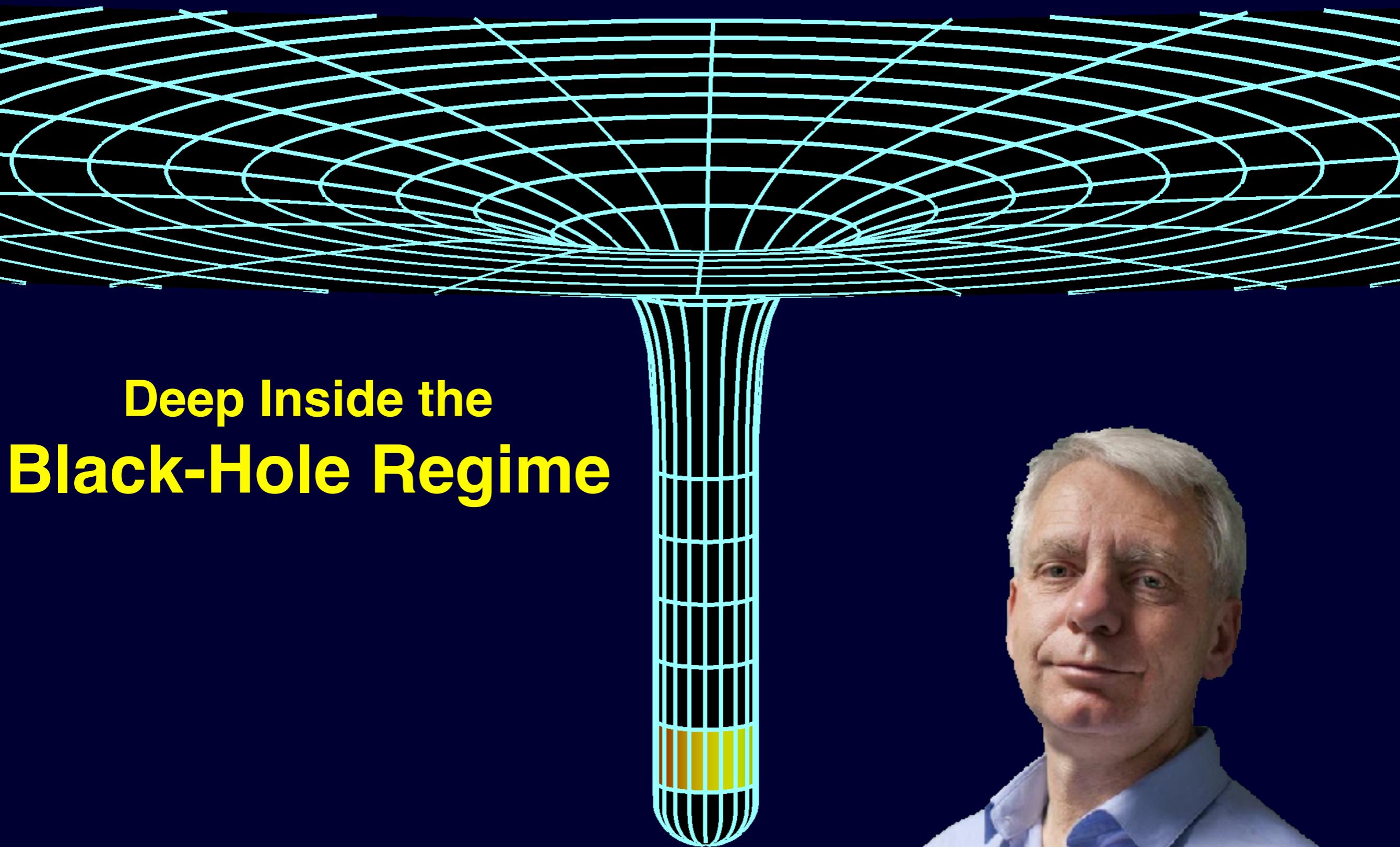


Microstate Geometries



Nick Warner, HullFest, April 28, 2017

Chris Hull

Chris Hull

Chris Hull

CHRIS HULL

WEEKDAYS

4PM-7PM

MEET
CHRIS HULL
“EVENTS COORDINATOR”

An Oscar Mike Production

Happy Birthday, Chris!

Outline

Microstate Geometries and Holography

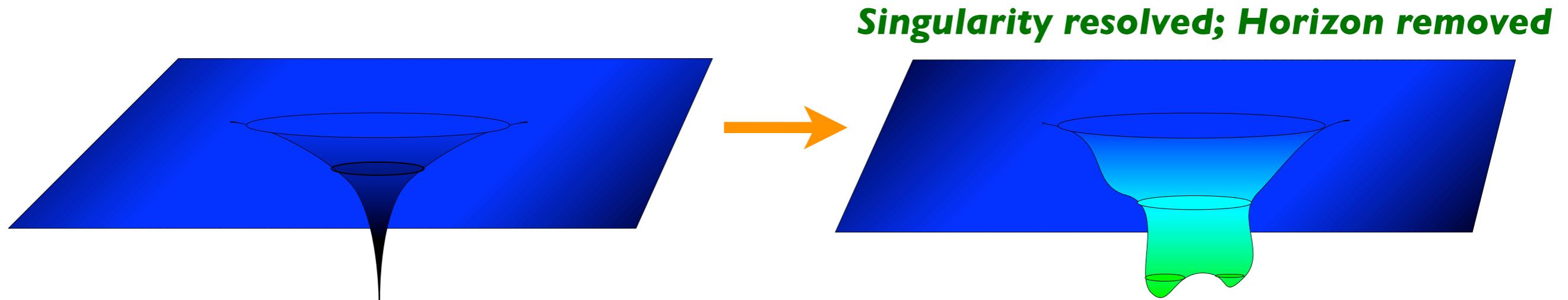
- Some families of states in the D1-D5-CFT
- Holographic duals
- The MSW string
- Holographic duals of some MSW states

Based on Collaborations with:

I. Bena, S. Giusto, E. Martinec, R. Russo, M. Shigemori, D. Turton.
arXiv:1607.03908, arXiv:1703.10171, arXiv:17summer.XXXXX

Microstate Geometry Program

Microstate Geometry \equiv Smooth, horizonless solutions to the **bosonic** sector of **supergravity** with the same asymptotic structure as a given black hole/ring



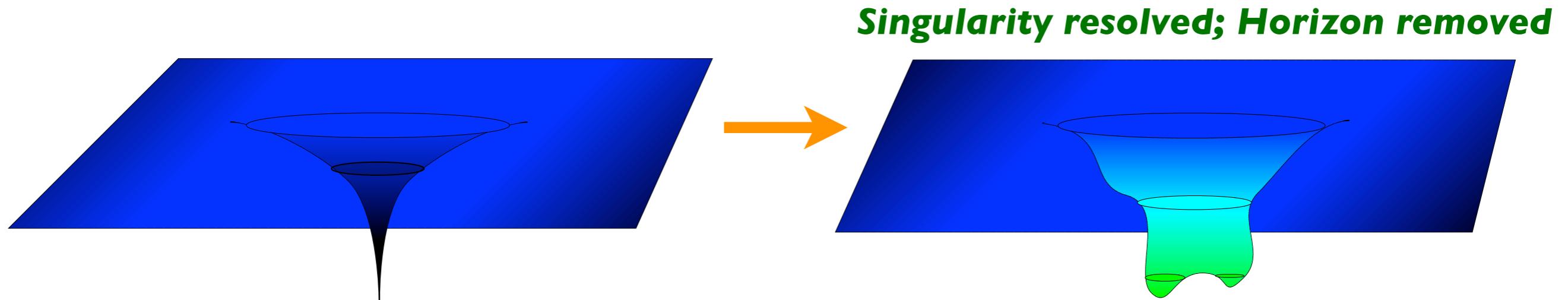
Supergravity because we seek stringy resolutions on horizon scale

- ▶ *Very long-range effects* \Rightarrow Massless limit of strings ...

What is the form of generic, BPS, time-independent horizonless, smooth solutions in supergravity?

Microstate Geometry Program

Microstate Geometry \equiv Smooth, horizonless solutions to the **bosonic** sector of **supergravity** with the same asymptotic structure as a given black hole/ring



Supergravity because we seek stringy resolutions on horizon scale

- ▶ *Very long-range effects* \Rightarrow Massless limit of strings ...

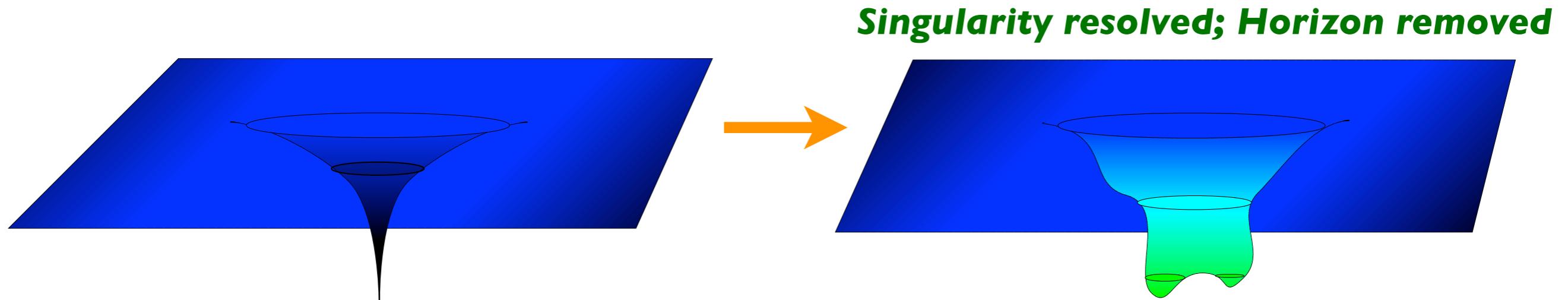
What is the form of generic, BPS, time-independent horizonless, smooth solutions in supergravity?

Microstate Geometries

- **A Mechanism to support structure at the horizon scale**

Microstate Geometry Program

Microstate Geometry \equiv Smooth, horizonless solutions to the **bosonic** sector of **supergravity** with the same asymptotic structure as a given black hole/ring



Supergravity because we seek stringy resolutions on horizon scale

- ▶ *Very long-range effects* \Rightarrow Massless limit of strings ...

What is the form of generic, BPS, time-independent horizonless, smooth solutions in supergravity?

Microstate Geometries

- **A Mechanism to support structure at the horizon scale**
- **How much of the microstate structure can supergravity encode?**

Black-Hole Microstates and CFT's

Black-Hole Microstates and CFT's

- **D1-D5 CFT:** A (4,4) supersymmetric CFT with $c = 6 N_1 N_5$

$\frac{1}{4}$ BPS states = (R,R)-ground states

$\frac{1}{8}$ BPS states = $\underbrace{(\text{any left-moving state}, \text{R ground state})}_{N_P}$

Strominger-Vafa state counting for BPS black hole in five dimensions:

$$S = 2\pi \sqrt{N_1 N_5 N_P}$$

Black-Hole Microstates and CFT's

- **D1-D5 CFT:** A (4,4) supersymmetric CFT with $c = 6 N_1 N_5$

$\frac{1}{4}$ BPS states = (R,R)-ground states

$\frac{1}{8}$ BPS states = $\underbrace{(\text{any left-moving state}, \text{R ground state})}_{N_P}$

Strominger-Vafa state counting for BPS black hole in five dimensions:

$$S = 2\pi \sqrt{N_1 N_5 N_P}$$

- **MSW String:** A (0,4) supersymmetric CFT *(Maldacena-Strominger-Witten)*

M5 brane wrapping a divisor in a **CY₃**. Dual class, $P \in H^2(\text{CY}_3, \mathbb{Z})$

MSW string CFT lives on remaining (1+1) dimensions of M5 brane

Central charge $c = 6 D$, $D = \frac{1}{6} \int_{CY_3} P^3$

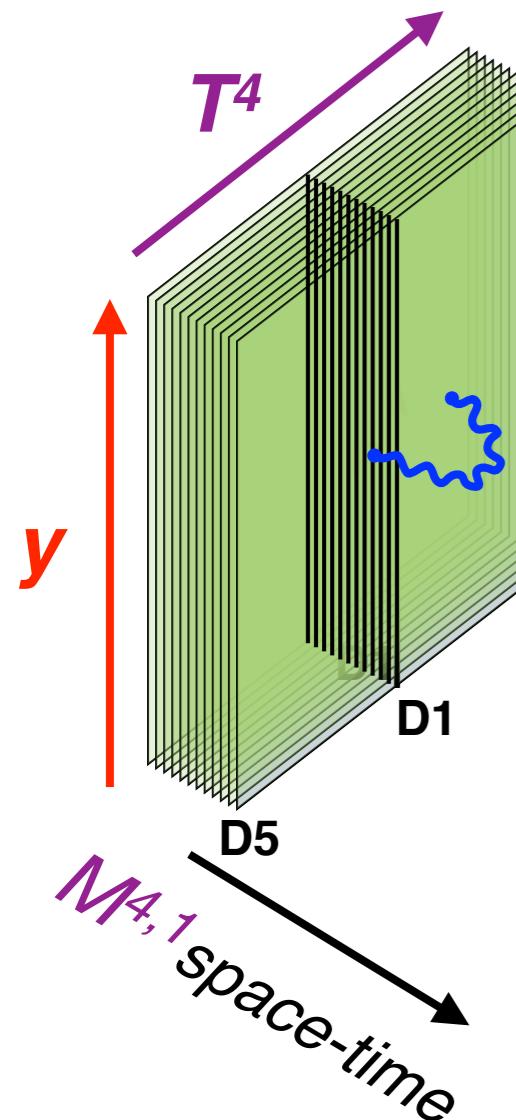
State counting for BPS black hole in four dimensions: $S = 2\pi \sqrt{D N_P}$

One Focus of the Microstate Geometry Program

Describe the strongly coupled gravity duals of these CFT states.

