but lead to lengthy algebraic solutions

Summary

- Simple models can be solved Exactly
- Even with just copying and innovation, a large amount of variation in modelling is possible
- Rewiring dynamics is important
- Many other models can be mapped to a simple network model, and some properties studied analytically, e.g. Voter Model

References

- T.S.Evans \& ADKP
"Exact Solution for the Time Evolution of Network Rewiring Models"
Phys. Rev. E 75 (2007) 056101
[cond-mat/0612214]
- T.S.Evans \& ADKP
"Network Rewiring Models"
Networks and Heterogeneous Media 3, 2 (2008) 221. arXiv:0707. 3783
- T.S.Evans \& ADKP
"Exact Solutions for Models of Cultural Transmission and Network Rewiring" (for ECCS06)
[physics/0608052]
- T.S.Evans, ADKP, \& T.You (in prep)

Solutions - Time Dependence

- Now $n(k, t)=\left.\frac{1}{k!} \frac{d^{k} G(z, t)}{d z^{k}}\right|_{z=0}$
- Must include contribution from all eigenvalues

$$
G^{(m)}(z)=\sum_{k=0}^{E} z^{k} \omega^{(m)}(k)
$$

- Cumbersome, but can in principle gives full time dependence exactly

$$
\begin{aligned}
\omega^{(m)}(k)= & (-1)^{m} \frac{\Gamma(k+1)}{\Gamma(k+1-m)} \frac{\Gamma(c+k)}{\Gamma(c+k-m)} \frac{\Gamma(a)}{\Gamma(a+m)} \frac{\Gamma(b)}{\Gamma(b+m)} \\
& \times{ }_{3} F_{2}(-m, a+k, b+k ; k+1-m, k+c-m ; 1) \omega^{(0)}(k)
\end{aligned}
$$

