

Supergravity, Strings and Dualities: A Meeting in Celebration of Chris Hull's 60th Birthday

2002

Flux compactifications of string theory on twisted tori

C. M. Hull^{a,*} and R. A. Reid-Edwards^{b,++}^a The Blackett Laboratory, Imperial College London, Prince Consort Road, London SW7 2AZ, UK^b Department of Physics, Queen Mary, University of London, Mile End Road, London E1 4NS, UKReceived 29 June 2009; accepted 6 July 2009
Published online 20 July 2009

Global aspects of Scherk-Schwarz dimensional reduction are discussed and it is shown that it can usually be viewed as arising from a compactification on the compact space obtained by identifying a (possibly non-abelian) group manifold G with a torus T and a suitable discrete subgroup Γ . The global compactification of Scherk-Schwarz reductions to string theory or M-theory as flux compactifications on G/Γ , but only in those cases in which there is a suitable discrete subgroup of G . We analyse such compactifications with flux and investigate the gauge symmetry and its spontaneous breaking. We discuss the covariance under $O(d, d)$, where d is the dimension of the group G , and the relation to reductions with duality twists. The compactified theories provide a subgroup of the $O(d, d)$ that would arise from a toroidal reduction to a gauge symmetry, and we discuss the interplay between the gauge symmetry and the $O(d, d; \mathbb{Z})$ T-duality group, suggesting the role that T-duality should play in such compactifications.

© 2009 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim

1 Introduction

In [1], Scherk and Schwarz proposed two related forms of dimensional reduction of field theories, both of which led to non-abelian gauge symmetries, a scalar potential and mass terms. Somewhat confusingly, both have been referred to as Scherk-Schwarz reductions in the literature. In one type, a theory with a global duality symmetry is reduced on a circle or torus with a duality twist or monodromy around each circle. Following [2], we will refer to these as reductions with a duality twist.

In the other type of reduction introduced in [1], the dependence of fields on the internal coordinates y^i is through a matrix $\sigma^m_{\mu}(y)$, so that for example the internal components of the metric $g_{ij}(x, y)$ lead to scalar fields ϕ_{mn} depending only on the remaining external coordinates x through the ansatz

$$g_{ij}(x, y) = \phi_{mn}(x) \sigma^m_{\mu}(y) \sigma^{\mu}_{\nu}(y) \quad (1)$$

where $\sigma^m_{\mu}(y)$ is the inverse of $\sigma^{\mu}_{\nu}(y)$. This leads to a reduced theory in which the y -dependence drops out completely provided the matrices $\sigma^{\mu}_{\nu}(y)$ satisfy the constraint that the coefficients

$$f_{np}^m = -\sigma^{\mu}_{\nu} \sigma^{\nu}_{\rho} (\partial_i \sigma^m_{\mu} - \partial_{\mu} \sigma^m_{\nu}) \quad (2)$$

are constant. Then the one-forms $\sigma^m = \sigma^m_{\nu}(y) dy^{\nu}$ satisfy the structure equation

$$d\sigma^m + \frac{1}{2} f_{np}^m \sigma^n \wedge \sigma^p = 0 \quad (3)$$

and the integrability condition for this is that the constants f_{np}^m satisfy the Jacobi identity and so are the structure constants for a Lie group G . In (1), the ansatz $g_{ij}(x, y) = \phi_{ij}(x)$ that would be used for a toroidal reduction is ‘twisted’ by the matrices $\sigma^{\mu}_{\nu}(y)$ and so the reduction is sometimes referred to as reduction

* E-mail: c.hull@imperial.ac.uk

** Corresponding author E-mail: reideds@gmail.com

© 2009 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim

Gauge symmetry, T-duality and doubled geometry

C. M. Hull

*The Institute for Mathematical Sciences, Imperial College London
53 Prince's Gate, London SW7 2PG, U.K., and
The Blackett Laboratory, Imperial College London,
Prince Consort Road, London SW7 2AZ, U.K.
E-mail: c.hull@imperial.ac.uk*