To what extent can these CFT states be captured in supergravity?

The D1-D5 CFT

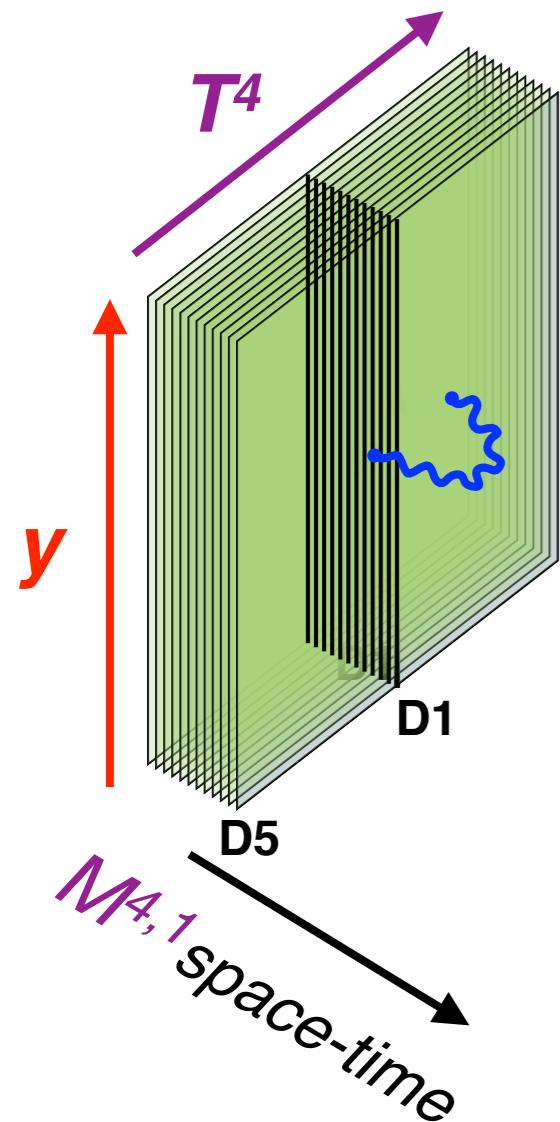


Open D1-D5 superstrings moving in T^4
with $N \equiv N_1 N_5$ Chan-Paton labels: $(T^4)^N / S_N$

\Rightarrow CFT on common D1-D5 direction, $(t, y) \Leftrightarrow (u, v)$
(4,4) supersymmetric CFT with $c = 6 N_1 N_5$

$$y \equiv y + 2\pi R$$

The D1-D5 CFT

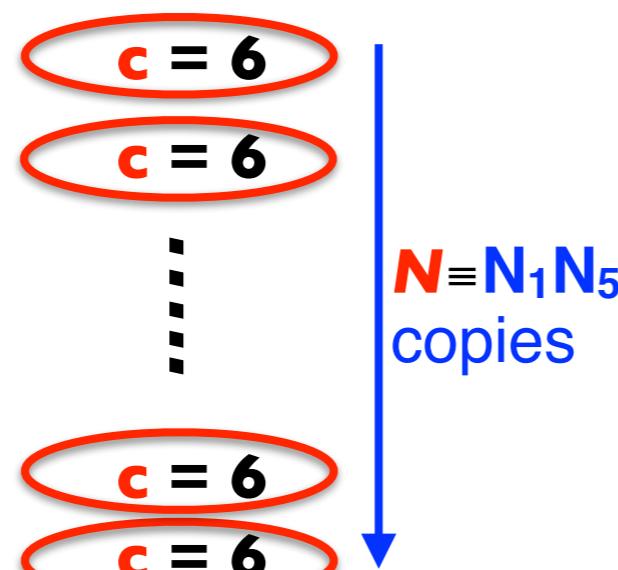


Open D1-D5 superstrings moving in T^4
with $N \equiv N_1 N_5$ Chan-Paton labels: $(T^4)^N / S_N$

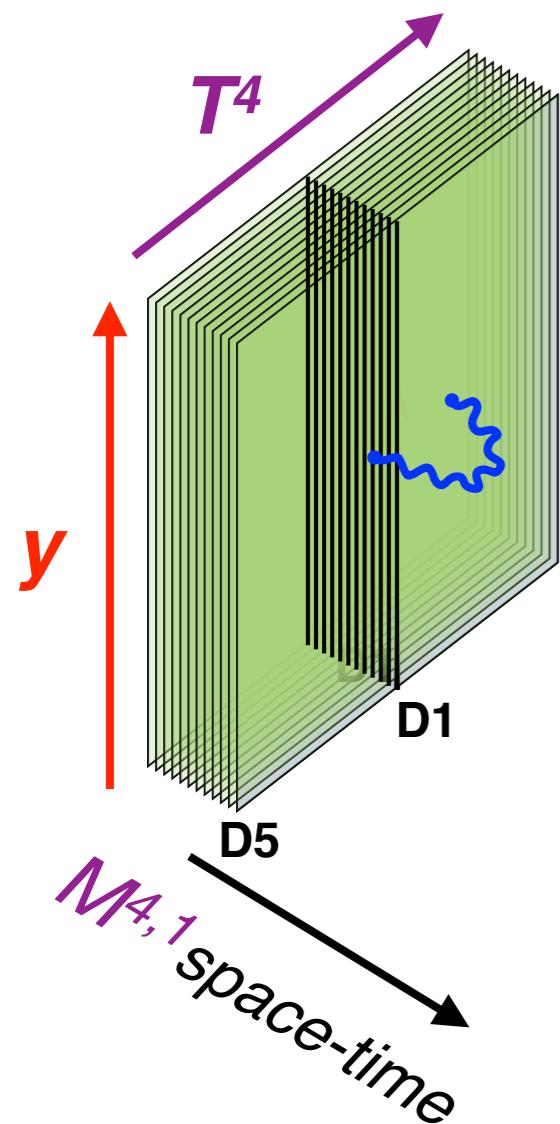
\Rightarrow CFT on common D1-D5 direction, $(t, y) \Leftrightarrow (u, v)$
(4,4) supersymmetric CFT with $c = 6 N_1 N_5$

$$y \equiv y + 2\pi R$$

Maximally spinning RR-ground state:



The D1-D5 CFT

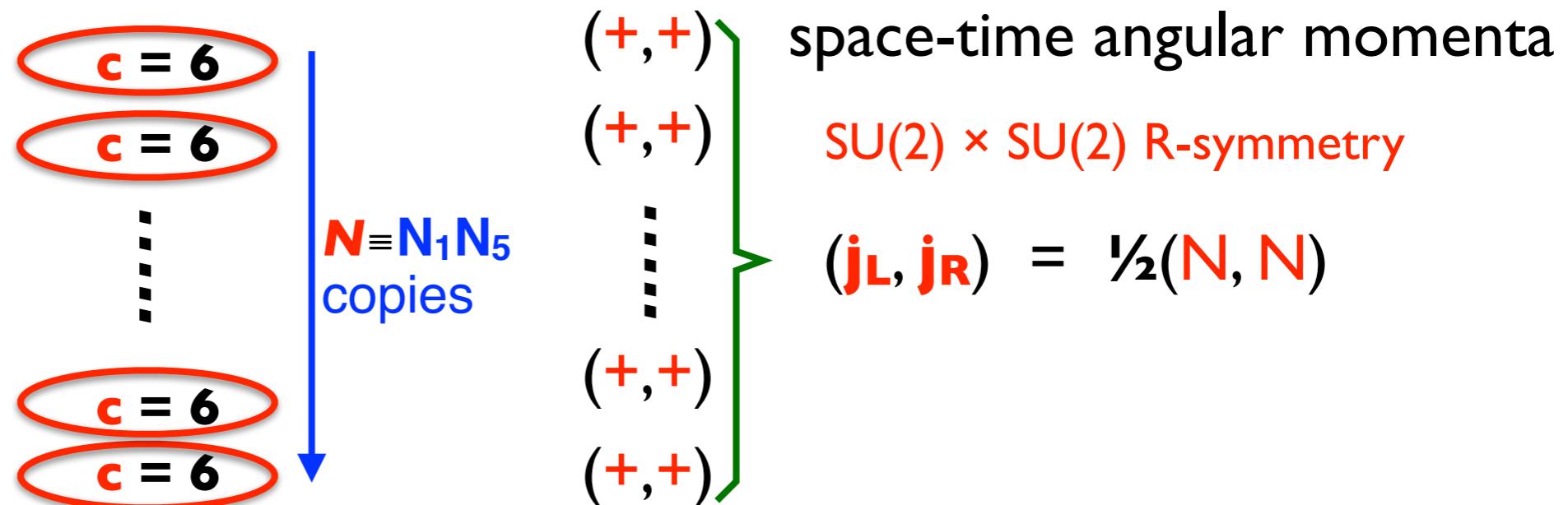


Open D1-D5 superstrings moving in T^4
with $N \equiv N_1 N_5$ Chan-Paton labels: $(T^4)^N / S_N$

\Rightarrow CFT on common D1-D5 direction, $(t, y) \Leftrightarrow (u, v)$
(4,4) supersymmetric CFT with $c = 6 N_1 N_5$

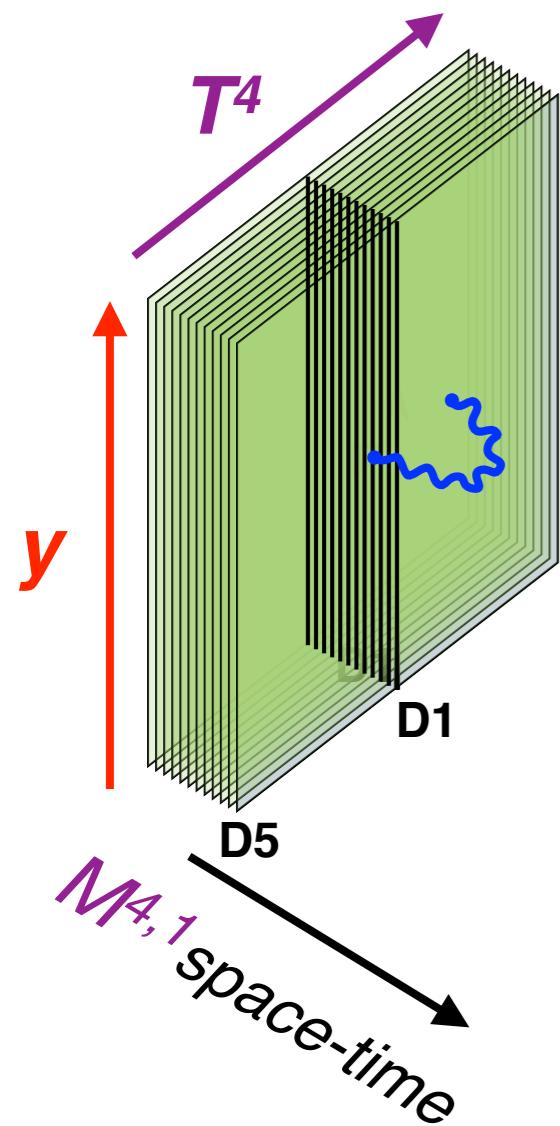
$$y \equiv y + 2\pi R$$

Maximally spinning RR-ground state:



The D1-D5 CFT

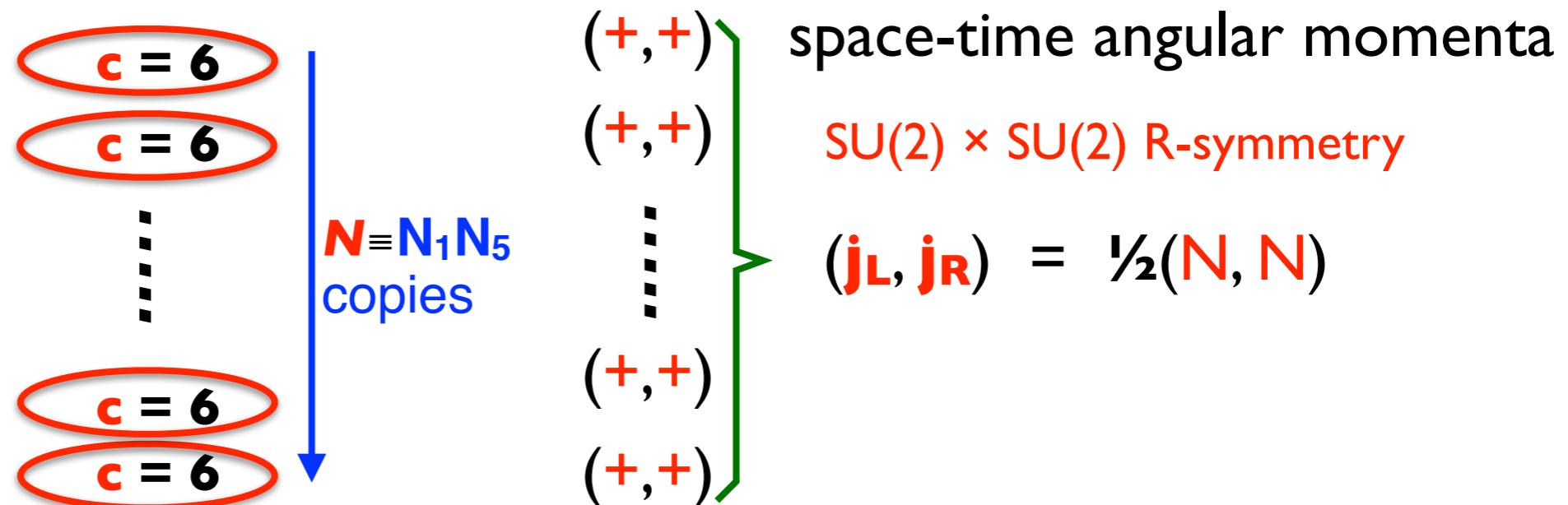
Open D1-D5 superstrings moving in T^4
with $N \equiv N_1 N_5$ Chan-Paton labels: $(T^4)^N / S_N$



\Rightarrow CFT on common D1-D5 direction, $(t, y) \Leftrightarrow (u, v)$
(4,4) supersymmetric CFT with $c = 6 N_1 N_5$

$$y \equiv y + 2\pi R$$

Maximally spinning RR-ground state:



Holographic dual: Maximally spinning supertube in $R^{4,1}$

Supertube profile spins out into $M^{4,1}$ space-time

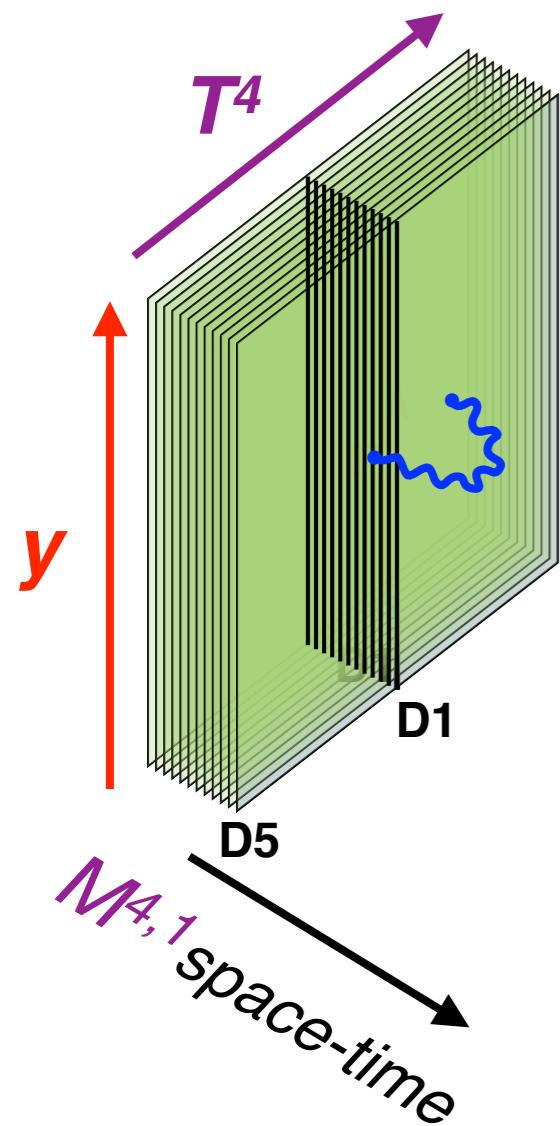
$$(g_1(v), g_2(v), g_3(v), g_4(v)) \in \mathbb{R}^4$$

$$g_1(v) + i g_2(v) = a e^{2\pi i v / R}$$

$$g_3(v) = g_4(v) = 0$$

The D1-D5 CFT

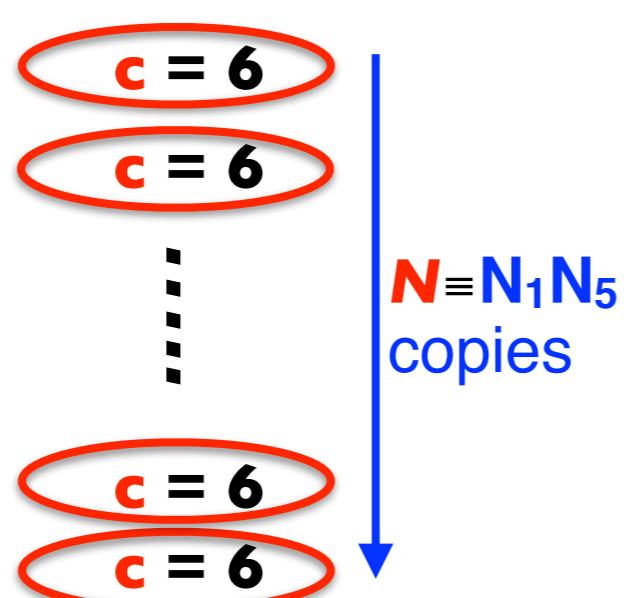
Open D1-D5 superstrings moving in T^4
with $N \equiv N_1 N_5$ Chan-Paton labels: $(T^4)^N / S_N$



\Rightarrow CFT on common **D1-D5** direction, $(t, y) \Leftrightarrow (u, v)$
(4,4) supersymmetric CFT with $c = 6 N_1 N_5$

$$y \equiv y + 2\pi R$$

Maximally spinning RR-ground state:



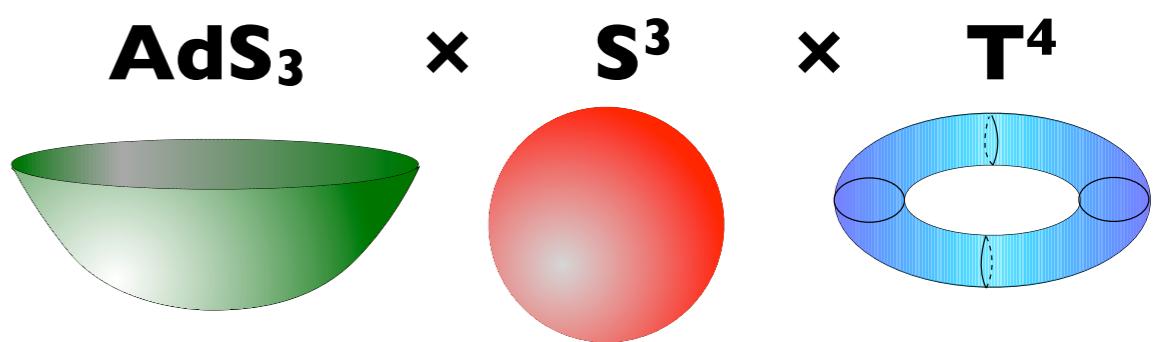
$(+, +)$ space-time angular momenta
 $(+, +)$ $SU(2) \times SU(2)$ R-symmetry
 \vdots
 $(j_L, j_R) = \frac{1}{2}(N, N)$

Holographic dual: Maximally spinning supertube in $R^{4,1}$

Supertube profile spins out into $M^{4,1}$ space-time

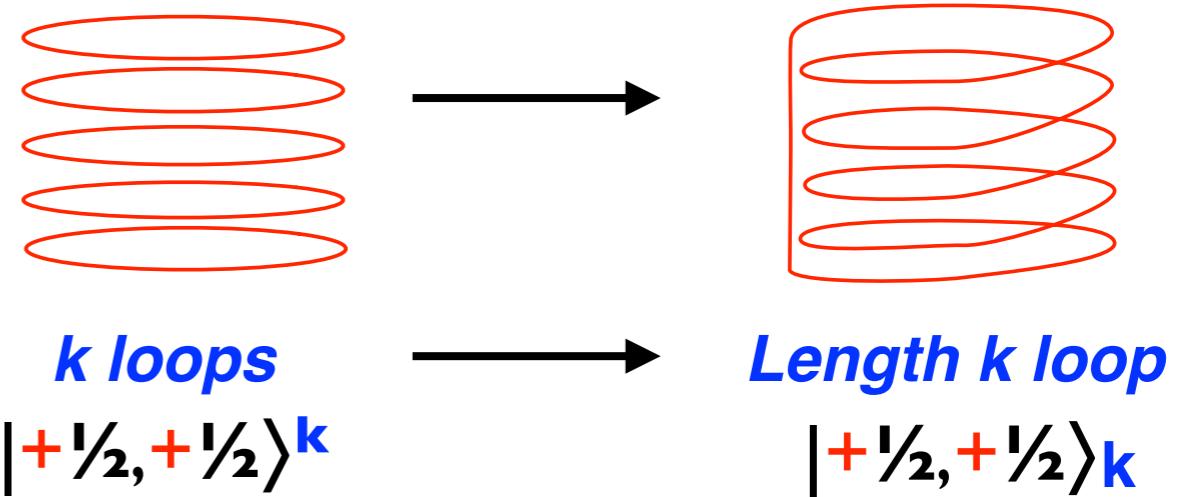
$$Q_1 Q_5 = R^2 a^2$$

$$\left. \begin{aligned} (g_1(v), g_2(v), g_3(v), g_4(v)) &\in \mathbb{R}^4 \\ g_1(v) + i g_2(v) &= a e^{2\pi i v / R} \\ g_3(v) &= g_4(v) = 0 \end{aligned} \right\} \xrightarrow{\text{back-react}}$$



