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The basic idea of all four papers is to look at non-Einsteinian Rela-
tivity Pinciples from an, albeit anachronistic, Spacetime view point

In our context a Principle of Relativity involves a notion of the in-
variance of physical laws under passing to a moving frame which we
interpret as a symmetry of some sort of spacetime structure.



We follow the path pioneered by Bacry and Levy-Leblond * who found
all algebras containing rotations, spatial and temporal translations and
boosts. All may be regarded as Wigner-Inonu contractions I of the
two De-Sitter groups.

Without boosts we would simply be classifying Aristotelian spacetimes
which leads to Helmholtz’s classification of congruence geometries !

*H. Bacry and J. Levy-Leblond, Possible kinematics J. Math. Phys. 9 (1968) 1605.

TE. Indnu , E.P. Wigner (1953). "On the Contraction of Groups and Their Repre-
sentations”. Proc. Nat. Acad. Sci. 39 (6): 51024.

fUber die Thatsachen, welche der Geometrie zu Grunde liegen, in Wissenschaftliche
Abhandlungen, Volume II, Leipzig: Johann Ambrosius Barth, 618639. Originally
published in the Nachrichten von der Knigl. Gesellschaft der Wissenschaften zu
Gttingen, No. 9 (3 June 1868).



The contractions are:

2N

e Newton-Hooke N— O, c — 00, cc3 finite
e Poincaré N— O, c finite.

e Galilei N— O, c — 00.

e Carroll N— O, c— 0

There is a certain duality between the Galilei and Carroll groups. In
one the future light cone t > %|x| expands to become a future half
space t > 0. In the other it contracts to become a future half line
t > 0,x = 0. One allows instantaneous propagation, the other is
ultra-local and forbids any propagation.



All kinematic groups have a flat invariant model space time which
allows a curved generalisation.

For Galilei this is Newton-Cartan spacetime with its degenerate co-
metric g% whose kernel are co-normals of the absolute time slices

Carrollian spacetime. has a degenerate metric g;; whose kernel is
tangent to the absolute future *.

*To quote Mrs Thatcher: TINA, i.e. There is no alternative



Well, in our country,” said Alice, still panting a little, "you'd

generally get to somewhere else if you run very fast for a long
time, as we've been doing.”

A slow sort of country!” said the Queen. " Now, here, you
see, it takes all the running you can do, to keep in the same

place. If you want to get somewhere else, you must run at
least twice as fast as that!”



Galilei, boosts act as

(t,x) — (t,x — vt)

Carroll, boosts act as

(s,x) = (s —b-x,x)

where t is Galilean time and s is Carrollian time.



In 141 spacetime dimensions, Galileo and Carroll coincide as groups
since we may interchange Galilean space and with Carrollian time and

vice versa




Taking the limit ¢ T oo in the contra-variant Minkowski co- metric

—128 &7 + 5 9 9
cco0t Ot Ox* 0xJ
motivates the definition of a Newton-Cartan Spacetime as a quadruple
{N,~,0,V} where N is a smooth d+ 1 manifold , v a symmetric semi-
positive definite contravariant 2-tensor of rank d with kernel the one-
form 6 and V a symmetric affine connection w.r.t. which ~v and @ are

parallel.




Taking the limit ¢ | O in the co-variant Minkowski metric

—c2dt? + §;;dz'dx?
motivates the definition of a Carrollian Spacetime as a quadruple
{C,q,£,V} where N is a smooth d+ 1 manifold , g a symmetric semi-
positive definite co-variant 2-tensor of rank d with kernel the vector

field £ and V a symmetric affine connection w.r.t. which & and V are
parallel.



The standard flat case is C = R x R, 9ij = 045, § = %, " =20
where s is Carrollian time. The isometry group of the Carrollian metric

contains
zt — zt, s — s+ f(z")
and so is infinite dimensional but if we require that the Carrolian

automorphisms preserve the connection V we obtain the standard
finite dimensional Carroll group.



