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I feel privileged to be here to celebrate Chris’

Happy Birthday

 distinguished career, and to wish him a very 

Chris is a great person and a brilliant physicist

He is also living proof that crazy ideas

are not always wrong !



Chris has (at least) two obsessive themes in physics:

Hunting (everywhere) for Dualities

 How many dimensions ??



   « Dualities link M-theory to other 11-dimensional theories
   in signatures 9+2 and 6+5, and to type II string theories

in all 10-dimensional signatures »  

with Ramzi Khuri ‘99

« Branes with various world-volume signatures are possible. For example, the 9+2 dimensional 
M* theory has  membrane-type solutions with world-volumes of signature (3,0) and (1,2), and 
a solitonic solution with world-volume signature (5,1) »

Later he let loose the 10/11 taboo: 

10+10 ?18+1 ?

18+2 ?

(Double Field Theory)



So it is fitting to offer him for his birthday

Of course you would not expect Chris to shy away  from 

 T-dualizing time

(Timelike T-duality, de Sitter space ……    C.H. ’98)



60 1/60

A  T-fold gift:

. . . . 

 NB: for maximum comfort, do not reverse the arrow of time



 The moduli spaces of Calabi-Yau manifolds, 
and the associated

 Our world ?
⇥ R1,3 '

1.  Introduction 

 wrapped D-branes have been intensively studied by string theorists
and mathematicians

CY

Two important quantities:   the metric              and the gIJ̄(�)

 D-brane masses Ms(�) . Computing these is a time-honoured 

 problem. Gromov-Witten invariants



Recent progress in susy field theories has opened a new
line of attack for the computation of these quantities

It was conjectured that they are computed by partition 
functions of N=(2,2) GLSM using susy localization

Pestun 2007
. . . . 

Benini, Cremonesi  1206.2356
Doroud, Gomis, Le Floch, Lee  1206.2606

Honda + Okuda  1308.2217 

Hori + Romo  1308.2438 


Sugishita + Terashima  1308.1973  

gIJ̄ = @I@J̄K

Ms(�)



Mc ⇥Mtc

The CY moduli space factorizes locally:

but see  arXiv:1611.03101  

Gomis, Komargodski, Ooguri, Seiberg, Wang

complex structure

(c,c)

Kähler moduli

(c,a)

h1,1h2,1

Well-known facts :

Strong constraints from              supersymmetry of
type-II string theory compactified on CY3:

N = 2

http://arxiv.org/abs/arXiv:1611.03101


IIA : h

1,1
vector h

2,1 + 1 hyper

IIB : h

2,1
vector h

1,1 + 1 hyper

special Kähler quaternionic 

The string coupling is a hyper, and the Kähler moduli include the CY volume 

=)
metric on complex-structure m.s. is classical but

metric on Kähler m.s. has instanton corrections

Gromov-Witten invariants

Assuming mirror symmetry gives the latter from the former
when mirror manifold and map is known. But usually it is not. 



 conjectured thatJockers, Kumar, Lapan, Morrison, Romo (1208.6244)

Z(S2) =

✓
r

r0

◆c/3

e�K(�,�̄)

 This was soon after argued for with the  help of tt* eqns by 

 Gomis + Lee (1210.6022) 

the partition function on the 2-sphere computes the Kähler potential 

1,5 years ago Gomis, Komargodski, Hsin, Schwimmer, Seiberg, Theisen  (1509.08511)

gave an elegant new proof based on a ``new type’’ of  Weyl anomaly

Osborn ’91



Target-space / worldsheet  dictionary:

Target space worldsheet

Calabi-Yau N=(2,2)  SCFT

moduli marginal deformations
moduli space superconformal manifold

metric Zamolodchikov metric

wrapped brane boundary conditions

mass bnry degeneracy 

�I

⌦

g⌦

Affleck, Ludwig

Moduli-dependence Integrated anomaly

NEW:



With Daniel Plencner we generalized 

the Gomis et al anomaly to worldsheets  

arXiv: 1612.06386

This shows in particular that the hemisphere partition function 
computes the other important piece of  geometric data: 

C⌦(�)The central charge          , and the mass of CY D-branes.