More general $\frac{1}{4}$ BPS profiles

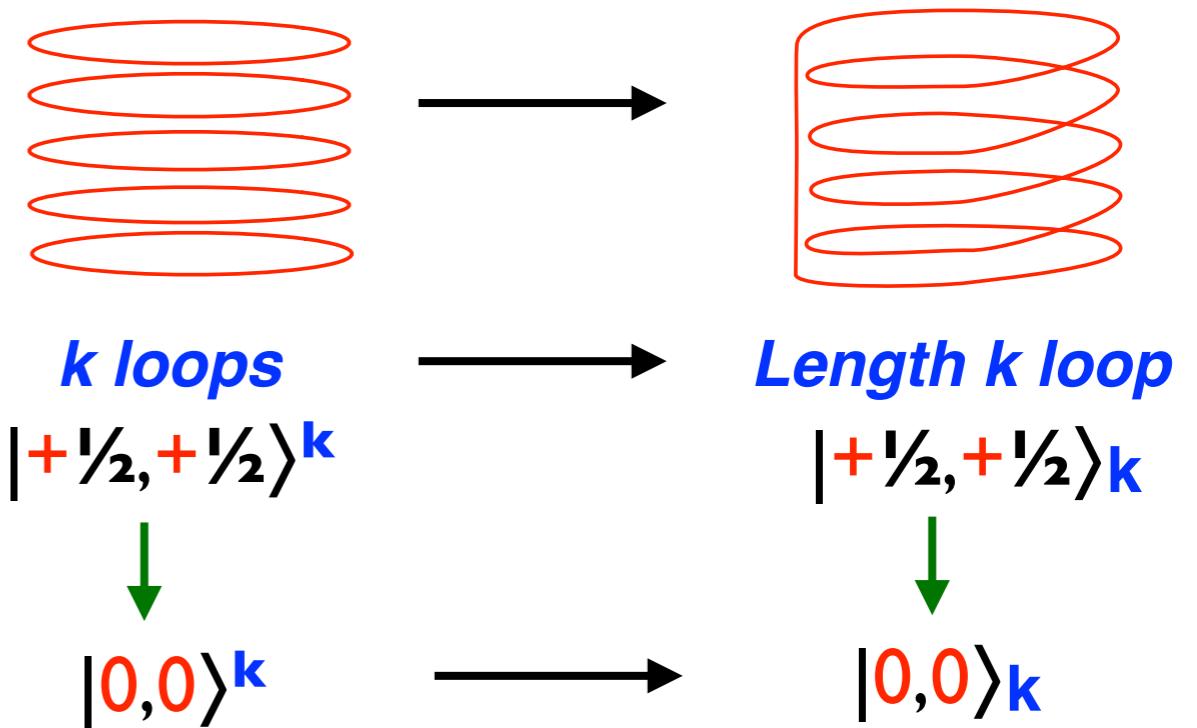
Orbifold CFT: k twisted sector



More general $\frac{1}{4}$ BPS profiles

Orbifold CFT: k twisted sector

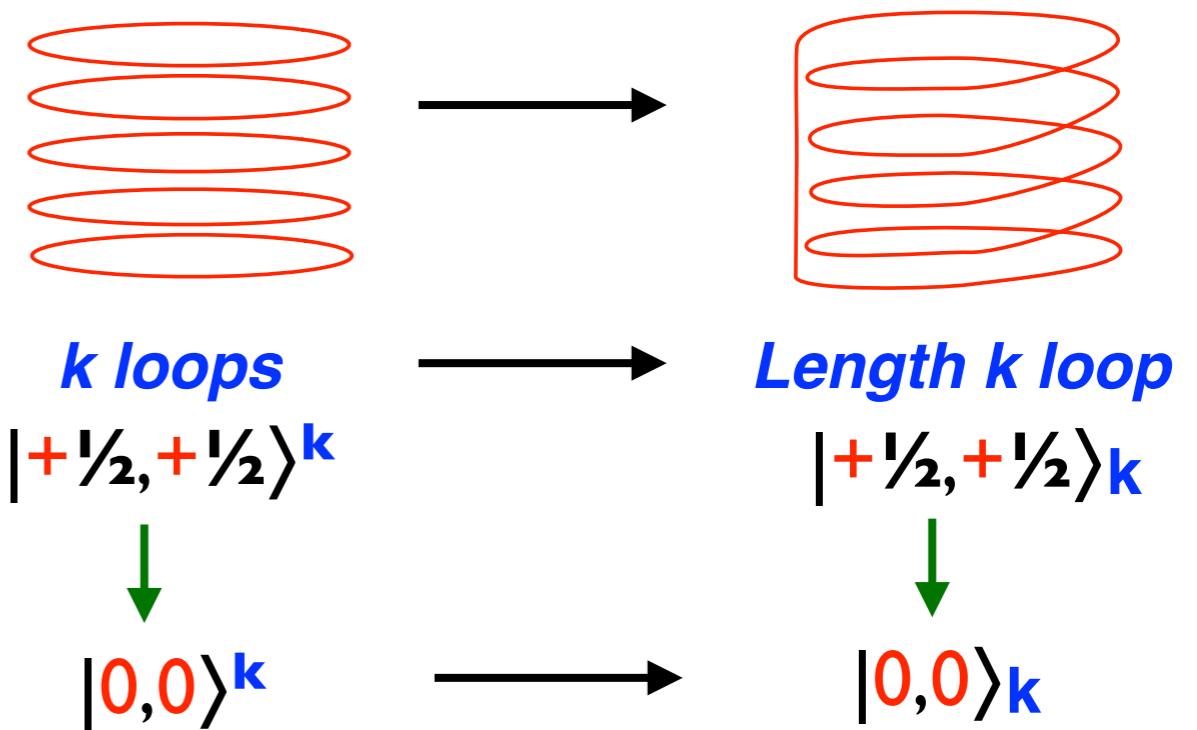
Act with fermion zero modes



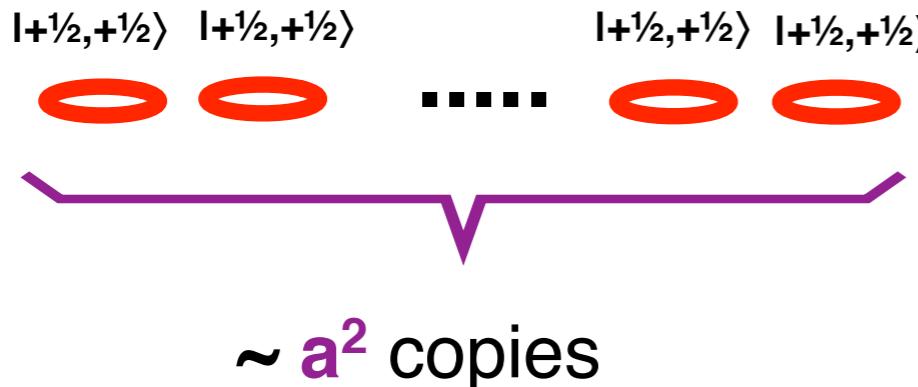
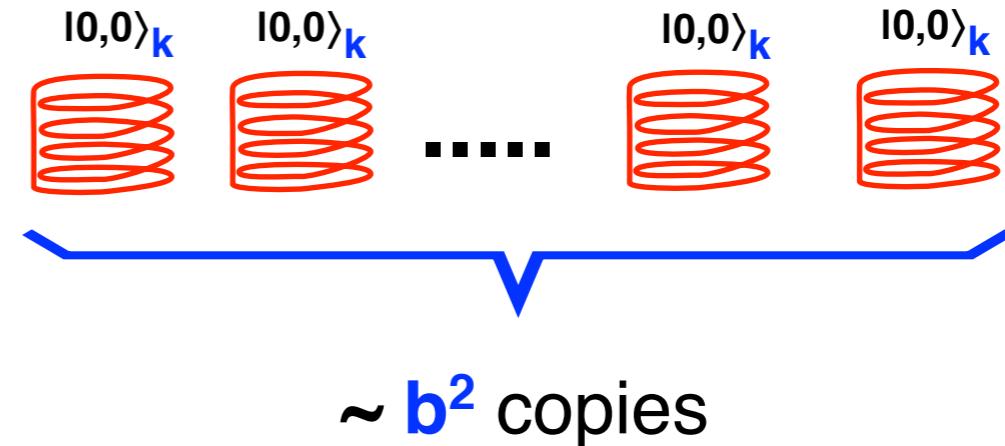
More general $\frac{1}{4}$ BPS profiles

Orbifold CFT: \mathbf{k} twisted sector

Act with fermion zero modes



More general class of D1-D5 ground state



Holographic dual supertube profile

$$g_1(v) + i g_2(v) = \mathbf{a} e^{2\pi i \mathbf{v}/R}$$

$$“g_5(v)“ = \mathbf{b} \sin(2\pi \mathbf{k} \mathbf{v}/R)$$

Partitioning of charges:

$$Q_1 Q_5 = R^2 (\mathbf{a}^2 + \mathbf{b}^2)$$

Families $\frac{1}{8}$ BPS states in the D1-D5-P system

Generic $\frac{1}{8}$ BPS state: Add general left-moving excitations

Momentum charge, $Q_P = L_{0, \text{left}}$ $S = 2\pi \sqrt{Q_1 Q_5 Q_P}$ (Strominger-Vafa)

Families $\frac{1}{8}$ BPS states in the D1-D5-P system

Generic $\frac{1}{8}$ BPS state: Add general left-moving excitations

$$\text{Momentum charge, } Q_P = L_{0,\text{left}} \quad S = 2\pi \sqrt{Q_1 Q_5 Q_P} \quad (\text{Strominger-Vafa})$$

Very special families of momentum excitations: “Supergraviton gas”

$$(|+\frac{1}{2}, +\frac{1}{2}\rangle_1)^{N_0} \otimes \left(\frac{1}{m! n!} (J_{-1}^+)^m (L_{-1} - J_{-1}^3)^n |00\rangle_k \right)^{N_{k,m,n}}$$

$$N_0 + \mathbf{k} N_{k,m,n} = N \equiv N_1 N_5$$

Families $\frac{1}{8}$ BPS states in the D1-D5-P system

Generic $\frac{1}{8}$ BPS state: Add general left-moving excitations

$$\text{Momentum charge, } Q_P = L_{0,\text{left}} \quad S = 2\pi \sqrt{Q_1 Q_5 Q_P} \quad (\text{Strominger-Vafa})$$

Very special families of momentum excitations: “Supergraviton gas”

$$(|+\frac{1}{2}, +\frac{1}{2}\rangle_1)^{N_0} \otimes \left(\frac{1}{m! n!} (J_{-1}^+)^m (L_{-1} - J_{-1}^3)^n |00\rangle_k \right)^{N_{k,m,n}}$$

$$N_0 + \mathbf{k} N_{k,m,n} = N \equiv N_1 N_5$$

Quantum numbers

$$\text{Define } \mathcal{N} = \frac{N_1 N_5}{a^2 + b^2}$$

$$j_L = \frac{1}{2} \mathcal{N} \left(\mathbf{a}^2 + \frac{m}{k} \mathbf{b}^2 \right), \quad \tilde{j}_R = \frac{1}{2} \mathcal{N} \mathbf{a}^2, \quad N_P = \frac{1}{2} \mathcal{N} \frac{m+n}{k} \mathbf{b}^2$$

$$Q_1 Q_5 = R^2 (\mathbf{a}^2 + \mathbf{b}^2)$$

Families $\frac{1}{8}$ BPS states in the D1-D5-P system

Generic $\frac{1}{8}$ BPS state: Add general left-moving excitations

Momentum charge, $Q_P = L_{0,\text{left}}$ $S = 2\pi \sqrt{Q_1 Q_5 Q_P}$ (Strominger-Vafa)

Very special families of momentum excitations: “Supergraviton gas”

$$(|+\frac{1}{2}, +\frac{1}{2}\rangle_1)^{N_0} \otimes \left(\frac{1}{m! n!} (J_{-1}^+)^m (L_{-1} - J_{-1}^3)^n |00\rangle_k \right)^{N_{k,m,n}}$$

$$N_0 + \mathbf{k} N_{k,m,n} = N \equiv N_1 N_5$$

Quantum numbers

Define $\mathcal{N} = \frac{N_1 N_5}{a^2 + b^2}$

$$j_L = \frac{1}{2} \mathcal{N} \left(\mathbf{a}^2 + \frac{m}{k} \mathbf{b}^2 \right), \quad \tilde{j}_R = \frac{1}{2} \mathcal{N} \mathbf{a}^2, \quad N_P = \frac{1}{2} \mathcal{N} \frac{m+n}{k} \mathbf{b}^2$$

D1-D5 $|+\frac{1}{2}, +\frac{1}{2}\rangle$ residue

$$Q_1 Q_5 = R^2 (\mathbf{a}^2 + \mathbf{b}^2)$$

Families $\frac{1}{8}$ BPS states in the D1-D5-P system

Generic $\frac{1}{8}$ BPS state: Add general left-moving excitations

Momentum charge, $Q_P = L_{0,\text{left}}$ $S = 2\pi \sqrt{Q_1 Q_5 Q_P}$ (Strominger-Vafa)

Very special families of momentum excitations: “Supergraviton gas”

$$(|+\frac{1}{2}, +\frac{1}{2}\rangle_1)^{N_0} \otimes \left(\frac{1}{m! n!} (J_{-1}^+)^m (L_{-1} - J_{-1}^3)^n |00\rangle_k \right)^{N_{k,m,n}}$$

$$N_0 + \mathbf{k} N_{k,m,n} = N \equiv N_1 N_5$$

Quantum numbers

Define $\mathcal{N} = \frac{N_1 N_5}{a^2 + b^2}$

$$j_L = \frac{1}{2} \mathcal{N} \left(\mathbf{a}^2 + \frac{m}{k} \mathbf{b}^2 \right),$$

$$\tilde{j}_R = \frac{1}{2} \mathcal{N} \mathbf{a}^2,$$

$$N_P = \frac{1}{2} \mathcal{N} \frac{m+n}{k} \mathbf{b}^2$$

D1-D5 $|+\frac{1}{2}, +\frac{1}{2}\rangle$ residue

$$Q_1 Q_5 = R^2 (\mathbf{a}^2 + \mathbf{b}^2)$$

Families $\frac{1}{8}$ BPS states in the D1-D5-P system

Generic $\frac{1}{8}$ BPS state: Add general left-moving excitations

Momentum charge, $Q_P = L_{0,\text{left}}$ $S = 2\pi \sqrt{Q_1 Q_5 Q_P}$ (Strominger-Vafa)