All the kinematic groups have a description in terms of Lorentzian
geometry in 441 spacetime dimensions.

e Minkowski spacetime arises from a Kaluza-Klein reduction on a
spacelike translation as shown by Kaluza and Klein.

e Newton-Cartan spacetime arises from a reduction on a null trans-
lation as shown by Duval et al. *

e Carrollian spacetime arises as the pull-back to a null hyperplane.
Indeed given any null surface (like future null infinity ZT) Carrollian
structures come into play.

*C. Duval, G. Burdet, H. P. Kunzle and M. Perrin, Bargmann Struc-
tures and Newton-cartan Theory Phys. Rev. D 31 (1985) 1841.
doi:10.1103/PhysRevD.31.1841



We define a Bargmann Manifold as a triple {B,G,£} where B is a
(d4+2) manifold, G a Lorentzian metric (i.e non-degenerate and sig-
nature (d + 1,1) and a null vector field £ which is parallel w.r.t. the

Levi-Civita connection of . The standard flat Bargmann structure
is given by B =, ¢ = £ with

G = §;dx'da? + dt @ ds + ds ® dt

Note that both s and t are null coordinates.



The standard flat Newton-Cartan structure is obtained by pushing for-
ward the flat Bargmann structure to the quotient or lightlike shadow
or null reduction N = B/(R§¢) The Bargmann group consists of those
isometries of B which preserve &. This is a central extension of the
Galilei group, the centre being generated by &.

One may also obtain the central extension of the conformal Schrodinger
group, the symmetry of the free Schrodinger equation as the those
conformal transformations of d + 2-dimensional Minkowski spacetime
which commute with the action of RE.



A massless scalar field in E¢tL1 is invariant under conformal trans-
formations

02 ¢ ; 2, _
set
£p = —img, ¢ = e "W(t, ")
then



The standard flat Carroll structure is obtained by pulling back the flat
Bargmann structure to a null hypersurface t = constant. The Carroll

group consists of this isometries of B which commute with the pull
back.

By a Lie-algebra co-homology argument it has been shown that that
the Carroll group admits no central extension.



A non-standard Carroll structure may be obtained by taking the prod-
uct ¢ = R x 2; where 2,; with Riemmannian metric g and g =
g P 0 x du? and £ = 6%, where wu IS a coordinate on R. For V we
could take the Levi-civita connection of {3, g}.



For a general Carroll structure {C,g,£V} we define the Conformal
Carroll group of level N as consisting of diffomeorphisms a such that

2
a*g = Q°3, ay = QN

For the flat Carroll structure this has Killing vactor fields

o 2
X = (w%?x] _|_ fYZ-(X — Qmixi) —|— /ﬂ:zxjxj)a—x ‘|‘ (N(X - 2/£j$j)u ‘|‘ T(fﬂk))

9
ou

This is infinite dimensional because of the super-translations T'(x;)

which have conformal weight = —%, i.e. are densities of weight

Y = —N%l. The quantity z = % is known as a dynamical exponent.



If N =2, z=1 and we have symmetry between the scaling of space
and time.

If d =1, using the isomorphism between the Carroll and Galilei alge-
bras described above we obtain the Conformal Galilei algebra. CGA
introduced by many people in a variety of contexts.

The isometry group of the flat Carroll structure is obtained by setting
€2 = 1. Its Lie algebra is also infinite dimensional, because of the
supertanslations. Requiring that the connection is preserved reduces
the Carroll Lie algebra to the standard finite dimensonal case obtained
by Levy-Lebond and Bacry.



For a general Carrollian structure , the Conformal Carroll group is
generated by

A o
X =Y+ (N—FT(?C))%
where Y is a confomal vector field of {3, g}
Lyg=Ag

generating
x — ¢(x), u—)Q%(u—I—a(af;))



Example

If {5} = {St,do?} we get Diff(S!) semi-direct product super trans-
lations of weight v = —% generated by the vector field

X = Y(@% + (%y’(@) + T(@))(%

whose algebra is an extension of the Witt or Virasoro algebra.

Example

If {~; 9} = {S2,df? 4+ sin?0ds2} and N = 2 we get

PSL(2,C) . T



where T are half densities on S2 which is the Bondi-Metzner-Sachs
Group

Which was originally discovered as the asymptotic symmetry group of
an asymptotically flat four-dimensional spacetime. The BMS Group
has an obvious generalisation to Se for all d > 2. However this gen-
eralistion does not appear to coincide with the asymptotic symmetry
group of an asymptotically flat spacetime of dimension greater than
four.