Honda + Okuda  1308.2217 

Hori + Romo  1308.2438 


Sugishita + Terashima  1308.1973  
confirming  conjecture in 

 with boundary



This is a powerful circle of ideas, with non-trivial corollaries 

and generalizations to higher Dims: 

Curved-space 
partition functions

Anomalies

Metric and D-brane 
charges

SUSY

Localization

SUSY



 Rest of this talk:

2   Superconformal manifolds & Anomalies

3   Corollaries for          and CY moduli spaceZ(S2)

4   Extension to Boundaries and D-brane mass/charge

5   Summary  



2.  ``New’’ super-Weyl anomalies  

Anomalies arise when non-conservation in correlation functions:  

h@µjµ O1(p1) · · · On(pn)i 6= 0

When r.h.s. proportional to momenta:  non-conservation only 
in presence of spacetime-dependent background fields

e.g.  

U(1)A

G G

=) @µj
µ
A = F ^ F

axial charge violated by 
instantons 



  For chiral anomalies:  background is gauge or gravitational  

  For trace (Weyl) anomaly, can be exactly-marginal couplings:

  In 2D the 2-point function of marginal operators reads: 

hOI(z) ¯OJ̄(w)i = gIJ̄ R 1

|z � w|4 = gIJ̄
1

2

(@ ¯@)2
⇥
log(|z � w|2µ2

)

⇤2

differential regularization of distribution

Osborn ’91

Osborn, Petkou ’93


. . .

Bzowski, McFadden, Skenderis ’13 ‘15

Zamolodchikov metric anomaly



  Turn on space-dependent couplings         :�I

@Z
@ logµ

⇠
Z

z

Z

w
�I

(z)¯�J̄
(w)

@

@ logµ
hOI(z) ¯OJ̄(w)i ⇠

Z
@µ�

I@µ
¯�J̄gIJ̄

  Anomaly is invisible for constant couplings. But supersymmetry

  relates it to a term that does not vanish when  @µ�
I = 0

Gomis et al  (1509.08511)

  This term can be removed by non-susy local counterterm;

  but SUSY gives it universal meaning



In computing the anomaly we choose to preserve the vector-like 
N = 2

N = (2, 2) U(1)V ⇥ U(1)ATo                 SCFTs have R-symmetry.

symmetry, so we must couple it to the supergravity in
which this symmetry is gauged by a field V µ

Closset + Cremonesi (1404.2636)

In superconformal gauge:

gµ⌫ = e2�⌘µ⌫ , V µ = ✏µ⌫@⌫a

Classically      and    decouple, but in the quantum theory they dont  � a
due to the Weyl and axial anomalies. 

Technical details:



Supersymmetry places these fields in a twisted-chiral multiplet

⌃(yµ) = (� + ia) + ✓+�̄+ + ✓̄��� + ✓+✓̄�w

y

± = x

± ⌥ i✓

±
✓̄

±with components functions of

The tc field obeys

D± =
@

@✓±
� i✓̄±@± , D± = � @

@✓̄±
+ i✓±@± .

D+⌃ = D�⌃ = 0

where

It is useful to also promote the marginal couplings to vevs of tc fields

⇤I = �I(y±) + · · · , ⇤̄I = �̄I(ȳ±) + · · ·

so as to make the susy of the anomaly manifest.

Seiberg



A

closed

:= A

(1) +A

(2) =
1

4⇡

Z

M
d
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x

Z
d

4

✓

h
c

6
(�⌃ ⌃̄+ �⌃̄ ⌃)� (�⌃+ �⌃̄)K(⇤, ⇤̄)

i

The anomaly  iA(�⌃) := �⌃ logZV (M) is the susy invariant 

Gomis et al  (1509.08511)

�⌃A(�⌃0)� �⌃0A(�⌃) = 0

logZV � i

4⇡
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d
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x
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d

4
✓
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¯
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¯

⌃)K

i
.

This obeys Wess-Zumino consistency

 and can be integrated with the result: 

super-Liouville super-Osborn 



 Expand in components:

A

(1)
= � c

12⇡

Z

M
d

2
x

h
��⇤� + �a⇤a+

1
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+ fermions ,
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M
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x
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�a)Kµ + @

µ
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(2)
µ

i

where Kµ :=
i

2
(@IK@µ�

I � @ĪK@µ�̄
Ī) Kähler one-form

 (Cohomologically) non-trivial, real anomalies

 Variation of local invariant counterterm 

⇠
Z

p
gR(2) K(�, �̄)



The non-vanishing term for constant couplings is the red one

It could be removed by change of scheme in bosonic theory,
but supersymmetry relates it to the non-trivial blue terms !