Very special families of momentum excitations: “Supergraviton gas”

$$(|+\frac{1}{2}, +\frac{1}{2}\rangle_1)^{N_0} \otimes \left(\frac{1}{m! n!} (J_{-1}^+)^m (L_{-1} - J_{-1}^3)^n |00\rangle_k \right)^{N_{k,m,n}}$$

$$N_0 + \mathbf{k} N_{k,m,n} = N \equiv N_1 N_5$$

Quantum numbers

Define $\mathcal{N} = \frac{N_1 N_5}{a^2 + b^2}$

$$j_L = \frac{1}{2} \mathcal{N} \left(\mathbf{a}^2 + \frac{m}{k} \mathbf{b}^2 \right),$$

$$\tilde{j}_R = \frac{1}{2} \mathcal{N} \mathbf{a}^2,$$

$$N_P = \frac{1}{2} \mathcal{N} \frac{m+n}{k} \mathbf{b}^2$$

D1-D5 $|+\frac{1}{2}, +\frac{1}{2}\rangle$ residue

$$Q_1 Q_5 = R^2 (\mathbf{a}^2 + \mathbf{b}^2)$$

Families $\frac{1}{8}$ BPS states in the D1-D5-P system

Generic $\frac{1}{8}$ BPS state: Add general left-moving excitations

Momentum charge, $Q_P = L_{0,\text{left}}$ $S = 2\pi \sqrt{Q_1 Q_5 Q_P}$ (Strominger-Vafa)

Very special families of momentum excitations: “Supergraviton gas”

$$(|+\frac{1}{2}, +\frac{1}{2}\rangle_1)^{N_0} \otimes \left(\frac{1}{m! n!} (J_{-1}^+)^m (L_{-1} - J_{-1}^3)^n |00\rangle_k \right)^{N_{k,m,n}}$$

$$N_0 + \mathbf{k} N_{k,m,n} = N \equiv N_1 N_5$$

Quantum numbers

Define $\mathcal{N} = \frac{N_1 N_5}{a^2 + b^2}$

$$j_L = \frac{1}{2} \mathcal{N} \left(\mathbf{a}^2 + \frac{m}{k} \mathbf{b}^2 \right),$$

$$\tilde{j}_R = \frac{1}{2} \mathcal{N} \mathbf{a}^2,$$

$$N_P = \frac{1}{2} \mathcal{N} \frac{m+n}{k} \mathbf{b}^2$$

D1-D5 $|+\frac{1}{2}, +\frac{1}{2}\rangle$ residue

$$Q_1 Q_5 = R^2 (\mathbf{a}^2 + \mathbf{b}^2)$$

Special forms:

Adding pure momentum: $m = 0$.

Vanishing angular momentum: $m = 0, \mathbf{a} \rightarrow \mathbf{0}$.

The “Supergraviton gas”

Linearity of BPS equations \Rightarrow We know the supergravity duals of arbitrary superpositions of states of the form:

$$(|+\frac{1}{2}, +\frac{1}{2}\rangle_1)^{N_0} \otimes \left[\bigotimes_{k_i, m_i, n_i} \left(\frac{1}{m_i! n_i!} (J_{-1}^+)^{m_i} (L_{-1} - J_{-1}^3)^{n_i} |00\rangle_{k_i} \right)^{N_{k_i, m_i, n_i}} \right]$$

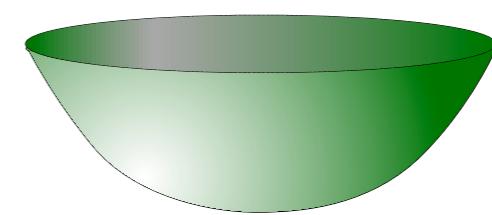
The “Supergraviton gas”

Linearity of BPS equations \Rightarrow We know the supergravity duals of arbitrary superpositions of states of the form:

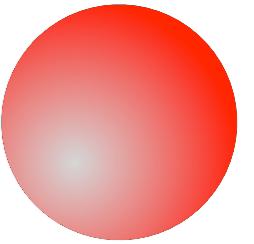
$$(|+\frac{1}{2}, +\frac{1}{2}\rangle_1)^{N_0} \otimes \left[\bigotimes_{k_i, m_i, n_i} \left(\frac{1}{m_i! n_i!} (J_{-1}^+)^{m_i} (L_{-1} - J_{-1}^3)^{n_i} |00\rangle_{k_i} \right)^{N_{k_i, m_i, n_i}} \right]$$

Holographic duals

Add momentum and angular momentum excitations to D1-D5 profiles:



$$\text{AdS}_3 (u, \textcolor{blue}{v}, r)$$



$$S^3 (\theta, \textcolor{blue}{\psi}, \phi)$$

$$g_1(v) + i g_2(v) = \textcolor{violet}{a} e^{2\pi i \textcolor{red}{v}/R} \quad \text{“}g_5(v)\text{”} = \textcolor{blue}{b} \sin(2\pi \mathbf{k} \textcolor{red}{v}/R)$$

to give: $j_L = \frac{1}{2} \mathcal{N} \left(\textcolor{violet}{a}^2 + \frac{m}{k} \textcolor{blue}{b}^2 \right), \quad \tilde{j}_R = \frac{1}{2} \mathcal{N} \textcolor{violet}{a}^2, \quad N_P = \frac{1}{2} \mathcal{N} \frac{m+n}{k} \textcolor{blue}{b}^2$

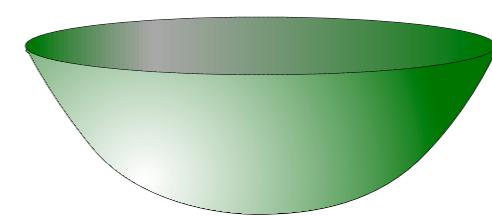
The “Supergraviton gas”

Linearity of BPS equations \Rightarrow We know the supergravity duals of arbitrary superpositions of states of the form:

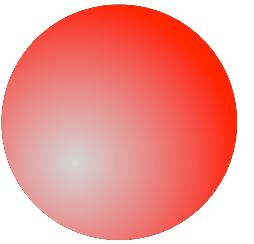
$$(|+\frac{1}{2}, +\frac{1}{2}\rangle_1)^{N_0} \otimes \left[\bigotimes_{k_i, m_i, n_i} \left(\frac{1}{m_i! n_i!} (J_{-1}^+)^{m_i} (L_{-1} - J_{-1}^3)^{n_i} |00\rangle_{k_i} \right)^{N_{k_i, m_i, n_i}} \right]$$

Holographic duals

Add momentum and angular momentum excitations to D1-D5 profiles:



$\text{AdS}_3 (u, \textcolor{blue}{v}, r)$



$S^3 (\theta, \textcolor{blue}{\psi}, \phi)$

$$g_1(v) + i g_2(v) = \textcolor{violet}{a} e^{2\pi i \textcolor{red}{v}/R} \quad "g_5(v)" = \textcolor{blue}{b} \sin(2\pi \mathbf{k} \textcolor{red}{v}/R)$$

to give: $j_L = \frac{1}{2} \mathcal{N} \left(\textcolor{violet}{a}^2 + \frac{m}{k} \textcolor{blue}{b}^2 \right), \quad \tilde{j}_R = \frac{1}{2} \mathcal{N} \textcolor{violet}{a}^2, \quad N_P = \frac{1}{2} \mathcal{N} \frac{m+n}{k} \textcolor{blue}{b}^2$

Three mode numbers, $(\mathbf{k}, \mathbf{m}, \mathbf{n}) \Rightarrow$ Supergravity duals depend on:

$$\chi_{\textcolor{red}{k}, \textcolor{magenta}{m}, \textcolor{red}{n}} \equiv R^{-1} (m+n) v + \frac{1}{2} (k - 2m) \psi - \frac{1}{2} k \phi$$

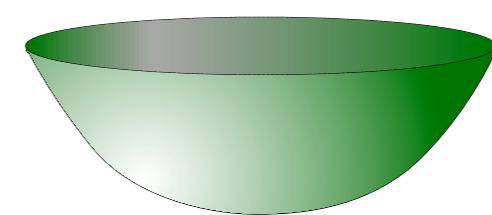
The “Supergraviton gas”

Linearity of BPS equations \Rightarrow We know the supergravity duals of arbitrary superpositions of states of the form:

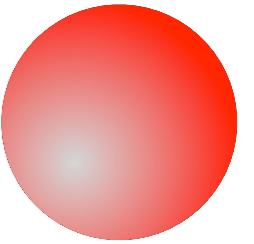
$$\left(\left|+\frac{1}{2}, +\frac{1}{2}\right\rangle_1\right)^{N_0} \otimes \left[\bigotimes_{k_i, m_i, n_i} \left(\frac{1}{m_i! n_i!} (J_{-1}^+)^{m_i} (L_{-1} - J_{-1}^3)^{n_i} \left|00\right\rangle_{k_i} \right)^{N_{k_i, m_i, n_i}} \right]$$

Holographic duals

Add momentum and angular momentum excitations to D1-D5 profiles:



$$\text{AdS}_3 (u, \mathbf{v}, r)$$



$$S^3 (\theta, \Psi, \Phi)$$

$$g_1(v) + i g_2(v) = \mathbf{a} e^{2\pi i \mathbf{v}/R} \quad "g_5(v)" = \mathbf{b} \sin(2\pi \mathbf{k} \mathbf{v}/R)$$

to give: $j_L = \frac{1}{2} \mathcal{N} \left(\mathbf{a}^2 + \frac{m}{k} \mathbf{b}^2 \right), \quad \tilde{j}_R = \frac{1}{2} \mathcal{N} \mathbf{a}^2, \quad N_P = \frac{1}{2} \mathcal{N} \frac{m+n}{k} \mathbf{b}^2$

Three mode numbers, (k, m, n) \Rightarrow Supergravity duals depend on:

$$\chi_{k, m, n} \equiv R^{-1} (m+n) v + \frac{1}{2} (k - 2m) \psi - \frac{1}{2} k \phi$$

k-mode: $(\Psi - \phi)$ $\Leftrightarrow j_L = j_R$ responsible for $j_L = \tilde{j}_R = \frac{1}{2} \mathcal{N} \mathbf{a}^2$

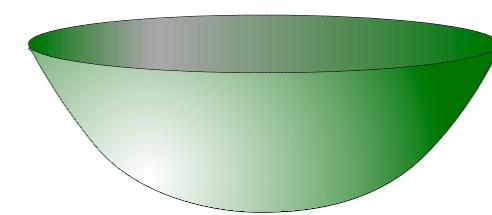
The “Supergraviton gas”

Linearity of BPS equations \Rightarrow We know the supergravity duals of arbitrary superpositions of states of the form:

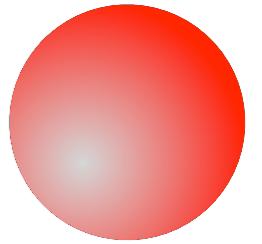
$$\left(\left|+\frac{1}{2}, +\frac{1}{2}\right\rangle_1\right)^{N_0} \otimes \left[\bigotimes_{k_i, m_i, n_i} \left(\frac{1}{m_i! n_i!} (J_{-1}^+)^{m_i} (L_{-1} - J_{-1}^3)^{n_i} |00\rangle_{k_i} \right)^{N_{k_i, m_i, n_i}} \right]$$

Holographic duals

Add momentum and angular momentum excitations to D1-D5 profiles:



$$\text{AdS}_3 (u, \mathbf{v}, r)$$



$$S^3 (\theta, \Psi, \Phi)$$

$$g_1(v) + i g_2(v) = \mathbf{a} e^{2\pi i \mathbf{v}/R} \quad "g_5(v)" = \mathbf{b} \sin(2\pi \mathbf{k} \mathbf{v}/R)$$

to give: $j_L = \frac{1}{2} \mathcal{N} \left(\mathbf{a}^2 + \frac{m}{k} \mathbf{b}^2 \right), \quad \tilde{j}_R = \frac{1}{2} \mathcal{N} \mathbf{a}^2, \quad N_P = \frac{1}{2} \mathcal{N} \frac{m+n}{k} \mathbf{b}^2$

Three mode numbers, (k, m, n) \Rightarrow Supergravity duals depend on:

$$\chi_{k, m, n} \equiv R^{-1} (m+n)v + \frac{1}{2} (k-2m)\psi - \frac{1}{2} k\phi$$

k-mode: $(\Psi - \phi)$ $\Leftrightarrow j_L = j_R$ responsible for $j_L = \tilde{j}_R = \frac{1}{2} \mathcal{N} \mathbf{a}^2$

m-mode $(\mathbf{v} - \Psi)$ $\Leftrightarrow j_L, N_P$ responsible for $j_L = \frac{1}{2} \mathcal{N} \frac{m}{k} \mathbf{b}^2$ $N_P = \frac{1}{2} \mathcal{N} \frac{m}{k} \mathbf{b}^2$

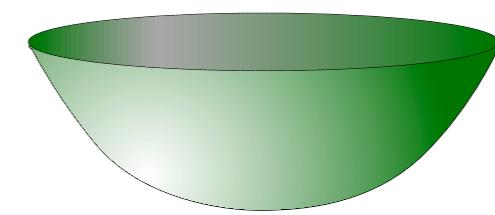
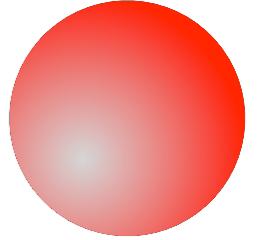
The “Supergraviton gas”