We may weaken our requirement on the conformal Carroll group so
that a(x) only preserves the conformal class of the Carroll metric g.
Since the vector field £ spans the kenel of g, o is only requred to
preserve the direction of £&. Thus its generating vector field X need
only satisfy

LxE=p(u)e, =X =Y+ Fuo) (1)

where F'(u,z) is an arbitrary function of both x and x, and Y is a
conformal Killing field of the Riemannian manifold {X;, g}

Example

If {43} = {Z4 9} = {52,d82 4+ sin?0d¢?} we obtain the Newman-
Unti Group which was introduced by these authors in the study of
asymptotically flat four-dimensional spacetimes.



e Carrollian and BMS symmetries have a number of applications to various topics of
current interest to string theorists and holography which was the original motivation
for the work reported here.

e Using our enhanced understanding of the Carroll group we were able construct
Carrollian-invariant theories of electromagnetism which potentially have appliactions
to slow light.

e Using a geometric quantization method of Souriau we constructed theories of
Carrollian massive and massless particles. One finds the former do not move,
consistent with other view points.

e Perhaps the most intriguing was to Schild or Null Strings, that is strings whose
two-dimensional world sheet carries a Carrollian metric, i.e is a two-dimensional
null surface. It turns out that Souriau’s procedure for obtaining dynamical systems

invariant under a group G applied to massless “particles * leads to Schild Strings.



Our most recent application has been to the Carroll Symmetry of
Plane gravitational waves and to Soft Gravitons & the Memory Effect
for Plane Gravitational waves.

T hese are vacuum metrics with a covariantly constant null Killing vec-
tor field and they admit a five-dimensional isometry group acting on
null hypersurfaces and contains a three-dimensional abelian subgroup.

The isometry group is a subgroup of the 6 dimensional Carroll group
in 241 dimensions with the rotations broken



These metrics admit two useful coordinates systems.

Brinkmann coordinates
ds® = §;; dX'dX7 + 2dUdV + K ;(U)X'X7dU?, TrK =0.

Baldwin-Jeffery-Rosen Coordinates
ds® = a;;(u) dz'dz! 4 2du dv

1
X=Plux, U=u, V:’U—ZX-a(u)X

a= PP, P=KP, PP-PP=0.

K = %P(b—l—%bz)P_l, b=a la.



In Brinkmann coordinates the field equations are trivially satisfied

1 1
K11 =—K22=§«4+(U), K12 = Kog =§«4><(U)

where the two polarization amplitudes may be given as arbitrary func-
tions of U.

In Baldwin-Jeffery-Rosen coordinates the field equations are highly
non-linear and even the flat solutions are non-trivial.

However the high degree of manifest symmetry in Baldwin-Jeffery-
Rosen coordinates allows exact solution of all geodesics



Consider a sandwich wave * passing over a cloud of particles all at rel-
ative rest before the wave arrives. By Noether’s theorem the Baldwin-
Jeffery-Rosen coordinates x are constant both before and after the
wave has passed

But even if a;; = 9;; before the wave has arrived a;; will have non-trivial
time dependence after the wave has passed. Thus the separations of
the particles will have non-trivial time dependence after the wave has
passed. This may in principle be measured and informtion about
AL (U) and A4 (U) deduced.

THIS IS THE GRAVITATIONAL MEMORY EFFECT

*for which A4 (U) and A4 (U) vanish outside a finite interval.



After the wave has passed although a;; # 9;; there is a coordinate
transformation which we calculate explicitly, which brings the metric
after the wave has passed to canonical flat form. This coordinate
transformation does not tend to the identity at spatial infinity.

THUS FLAT PLANE WAVE VACCUUM METRICS IN BALDWIN-
JEFFERY-ROSEN COORDINATES CAN BE THOUGHT OF AS
SOFT in SOFT GRAVITONS LEFT AFTER THE PASSING OF A
WAVE PULSE WITH NON-VANISHING CURVATURE
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