Similar remarks for 4D Casimir energy  
Assel, Cassani, Di Pietro, Komargodski, Lorenzen, Martelli 1503.05537

The first term in        is the scale anomaly in the 2-point functionA(2)

@ ¯@ log |z|2 = ⇡�(2)(z)as follows from �� = �� logµ ,

contact term
and @I@J̄K = gIJ̄



Z

S2

K ⇤� = �4⇡K

Integrating the anomaly for constant couplings gives      

=) ZE
V (S2) =

✓
r

r0

◆c/3

e�K(�,�̄)

so the 2-sphere free energy computes the Kähler potential    

3.  Corollaries  

on the SCFT2 moduli space (both chiral and twisted chiral)    

A puzzle  

ZE
V (S2) not invariant under Kähler-Weyl transformations   

K 0(�, �̄) = K(�, �̄) +H(�) + H̄(�̄)



Resolution  

The difference amounts to change of renormalization scheme:  

twisted F-term
R = D̄+D�⌃̄ = �w̄ + ✓+✓̄�@+@�(� � ia) + · · ·

curvature superfield

=

So local, susy and diffeo-invariant counterterm  compensates

the Kähler-Weyl (gauge) transformation !  

�KWA(2) = � 1

4⇡

Z

M
d2x

Z
d4✓ (�⌃+ �⌃̄)H + c.c.

� 1

4⇡

Z

M
d2x

Z
d✓+d✓̄� (D̄+D��⌃̄)H +

Z

M
d2x (@µYµ) + c.c.



An interesting conjecture

If the moduli space had non-vanishing Kähler class one could

Gomis et al  (1509.08511)

pick         such that                 is non-trivial 2-cycle�

I(x)

Then there would be no global renormalization scheme !

Way out:   Moduli space has Kähler class  = 0 

S2 ! M



4. Boundary anomaly 

Consider half space: x

1  0
x

1 � 0

conformal boundary condition ⌦

hOI(x)i⌦ = d

⌦
I R 1

|x1|2 = d

⌦
I @

2
1 [⇥(�x

1
) log |x1

µ| ]⌦

One-point functions of marginal operators:



The 1pt-function coefficients are  related to a boundary charge 

Ooguri, Oz, Yin ‘96

Focus on B-type brane  in region of Kähler moduli space with

holomorphic

c⌦(�)
c⌦I
c⌦

= @I(K + log c⌦)

Argument: vacuum projection of boundary state

⇧vac |⌦ii := c⌦ |0iRR +
X

I

c⌦I |IiRR

 is flat section of the improved connection  on moduli spacer� C
structure constants


of chiral ring

no walls of marginal stability.

4dI =



Our result: prove these relations from Weyl-Osborn anomaly,
and show that hemisphere p.f. computes bnry charge

Z+(D
2) =

✓
r

r0

◆c/6

c⌦(�) , Z�(D
2) =

✓
r

r0

◆c/6

c⌦(�̄) .

Under Kähler Weyl transformations c⌦ ! c⌦ eF

The boundary entropy is the scheme-independent combination

g⌦ =
|c⌦|

e�K/2
=

s
Z+(D2)Z�(D2)

Z(S2)

D-brane mass



In string-theory compactifications,       and         are
the mass and RR charge of the 1/2 BPS D-brane states

g⌦ c⌦

dyons in field-theory limits

These are related to worldsheet anomalies !



 3 steps in calculation:

b(1)µ =
1

4
(@µ��)� � 3

4
�� @µ� +

1

4
(@µ�a)a� 3

4
�a @µa

b(2)µ =
1

4
(@µ��)K � 1

4
�� @µK .

Take into account the divergence terms in 

Add `minimal’ boundary term needed for susy

A
closed

Extra boundary-superinvariant additions
using formalism of boundary superspace

Technical details:



Reference boundary completion

Dsusy = ✏ (Q+ +Q�)� ✏̄ (Q̄+ + Q̄�)

Z

M
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2

x

Z
d

4

✓ S =

Z

M
d

2

x [S]
top

Consider the D-term :  

Q± =
@

@✓±
+ i✓̄±@± , Q± = � @

@✓̄±
� i✓±@±

The type-B susy generator is

where

�
susy

[S]
top

=

Z
d4✓ D

susy

S = i✏

Z
d4✓ (✓̄+@

+

S + ✓̄�@�S) + c.c.

The transformation of the D-term is a total derivative 

We want to write as the susy transformation of a boundary term.

top component



Standard manipulations give:

with

so that

is our susy-invariant standard completion.