Linearity of BPS equations \Rightarrow We know the supergravity duals of arbitrary superpositions of states of the form:

$$(|+\frac{1}{2}, +\frac{1}{2}\rangle_1)^{N_0} \otimes \left[\bigotimes_{k_i, m_i, n_i} \left(\frac{1}{m_i! n_i!} (J_{-1}^+)^{m_i} (L_{-1} - J_{-1}^3)^{n_i} |00\rangle_{k_i} \right)^{N_{k_i, m_i, n_i}} \right]$$

Holographic duals

Add momentum and angular momentum excitations to D1-D5 profiles:



$\text{AdS}_3 (u, \mathbf{v}, r)$

$S^3 (\theta, \Psi, \Phi)$

$$g_1(v) + i g_2(v) = \mathbf{a} e^{2\pi i \mathbf{v}/R} \quad "g_5(v)" = \mathbf{b} \sin(2\pi \mathbf{k} \mathbf{v}/R)$$

to give: $j_L = \frac{1}{2} \mathcal{N} \left(\mathbf{a}^2 + \frac{m}{k} \mathbf{b}^2 \right), \quad \tilde{j}_R = \frac{1}{2} \mathcal{N} \mathbf{a}^2, \quad N_P = \frac{1}{2} \mathcal{N} \frac{m+n}{k} \mathbf{b}^2$

Three mode numbers, (k, m, n) \Rightarrow Supergravity duals depend on:

$$\chi_{k, m, n} \equiv R^{-1} (m + n) v + \frac{1}{2} (k - 2m) \psi - \frac{1}{2} k \phi$$

k-mode: $(\Psi - \phi) \leftrightarrow j_L = j_R$ responsible for $j_L = \tilde{j}_R = \frac{1}{2} \mathcal{N} \mathbf{a}^2$

m-mode $(\mathbf{v} - \Psi) \leftrightarrow j_L, N_P$ responsible for $j_L = \frac{1}{2} \mathcal{N} \frac{m}{k} \mathbf{b}^2$ $N_P = \frac{1}{2} \mathcal{N} \frac{m}{k} \mathbf{b}^2$

n-mode $(\mathbf{v}) \leftrightarrow N_P$ responsible for $N_P = \frac{1}{2} \mathcal{N} \frac{n}{k} \mathbf{b}^2$

Building the Fluctuating **BPS** Microstate Geometries

IIB Supergravity on T^4 : Supergravity + two (anti-self-dual) tensor multiplets in six-dimensions

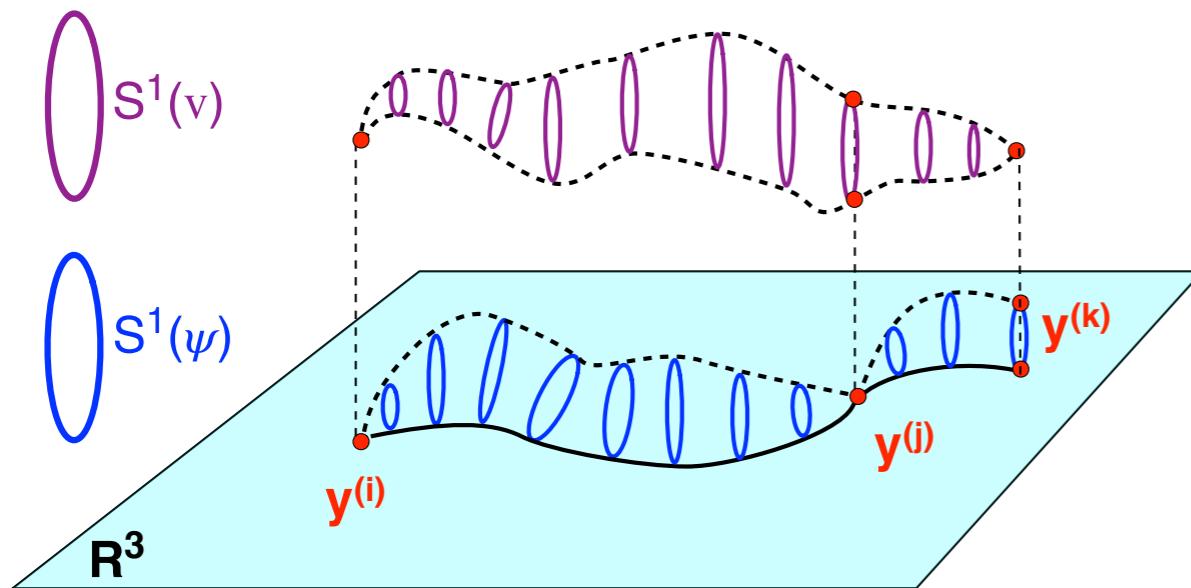
Six-dimensional metric ansatz:

(Gutowski, Martelli and Reall)

$$ds_6^2 = -\frac{2}{\sqrt{\mathcal{P}}} (dv + \beta)(du + \omega - \frac{1}{2} Z_3(dv + \beta)) + \sqrt{\mathcal{P}} V^{-1} (d\psi + A)^2 + \sqrt{\mathcal{P}} V d\vec{y} \cdot d\vec{y}$$

u = null time; (v, ψ) define a double S^1 fibration over a flat R^3 base with coordinates, y .

The scale of everything is set by the “warp factors:” **V , P and Z_3**



The non-trivial homology cycles are defined through the pinching off of the $S^1 \times S^1$ fibration at special points in the R^3 base.

Maxwell Fields

$$G^{(a)} = d \left[-\frac{1}{2} \frac{\eta^{ab} Z_b}{\mathcal{P}} (du + \omega) \wedge (dv + \beta) \right] + \frac{1}{2} \eta^{ab} *_4 D Z_b + \frac{1}{2} (dv + \beta) \wedge \Theta^{(a)}$$

$$\mathcal{P} \equiv \frac{1}{2} \eta^{ab} Z_a Z_b \equiv Z_1 Z_2 - \frac{1}{2} Z_4^2$$

Electric Potentials

Magnetic Fluxes

The BPS Equations

The BPS Equations

Layer 1: Conditions on Maxwell Fields A homogeneous **linear** system

$$\Theta^{(a)} = *_4 \Theta^{(a)}, \quad *_4 D(\partial_v Z_a) = \eta_{ab} D\Theta^{(b)}, \quad D *_4 D Z_a = -\eta_{ab} \Theta^{(b)} \wedge d\beta.$$

where $D\Phi \equiv d_{(4)}\Phi - \beta \wedge \partial_v \Phi$

$(Z_a, \Theta^{(a)})$ depend upon (r, θ) and

$$\chi_{k,m,n} \equiv R^{-1} (m+n)v + \frac{1}{2} (k-2m)\psi - \frac{1}{2} k \phi$$

General solution known!

The **BPS** Equations

Layer 1: Conditions on Maxwell Fields A homogeneous **linear** system

$$\Theta^{(a)} = *_4 \Theta^{(a)}, \quad *_4 D(\partial_v Z_a) = \eta_{ab} D\Theta^{(b)}, \quad D *_4 D Z_a = -\eta_{ab} \Theta^{(b)} \wedge d\beta.$$

where $D\Phi \equiv d_{(4)}\Phi - \beta \wedge \partial_v \Phi$

$(Z_a, \Theta^{(a)})$ depend upon (r, θ) and

$$\chi_{k,m,n} \equiv R^{-1} (m+n)v + \frac{1}{2} (k-2m)\psi - \frac{1}{2} k \phi$$

General solution known!

Layer 2: Conditions on Metric pieces An inhomogeneous **linear** system

$$ds_6^2 = -\frac{2}{\sqrt{\mathcal{P}}} (dv + \beta)(du + \omega - \frac{1}{2} Z_3(dv + \beta)) + \sqrt{\mathcal{P}} V^{-1} (d\psi + A)^2 + \sqrt{\mathcal{P}} V d\vec{y} \cdot d\vec{y}$$

$$D\omega + *_4 D\omega - Z_3 d\beta = Z_a \Theta^{(a)}$$

$$*_4 D *_4 \left(\partial_v \omega + \frac{1}{2} D Z_3 \right) = \partial_v^2 \mathcal{P} - ((\partial_v Z_1)(\partial_v Z_2) - \frac{1}{2} (\partial_v Z_4)^2) - \frac{1}{4} \eta_{ab} *_4 \Theta^{(a)} \wedge \Theta^{(b)}$$

(Z_3, ω) depend upon (r, θ) and (quadratic) products of harmonics that depend upon

$$\chi_{k_i, m_i, n_i} = R^{-1} (m_i + n_i)v + \frac{1}{2} (k_i - 2m_i)\psi - \frac{1}{2} k_i \phi$$

Interesting families of particular solutions known. General solution not known.

Linear system: Arbitrary superpositions easily constructed

A Microstate Geometry deep in the Black-Hole Regime

Add pure momentum states

$$Q_1 Q_5 = R^2 (\mathbf{a}^2 + \mathbf{b}^2)$$

$$(|+\tfrac{1}{2},+\tfrac{1}{2}\rangle_1)^{N_0} \otimes \left(\frac{1}{n!} (\mathcal{L}_{-1} - \mathcal{J}_{-1}^3)^n |00\rangle_1 \right)^{N_{1,0,n}}$$

A Microstate Geometry deep in the Black-Hole Regime

Add pure momentum states

$$Q_1 Q_5 = R^2 (\mathbf{a}^2 + \mathbf{b}^2)$$

Can make \mathbf{N}_P large, $\mathbf{j}_L = \mathbf{j}_R \rightarrow 0$

$$\left(\left| +\frac{1}{2}, +\frac{1}{2} \right\rangle_1 \right)^{N_0} \otimes \left(\frac{1}{n!} (L_{-1} - J_{-1}^3)^n |00\rangle_1 \right)^{N_{1,0,n}}$$

\downarrow

$j_L = \tilde{j}_R = \frac{1}{2} \mathcal{N} \mathbf{a}^2$

D1-D5 residue
All angular momentum

\downarrow

$N_P = \frac{1}{2} \mathcal{N} \frac{n}{k} \mathbf{b}^2$

P excitations
Angular momentum $\equiv 0$

A Microstate Geometry deep in the Black-Hole Regime

Add pure momentum states

$$Q_1 Q_5 = R^2 (\mathbf{a}^2 + \mathbf{b}^2)$$

Can make \mathbf{N}_P large, $\mathbf{j}_L = \mathbf{j}_R \rightarrow 0$

$$(|+\frac{1}{2}, +\frac{1}{2}\rangle_1)^{N_0} \otimes \left(\frac{1}{n!} (L_{-1} - J_{-1}^3)^n |00\rangle_1 \right)^{N_{1,0,n}}$$

\downarrow

$j_L = \tilde{j}_R = \frac{1}{2} \mathcal{N} \mathbf{a}^2$

\downarrow

$N_P = \frac{1}{2} \mathcal{N} \frac{n}{k} \mathbf{b}^2$

D1-D5 residue
All angular momentum

P excitations
Angular momentum $\equiv 0$

Geometry:

Flat Space \leftarrow

$\text{AdS}_3 \times \text{S}^3$

Flat Space \rightarrow

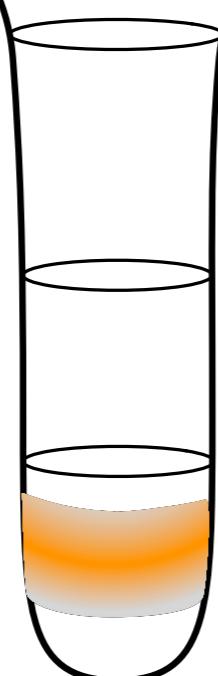
$$\ell_{\text{AdS}}^2 = \sqrt{Q_1 Q_5}$$

$$\text{BTZ} \times \text{S}^3 = \text{AdS}_2 \times \text{S}^1 \times \text{S}^3$$

$$ds_{\text{BTZ}}^2 = \ell_{\text{AdS}}^2 \left[\rho^2 (-dt^2 + dy^2) + \frac{d\rho^2}{\rho^2} + \rho_*^2 (dt + dy)^2 \right]$$

$$\rho_*^2 \sim \frac{Q_P}{Q_1 Q_5}$$

Scale of S^1 stabilizes at $\rho_* \ell_{\text{AdS}} R$



A Microstate Geometry deep in the Black-Hole Regime

Add pure momentum states

$$Q_1 Q_5 = R^2 (\mathbf{a}^2 + \mathbf{b}^2)$$

Can make \mathbf{N}_P large, $\mathbf{j}_L = \mathbf{j}_R \rightarrow 0$

$$\left(|+\frac{1}{2}, +\frac{1}{2}\rangle_1 \right)^{N_0} \otimes \left(\frac{1}{n!} (L_{-1} - J_{-1}^3)^n |00\rangle_1 \right)^{N_{1,0,n}}$$