R. A. Reid-Edwards

*II. Institute für Theoretische Physik, Universität Hamburg
DESY, Luruper Chaussee 149, D-22761 Hamburg, Germany
E-mail: ronald.reid.edwards@desy.de*

ABSTRACT: String compactifications with T-duality twists are revisited and the gauge algebra of the dimensionally reduced theories calculated. These reductions can be viewed as string theory on T-fold backgrounds, and can be formulated in a ‘doubled space’ in which each circle is supplemented by a T-dual circle to construct a geometry which is a doubled torus bundle over a circle. We discuss a conjectured extension to include T-duality on the base circle, and propose the introduction of a dual base coordinate, to give a doubled space which is locally the group manifold of the gauge group. Special cases include those in which the doubled group is a Drinfel'd double. This gives a framework to discuss backgrounds that are not even locally geometric.

KEYWORDS: String Duality, Flux compactifications.

Flux compactifications of M-theory on twisted tori

Christopher M. Hull^{a,b} and Ronald A. Reid-Edwards^{a,c}^a The Institute for Mathematical Sciences, Imperial College London

53 Prince's Gardens, London SW7 2PG, U.K.

^b The Blackett Laboratory, Imperial College London

Prince Consort Road, London SW7 2AZ, U.K.

^c Department of Physics, Queen Mary, University of London

Mile End Road, London, E1 4NS, U.K.

E-mail: c.hull@ic.ac.uk, r.reid-edwards@imperial.ac.uk

ABSTRACT: We find the bosonic sector of the gauged supergravities that are obtained from 11-dimensional supergravity by Scherk-Schwarz dimensional reduction with flux to any dimension D . We show that, if certain obstructions are absent, the Scherk-Schwarz ansatz for a finite set of D -dimensional fields can be extended to a full compactification of M-theory, including an infinite tower of Kaluza-Klein fields. The internal space is obtained from a group manifold (which may be non-compact) by a discrete identification. We discuss the symmetry algebra and the symmetry breaking patterns and illustrate these with particular examples. We discuss the action of U-duality on these theories in terms of symmetries of the D -dimensional supergravity, and argue that in general it will take geometric flux compactifications to M-theory on non-geometric backgrounds, such as U-folds with U-duality transition functions.

KEYWORDS: Flux compactifications, Compactification and String Models, Supersymmetry and Duality, Superstring Vacua.

Non-geometric backgrounds, doubled geometry and generalised T-duality

C. M. Hull^a and R.A. Reid-Edwards^{b,1}^a The Blackett Laboratory, Imperial College London,
Prince Consort Road, London SW7 2AZ, U.K.^b Centre for Research in String Theory, Queen Mary, University of London,
Mile End Road, London, E1 4NS, U.K.

E-mail: c.hull@imperial.ac.uk, r.reid-edwards@gmail.com

ABSTRACT: String backgrounds with a local torus fibration such as T-folds are naturally formulated in a doubled formalism in which the torus fibres are doubled to include dual coordinates conjugate to winding number. Here we formulate and explore a generalisation of this construction in which all coordinates are doubled, so that the doubled space is a twisted torus, i.e. a compact space constructed from identifying a group manifold under a discrete subgroup. This incorporates reductions with duality twists, T-folds and a class of flux compactifications, together with the non-geometric backgrounds expected to arise from these through T-duality. It also incorporates backgrounds that are not even locally geometric, and suggests a generalisation of T-duality to a more general context. We discuss the effective field theory arising from such an internal sector, give a world-sheet sigma model formulation of string theory on such backgrounds and illustrate our discussion with detailed examples.

KEYWORDS: String Duality, Flux compactifications, Space-Time Symmetries

ARXIV EPRINT: 0902.4032

- Work a problem from both ends:
 - Big picture & simple, concrete examples.

- Work a problem from both ends:
 - Big picture & simple, concrete examples.
- Networking = having a beer with friends.

- Work a problem from both ends:
 - Big picture & simple, concrete examples.
- Networking = having a beer with friends.
- Keep true to the dreams of thy youth!
(Don't give up on String/M-Theory)

Thank you and Happy Birthday