ID(S) :=
Z

d

2

x [S]
top

+

Z
dx

0 [S]
bnry

�
susy

[S]
top

= ��
susy
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1

[S]
bnry

) + @
0

Y
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⇤
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⇥
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⇤
✓�✓̄+
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4
@1
⇥
S
⇤
;

For the case of interest, the integrated superfield is

S =
1

4⇡

h c

6
⌃⌃̄� (⌃+ ⌃̄)K

i

�S

with



Boundary superspace

x

+ = x

�
, ✓ ⌘ e

�i�
✓

+ = e

i�
✓

�
, ✓̄ ⌘ e

i�
✓̄

+ = e

�i�
✓̄

�

⌃|@M = � + ia+ ✓�̄+ + ✓̄�� + ✓✓̄[w � i@1(� + ia)]

Restrictions of bulk superfields, e.g.

 WZ-consistency, locality and parity covariance leads to ansatz for  

boundary-superinvariant contribution to anomaly:

B =
i

8⇡

h
#

c

12
(⌃2 � ⌃̄2) + ⌃̄G⌦(⇤, ⇤̄)� ⌃G⌦(⇤̄,⇤)

i �����
@M

G⌦(⇤̄,⇤) = [G⌦(⇤, ⇤̄)]?

Z
dx

0 [B] ✓✓̄ where

and reality condition

Hori  (hep-th/0012179)

Usual D-term and F-term integrals of bnry superfields are invariant 

Brunner + Hori  (hep-th/0303135)



Collecting everything:

A
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=
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M
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where

central-charge anomaly Weyl-Osborn anomaly

cf Polchinski;  Solodukhin for higher D



h
Z

�Lsugra

Z
�LSCFTi = 0Susy Ward identity:

no terms propto �⌃⇤I

�⌃̄ = ⇤̄I = 0if

=)

=) G⌦
(�, ¯�) = K(�, ¯�) + 2 log c⌦(�)

 Kähler-Weyl covariance (up to local counterterms) requires

  section of holomorphic line bundlec⌦ := eh
⌦

K ! K +H + H̄ h⌦ ! h⌦ �H



 final ingredient: susy hemisphere

 . . . .   Seiberg, Festuccia 1105.0689

A

open

� �

n

� 1

4⇡

Z

d

2

x

h

⇤(� � ia)h⌦ +⇤(� + ia)h̄⌦

i

+
i

4⇡

Z

dx

0

h

w̄ h

⌦ � w h̄

⌦

io

 integrated anomaly subtracted so as to vanish for infinitesimal 
 disk depends only the holomorphic boundary charge, plus the

 auxiliary field of the metric.



 Killing-spinor equations imply

w = 2i
⇣�

⇣+
@z(� + ia+ log ⇣�) = 2i

¯⇣+

¯⇣�
@z̄(� + ia+ log

¯⇣+) ,

w̄ =� 2i
⇣+

⇣�
@z̄(� � ia+ log ⇣+) = �2i

¯⇣�

¯⇣+
@z(� � ia+ log

¯⇣�) .

✏+ = ✏ ⇣�(z) , ✏� = �✏ ⇣+(z̄) , ✏̄+ = ✏̄ ⇣̄�(z) , ✏̄� = �✏̄ ⇣̄+(z)

where the unbroken superconformal symmetries are

(+) : ⇣� = 1, ⇣+ = z̄, ⇣̄� = z, ⇣̄+ = 1,

(�) : ⇣� = z, ⇣+ = �1, ⇣̄� = 1, ⇣̄+ = �z̄

Two solutions for hemisphere with B-type bnry condition:



� = � log(1 + zz̄) + constant , a = 0

(+) : w = w̄ = � 2i

1 + zz̄
, (�) : w = w̄ =

2i

1 + zz̄

Supersymmetric hemispheres with B-type bnry condition:

Z+(D
2,⌦) = Z0 c

⌦(�) , Z�(D
2,⌦) = Z0 c

⌦(�̄) .

which implies

qed



5. Summary + outlook 

Computed the super-Weyl anomaly for N = (2, 2) models on 

a surface with boundary generalizing the result of

Gomis, Komargodski, Hsin, Schwimmer, Seiberg, Theisen  (1509.08511)

Not only the Kähler potential but also the brane charge & mass
are given by an (`Osborn-type’) anomaly. They can be computed

by localization of the hemisphere partition function



Argument easily extended to sphere partition function

Extension to higher dimensions and other co-dimension defects

[in progress with Daniel]

with moduli-changing interface

1 2 CI = e�K(�1,�̄2)

2 log gI = K(�1, ¯�1) +K(�2, ¯�2)�K(�1, ¯�2)�K(�2, ¯�1)

Calabi’s diastasis function

CB, Brunner, Douglas, Rastelli  (1311.2202)



Many thanks to the organizers

and all the best to Chris !

=