\downarrow

$j_L = \tilde{j}_R = \frac{1}{2} \mathcal{N} \mathbf{a}^2$

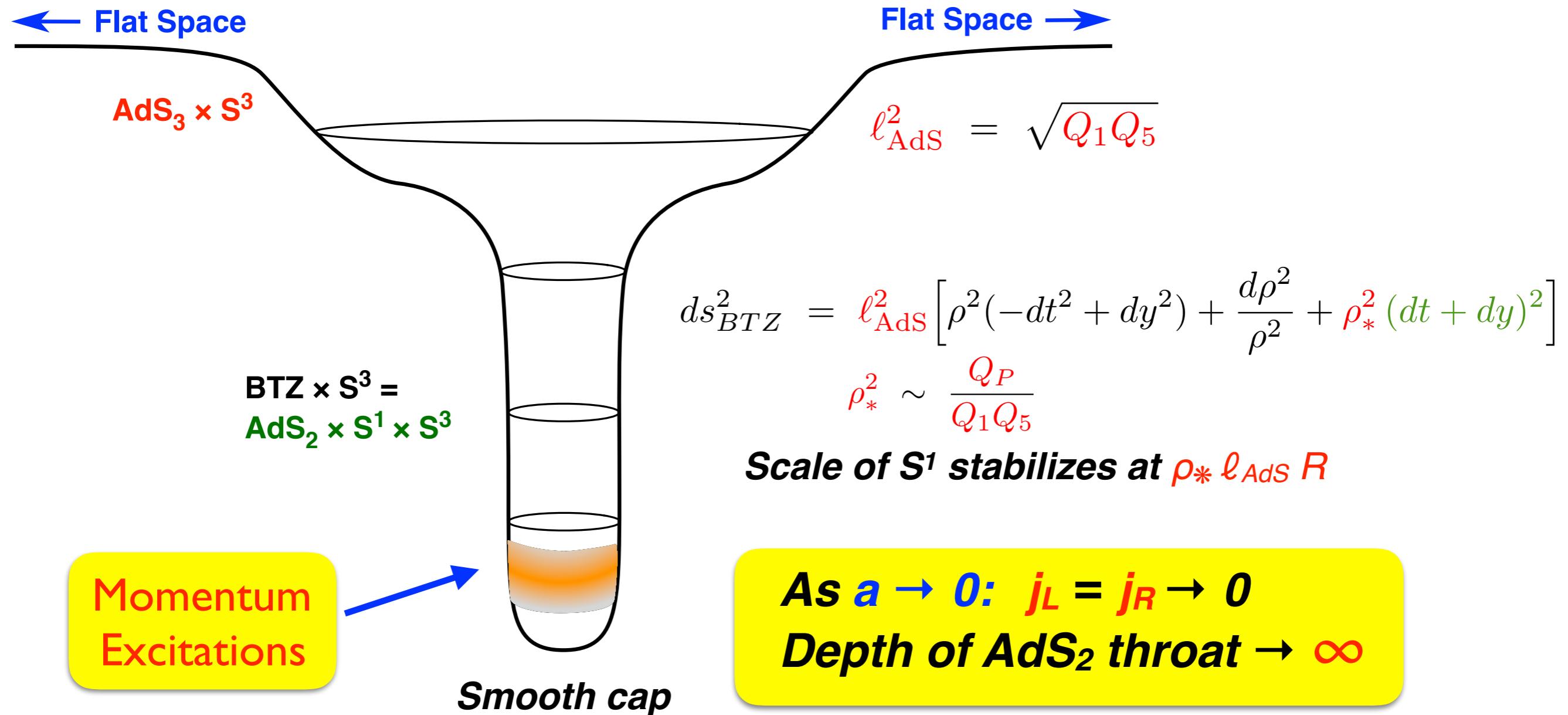
\downarrow

$N_P = \frac{1}{2} \mathcal{N} \frac{n}{k} \mathbf{b}^2$

D1-D5 residue
All angular momentum

P excitations
Angular momentum $\equiv 0$

Geometry:



Several significant results

- **First deep, scaling microstate geometry in Black-Hole regime with $j_L = j_R \rightarrow 0$**
- **Deep, scaling microstate geometry that goes to BTZ**
- **Deep, scaling \Rightarrow Arbitrarily large red-shifts**
Microstate Geometry \Rightarrow Smooth cap-off
- **Momentum excitations localize at the bottom of the BTZ throat**
- **Holographic dictionary in AdS_3 for deep AdS_2/BTZ throat**
- **Geometry dual to states counted by Strominger-Vafa**

Microstate Geometries for MSW Black Holes

The hint of interesting new families of solutions comes from:

$$\chi_{k,m,n} \equiv R^{-1} (m+n)v + \frac{1}{2} (k-2m)\psi - \frac{1}{2} k\phi$$

Microstate Geometries for MSW Black Holes

The hint of interesting new families of solutions comes from:

$$\chi_{k,m,n} \equiv R^{-1} (m+n)v + \frac{1}{2} (k-2m)\psi - \frac{1}{2} k \phi$$

For $k = 2m$ the solutions are independent of ψ , the Hopf fiber of the S^3

→ Reduction to five-dimensional microstate geometries: *capped BTZ* $\times S^2$

Microstate Geometries for MSW Black Holes

The hint of interesting new families of solutions comes from:

$$\chi_{k,m,n} \equiv R^{-1} (m+n)v + \frac{1}{2} (k-2m)\psi - \frac{1}{2} k\phi$$

For $k = 2m$ the solutions are independent of ψ , the Hopf fiber of the S^3
→ Reduction to five-dimensional microstate geometries: *capped BTZ* $\times S^2$

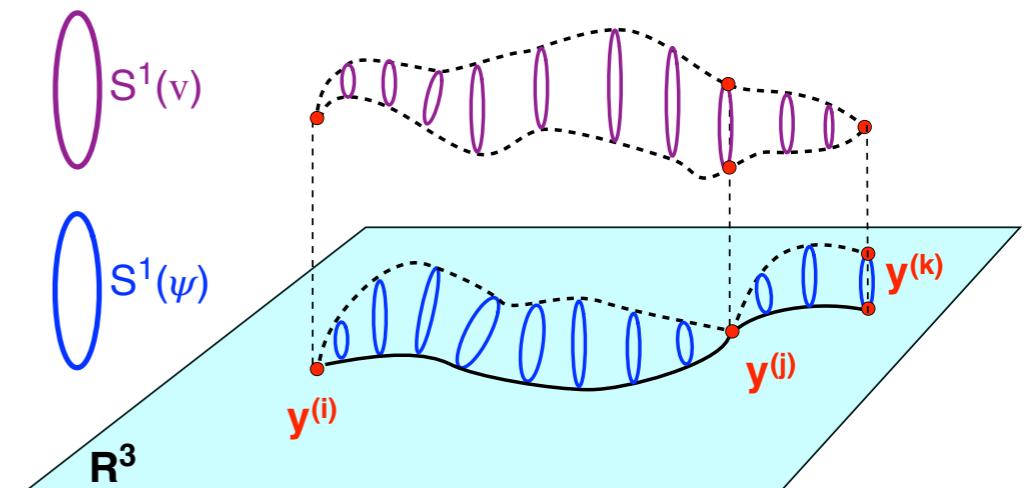
Enriching the family of solutions

Solutions are a T^2 fibration over R^3

Spectral transformations;

Fractional spectral flows ...

$$\begin{pmatrix} \hat{v} \\ \hat{\psi} \end{pmatrix} = S \begin{pmatrix} v \\ \psi \end{pmatrix}, \quad S \in SL(2, \mathbb{Q})$$



Microstate Geometries for MSW Black Holes

The hint of interesting new families of solutions comes from:

$$\chi_{k,m,n} \equiv R^{-1} (m+n)v + \frac{1}{2} (k-2m)\psi - \frac{1}{2} k\phi$$

For $k = 2m$ the solutions are independent of ψ , the Hopf fiber of the S^3
→ Reduction to five-dimensional microstate geometries: *capped BTZ* $\times S^2$

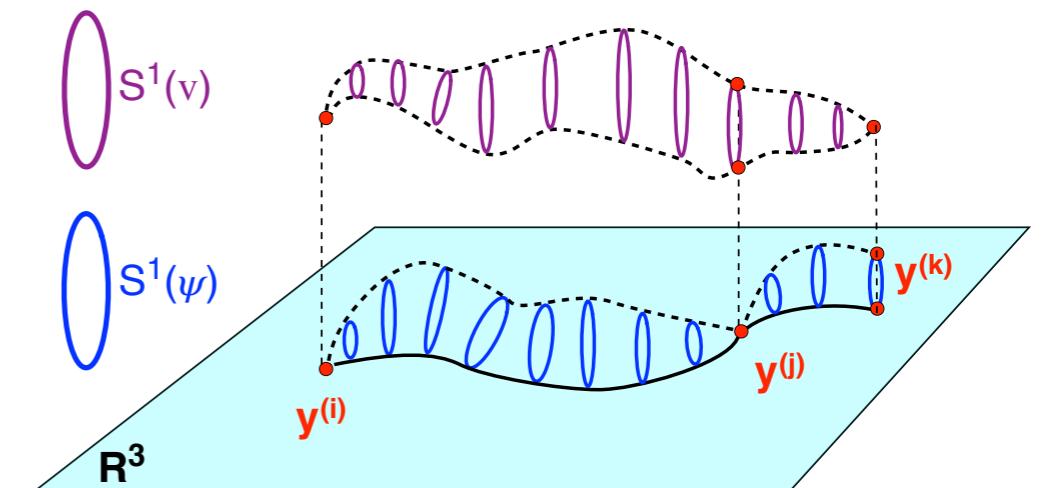
Enriching the family of solutions

Solutions are a T^2 fibration over R^3

Spectral transformations;

Fractional spectral flows ...

$$\begin{pmatrix} \hat{v} \\ \hat{\psi} \end{pmatrix} = S \begin{pmatrix} v \\ \psi \end{pmatrix}, \quad S \in SL(2, \mathbb{Q})$$



Rational transformations:

Generate new solutions but may need to “re-declare the lattice of $(\hat{v}, \hat{\psi})$

Standard supertube: D1-D5 charges + KKM dipole charge, κ

→ Supertube with D1-D5-KKM charges: (Q_1, Q_5, κ)

... presumably dual to D1-D5-KKM CFT. What is this exactly?

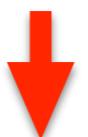
Some T-dualities

IIB	0	1	2	3	4	5	6	7	8	9
D1	↑	*	*	*	*	↑	↔	↔	↔	↔
D5	↑	*	*	*	*	↑	↑	↑	↑	↑
KKM	↑	*	*	*	↑	↑	↑	↑	↑	↑

Some T-dualities

IIB	0	1	2	3	4	5	6	7	8	9
D1	↑	*	*	*	*	↑	↔	↔	↔	↔
D5	↑	*	*	*	*	↑	↑	↑	↑	↑
KKM	↑	*	*	*	↑	↑	↑	↑	↑	↑

T-dualize 3 times to IIA:

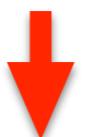


IIA	0	1	2	3	4	5	6	7	8	9
D4	↑	*	*	*	↑	↑	↔	↔	↑	↑
D4	↑	*	*	*	↑	↑	↑	↑	↔	↔
NS5	↑	*	*	*	↔	↑	↑	↑	↑	↑

Some T-dualities

IIB	0	1	2	3	4	5	6	7	8	9
D1	↑	*	*	*	*	↑	↔	↔	↔	↔
D5	↑	*	*	*	*	↑	↑	↑	↑	↑
KKM	↑	*	*	*	↑	↑	↑	↑	↑	↑

T-dualize 3 times to IIA:



IIA	0	1	2	3	4	5	6	7	8	9
D4	↑	*	*	*	↑	↑	↔	↔	↑	↑
D4	↑	*	*	*	↑	↑	↑	↑	↔	↔
NS5	↑	*	*	*	↔	↑	↑	↑	↑	↑

Uplift to M theory

M	0	1	2	3	5	4	10	6	7	8	9
M5	↑	*	*	*	↑	↑	↑	↔	↔	↑	↑
M5	↑	*	*	*	↑	↑	↑	↑	↑	↔	↔
M5	↑	*	*	*	↑	↔	↔	↑	↑	↑	↑

M-theory background

D1-D5-KKM solution \rightarrow M5-M5-M5 charges: (Q_1, Q_5, κ)
+ dipolar/dissolved M2-M2-M2 charges

Compactification/new (v, ψ) lattice:

