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Microstate Geometries and Holography

• Some families of states in the D1-D5-CFT 

• Holographic duals

• The MSW string

• Holographic duals of some MSW states



Microstate Geometry Program
Microstate Geometry ≡ Smooth, horizonless solutions to the bosonic sector of 
supergravity with the same asymptotic structure as a given black hole/ring

Singularity resolved; Horizon removed 

What is the form of generic, BPS, time-independent horizonless, 
smooth solutions in supergravity?

‣  Very long-range effects   ⇒   Massless limit of strings … 

  Supergravity because we seek stringy resolutions on horizon scale
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supergravity with the same asymptotic structure as a given black hole/ring

Singularity resolved; Horizon removed 

What is the form of generic, BPS, time-independent horizonless, 
smooth solutions in supergravity?

Microstate Geometries

•  A Mechanism to support structure at the horizon scale

•  How much of the microstate structure can supergravity encode?

‣  Very long-range effects   ⇒   Massless limit of strings … 

  Supergravity because we seek stringy resolutions on horizon scale
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Black-Hole Microstates and CFT’s
•  D1-D5 CFT:  A (4,4) supersymmetric CFT with c = 6 N1 N5 

¼ BPS states =   (R,R)-ground states  

⅛ BPS states =   (any left-moving state, R ground state) 
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S = 2⇡
p

N1N5NP

Strominger-Vafa state counting for BPS black hole in five dimensions:
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•  D1-D5 CFT:  A (4,4) supersymmetric CFT with c = 6 N1 N5 

¼ BPS states =   (R,R)-ground states  

⅛ BPS states =   (any left-moving state, R ground state) 

NP

S = 2⇡
p

N1N5NP

•  MSW String:  A (0,4) supersymmetric CFT

Strominger-Vafa state counting for BPS black hole in five dimensions:

(Maldacena-Strominger-Witten)

M5 brane wrapping a divisor in a CY3.   Dual class, P ∊ H2(CY3, ℤ)  

D =
1

6

Z

CY3

P 3Central charge  c =  6 D,

MSW string CFT lives on remaining (1+1) dimensions of M5 brane

State counting for BPS black hole in four dimensions: S = 2⇡
p
DNP



Describe the strongly coupled gravity duals of these CFT states.

To what extent can these CFT states be captured in supergravity?

One Focus of the Microstate Geometry Program 
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Open D1-D5 superstrings moving in T4  
      with N ≡ N1 N5 Chan-Paton labels:   (T4)N/SN

⇒  CFT on common D1-D5 direction, (t,y) ⇔ (u,v)
  (4,4) supersymmetric CFT with c = 6 N1 N5 

T4

Maximally spinning RR-ground state:

y

y ≡ y+2πR

(+,+)    space-time angular momenta

M 4,1space-time

(+,+)

(+,+)

(+,+)

…
.. 

N≡N1N5 
copies

…
.. (jL, jR)  =  ½(N, N)

Holographic dual:  Maximally spinning supertube in R4,1

  AdS3   ×     S3     ×     T4(g1(v), g2(v), g3(v), g4(v)) 2 R4

g3(v) = g4(v) = 0

back-react
g1(v) + ig2(v) = a e2⇡iv/R

Supertube profile spins out into M4,1 space-time Q1 Q5 = R2 a2

c = 6
c = 6

c = 6
c = 6

SU(2) × SU(2) R-symmetry
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More general ¼ BPS profiles

Orbifold CFT: k twisted sector

Act with fermion zero modes

k loops Length k loop
|+½,+½⟩k

|0,0⟩k

|+½,+½⟩k

|0,0⟩k

More general class of D1-D5 ground state

Holographic dual supertube profile
“g5(v)” = b sin(2⇡ k v/R)g1(v) + ig2(v) = a e2⇡iv/R

Q1 Q5 = R2 (a2 + b2)Partitioning of charges:

..... .....|+½,+½⟩
|0,0⟩k

~ b2 copies~ a2 copies

|+½,+½⟩ |+½,+½⟩ |+½,+½⟩
|0,0⟩k |0,0⟩k |0,0⟩k
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Generic ⅛ BPS state:  Add general left-moving excitations 
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Families ⅛ BPS states in the D1-D5-P system
Generic ⅛ BPS state:  Add general left-moving excitations 

Momentum charge, QP  = L0,left

Very special families of momentum excitations:  “Supergraviton gas”
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⌘
, j̃R = 1

2 N a2 , NP = 1
2 N
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b2

Define 

D1-D5 |+½,+½⟩residue

Adding pure momentum:  m = 0.  

Vanishing angular momentum: m = 0,  a → 0.  

Q1 Q5 = R2 (a2 + b2)

Quantum numbers

Special forms:
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Building the Fluctuating BPS Microstate Geometries
IIB Supergravity onT4:  Supergravity + two (anti-self-dual) tensor multiplets in six-dimensions

Six-dimensional metric ansatz:

ds26 = � 2p
P

(dv + �)
�
du+ ! � 1

2 Z3 (dv + �)
�

+
p
P V �1 (d +A)2 +

p
P V d~y · d~y

u = null time;  (v, 𝜓) define a double S1 fibration over a flat R3 base with coordinates, y.

The non-trivial homology cycles 
are defined through the pinching 
off of the S1 × S1 fibration at 
special points in the R3 base.

R3

S1(!)

y(i)
y(j)

S1(v)

y(k)

The scale of everything is set by the “warp factors:”   V, P and Z3

ds26 = � 2p
P

(dv + �)
�
du+ ! � 1

2 Z3 (dv + �)
�

+
p
P V �1 (d +A)2 +

p
P V d~y · d~y

(Gutowski, Martelli and Reall)

Maxwell Fields

G(a) = d
h
� 1

2

⌘abZb

P (du+ !) ^ (dv + �)
i

+ 1
2⌘

ab ⇤4 DZb + 1
2 (dv + �) ^⇥(a)

P ⌘ 1
2⌘

abZaZb ⌘ Z1Z2 � 1
2Z4

2

Electric Potentials Magnetic Fluxes



The BPS Equations



The BPS Equations

⇥(a) = ⇤4⇥(a) , ⇤4D(@vZa) = ⌘abD⇥(b) , D ⇤4 DZa = �⌘ab⇥
(b)^ d� .

Layer 1: Conditions on Maxwell Fields

D� ⌘ d(4)�� � ^ @v�where�
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(a)
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depend upon (r, θ) and 
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General solution known!

A homogeneous linear system



The BPS Equations

⇥(a) = ⇤4⇥(a) , ⇤4D(@vZa) = ⌘abD⇥(b) , D ⇤4 DZa = �⌘ab⇥
(b)^ d� .

Layer 1: Conditions on Maxwell Fields

D� ⌘ d(4)�� � ^ @v�where�
Za ,⇥

(a)
�

depend upon (r, θ) and 
�k,m,n ⌘ R�1 (m+ n) v + 1

2 (k � 2m) � 1
2 k �

Layer 2: Conditions on Metric pieces

General solution known!

A homogeneous linear system

ds26 = � 2p
P

(dv + �)
�
du+ ! � 1

2 Z3 (dv + �)
�

+
p
P V �1 (d +A)2 +

p
P V d~y · d~y

An inhomogeneous linear system

Interesting families of particular solutions known.  General solution not known.

depend upon (r, θ) and (quadratic) products of harmonics that depend upon 

⇤4D ⇤4
⇣
@v! + 1

2 DZ3

⌘
= @2

vP � ((@vZ1)(@vZ2)� 1
2 (@vZ4)

2)� 1
4⌘ab ⇤4⇥

(a) ^⇥(b)

D! + ⇤4D! � Z3 d� = Za⇥
(a)

�
Z3 ,!

�

�ki,mi,ni = R�1 (mi + ni) v + 1
2 (ki � 2mi) � 1

2 ki �

Linear system:  Arbitrary superpositions easily constructed
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A Microstate Geometry deep in the Black-Hole Regime
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⌘N1,0,nAdd pure momentum states 
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Several significant results

•  First deep, scaling microstate geometry in 
                           Black-Hole regime with jL = jR → 0

•  Deep, scaling microstate geometry that goes to BTZ

•  Holographic dictionary in AdS3 for deep AdS2/BTZ throat

•  Deep, scaling ⇒  Arbitrarily large red-shifts

   Microstate Geometry ⇒  Smooth cap-off

•  Geometry dual to states counted by Strominger-Vafa

•  Momentum excitations localize at the bottom of the BTZ throat
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The hint of interesting new families of solutions comes from:
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Enriching the family of solutions

R3

S1(!)

y(i)
y(j)

S1(v)

y(k)

Solutions are a T2 fibration over R3 

Spectral transformations; 
    Fractional spectral flows … 
✓

v̂
 ̂

◆
= S

✓
v
 

◆
, S 2 SL(2,Q)

Rational transformations:  
Generate new solutions but may need to “re-declare the lattice of (v,𝜓)^ ^

Standard supertube:  D1-D5 charges + KKM dipole charge, κ
 ➔ Supertube with D1-D5-KKM charges:  (Q1,Q5,κ)

… presumably dual to D1-D5-KKM CFT.  What is this exactly? 
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➔  Momentum excitations of MSW string wrapping (5) direction ..
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Deconstruction: Attempts to realize black-hole microstate structure 
with perturbative/singular D0 branes or perturbative momenta on 
“Deconstructed” MSW string
Here:  Precise, fully back-reacted, capped-off BTZ × S2  realization of 
the deconstructed configurations …

        ….. related to D1-D5-P microstate structure 
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Happy Birthday, Chris! 

Some very limited families known