D1-D5-KKM (4,4) supersymmetry \rightarrow M5-M5-M5 (0,4) supersymmetry

M-theory background

D1-D5-KKM solution \rightarrow M5-M5-M5 charges: (Q_1, Q_5, κ)
 + dipolar/dissolved M2-M2-M2 charges

Compactification/new (v, ψ) lattice:

D1-D5-KKM (4,4) supersymmetry \rightarrow M5-M5-M5 (0,4) supersymmetry

Add momentum along common circle (5) ... untouched in duality

IIB	0	1	2	3	4	5	6	7	8	9
D1	↑	*	*	*	*	↑	↔	↔	↔	↔
D5	↑	*	*	*	*	↑	↑	↑	↑	↑
KKM	↑	*	*	*	↑	↑	↑	↑	↑	↑
P	↑					↑				

M	0	1	2	3	4	5	4	10	6	7	8	9
M5	↑	*	*	*	↑	↑	↑		↔	↔	↑	↑
M5	↑	*	*	*	↑	↑	↑		↑	↑	↔	↔
M5	↑	*	*	*	↑	↔	↔		↑	↑	↑	↑
P	↑				↑							

M-theory background

D1-D5-KKM solution \rightarrow M5-M5-M5 charges: (Q_1, Q_5, κ)
 + dipolar/dissolved M2-M2-M2 charges

Compactification/new (v, ψ) lattice:

D1-D5-KKM (4,4) supersymmetry \rightarrow M5-M5-M5 (0,4) supersymmetry

Add momentum along common circle (5) ... untouched in duality

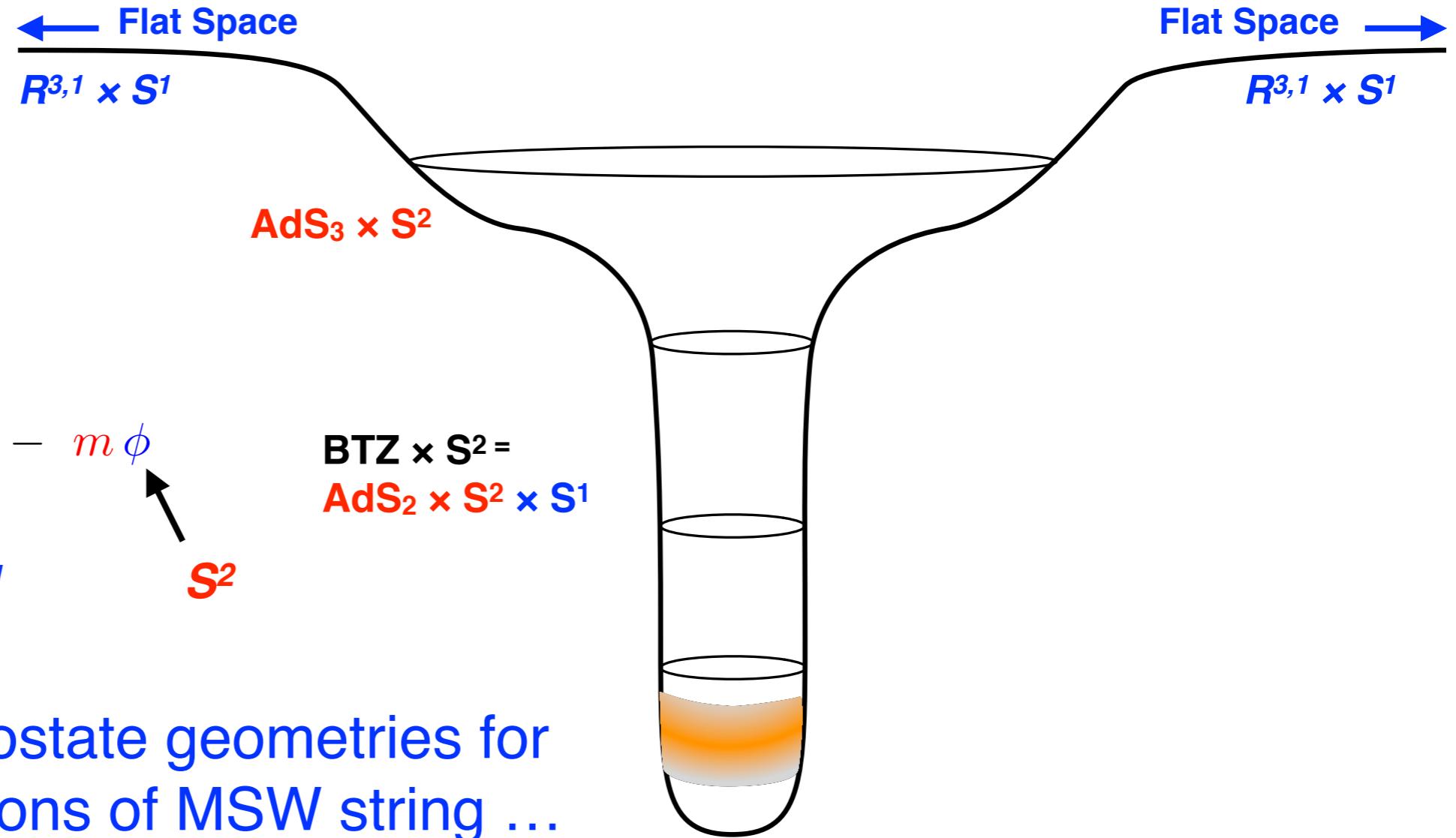
IIB	0	1	2	3	4	5	6	7	8	9
D1	↑	*	*	*	*	↑	↔	↔	↔	↔
D5	↑	*	*	*	*	↑	↑	↑	↑	↑
KKM	↑	*	*	*	↑	↑	↑	↑	↑	↑
P	↑					↑				

M	0	1	2	3	4	5	6	7	8	9
M5	↑	*	*	*	↑	↑	↑	↔	↑	↑
M5	↑	*	*	*	↑	↑	↑	↑	↔	↔
M5	↑	*	*	*	↑	↔	↔	↑	↑	↑
P	↑				↑					

\rightarrow Momentum excitations of MSW string wrapping (5) direction ..

Fluctuating Microstate Geometries for MSW Strings

Previous picture
compactified on
Hopf fiber of S^3 .



Fluctuations:

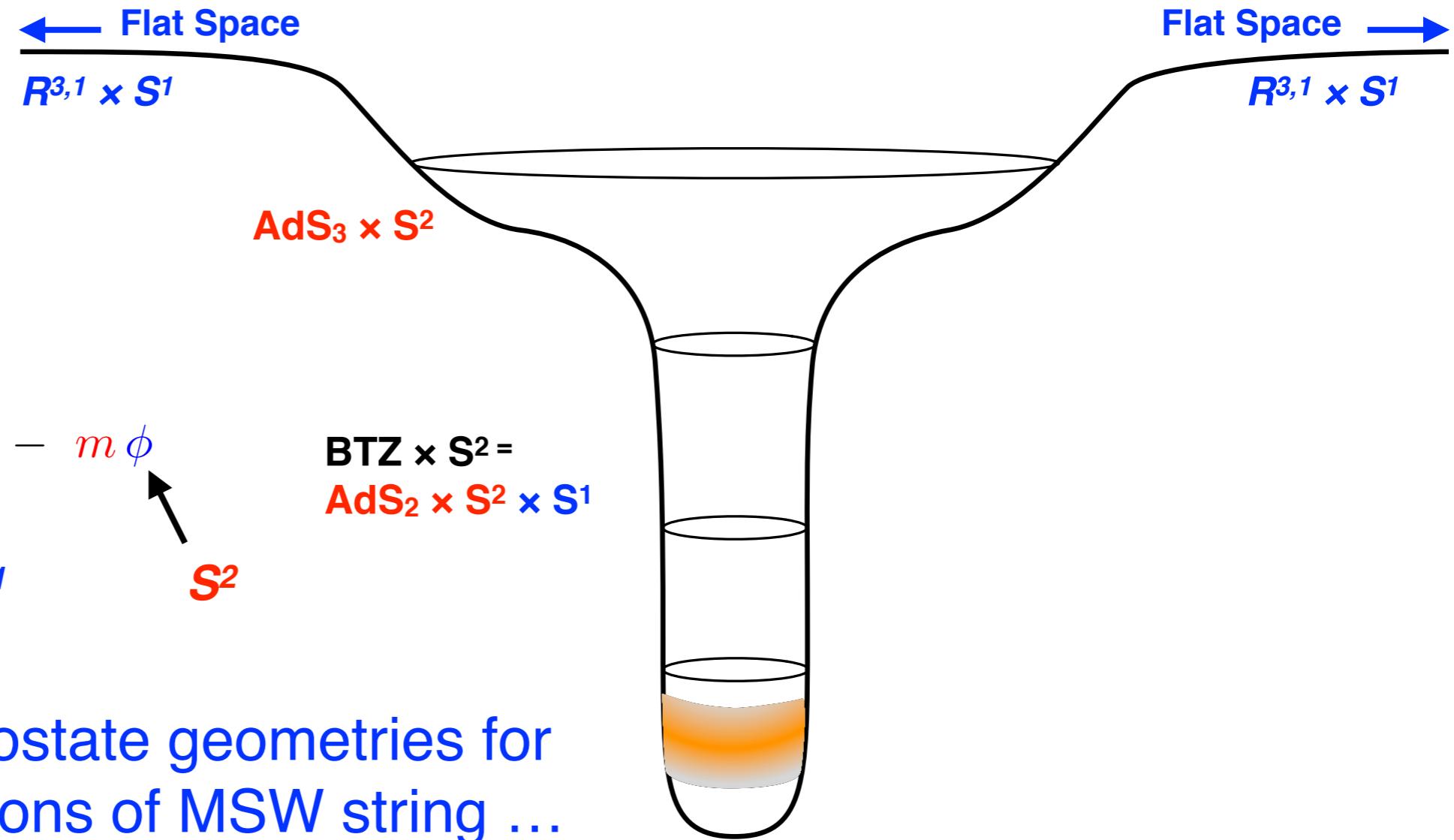
$$\chi_{m,n} \equiv R^{-1} (m + n) v - m \phi$$

\uparrow \uparrow
 AdS_3 or S^1 S^2

Deep scaling, microstate geometries for
momentum excitations of MSW string ...

Fluctuating Microstate Geometries for MSW Strings

Previous picture
compactified on
Hopf fiber of S^3 .



Deep scaling, microstate geometries for
momentum excitations of MSW string ...

Deconstruction: *Attempts to realize black-hole microstate structure with perturbative/singular D0 branes or perturbative momenta on “Deconstructed” MSW string*

Here: Precise, fully back-reacted, capped-off $BTZ \times S^2$ realization of the deconstructed configurations ...
..... related to D1-D5-P microstate structure

Conclusions

- ▶ Microstate geometries that are holographic duals to very particular D1-D5-P CFT states
- ▶ First deep, scaling microstate geometry in *Black-Hole Regime* with $\mathbf{j_L} = \mathbf{j_R} \rightarrow \mathbf{0}$
- ▶ Deep, scaling geometry going to BTZ \times S³ or BTZ \times S²
- ▶ Momentum excitations localize at bottom of throat and create smooth cap
- ▶ Holographic dictionary in AdS₃ for deep AdS₂/BTZ throat
- ▶ Microstate geometries for MSW ... and that fully realize deconstruction

Conclusions

- ▶ Microstate geometries that are holographic duals to very particular D1-D5-P CFT states
- ▶ First deep, scaling microstate geometry in *Black-Hole Regime* with $j_L = j_R \rightarrow 0$
- ▶ Deep, scaling geometry going to $BTZ \times S^3$ or $BTZ \times S^2$
- ▶ Momentum excitations localize at bottom of throat and create smooth cap
- ▶ Holographic dictionary in AdS_3 for deep AdS_2/BTZ throat
- ▶ Microstate geometries for MSW ... and that fully realize deconstruction

Open issues

- ▶ Twisted sector excitations. Relation to multi-centered geometries?
Some very limited families known
- ▶ Holography/CFT states of MSW string dual to new microstate geometries

Conclusions

- ▶ Microstate geometries that are holographic duals to very particular D1-D5-P CFT states
- ▶ First deep, scaling microstate geometry in *Black-Hole Regime* with $j_L = j_R \rightarrow 0$
- ▶ Deep, scaling geometry going to BTZ $\times S^3$ or BTZ $\times S^2$
- ▶ Momentum excitations localize at bottom of throat and create smooth cap
- ▶ Holographic dictionary in AdS_3 for deep AdS_2/BTZ throat
- ▶ Microstate geometries for MSW ... and that fully realize deconstruction

Open issues

- ▶ Twisted sector excitations. Relation to multi-centered geometries?
Some very limited families known
- ▶ Holography/CFT states of MSW string dual to new microstate geometries

Happy Birthday, Chris!