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• Why study 3D gravity?

• Some of the issues involved
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Why 3D?

Quantum gravity in 3D is much simpler than
in 4D. One may try to solve the theory ex-
actly and understand the black hole physics,
dynamics and all host of issues.

Which model in 3D?

∫ √
−gR? Witten 1998

Exploited its being a CS theory. But there
are problems in exact solubility due to sin-
gular configurations gµν = 0, etc

∫ √
−g(R− 2Λ)?

Witten July’07, Maloney & Witten, Dec’07

Old problems avoided but the partition func-
tion fails to admit a physical interpretation
(lack of holomorphic factorization, etc)



Most promising model:

Deser, Jackiw & Templeton’82 & Deser’84

1

16πG

∫
d3x

(
e(R− 2Λ) +

1

2µ
LCS

)

where LCS = tr(R ∧ ω + 2
3ω ∧ ω ∧ ω)

• Has propagating single helicity 2 state

• Admits BTZ black hole solution



• For µ` = 1, has been conjectured by Li,
Song & Strominger to be dual to a par-
ticular CFT with holomorphic partition
function.

• Central charge at the boundary CFT:

cL =
3

2G

(
1−

µ

`

)
, cL =

3

2G

(
1 +

µ

`

)

Nonnegative central charge ⇒ µ` ≥ 1 .

At chiral point cL = 0 , cR = 3
G



• For G > 0, BTZ black hole mass > 0,
but graviton energy < 0 unless µ` = 1
where bulk graviton ceases to propagate
in bulk.

• For G < 0, the graviton energy > 0, but
BTZ black hole mass < 0

Deser & collaborators:

Take G < 0, show that there is a super-
selection sector in which the BTZ black holes
are excluded.

Strominger & collaborators:

Take G > 0, and µ` = 1, standard Brown-
Henneaux (asymptotically AdS) boundary con-
ditions, show that the energy is always pos-
itive, investigate the solution space, explore
AdS/CFT.



Abbott-Deser-Tekin charges in TMG

(based on ADM and Abbott & Deser )

Start with the field equations:

Eµν ≡ Gµν + µ−1Cµν = 0

where

Gµν = Rµν − 1
2gµνR−m

2gµν

Cµν = εµ
ρσ∇ρ(Rσν − 1

4gσνR)



For a given solution ḡµν, write

gµν = ḡµν + hµν

Compute the linearized tensor δEµν. If a
background admits a Killing vector ξµ, it
follows from the Bianchi identity that δEµνξν
is covariantly conserved. Thus we can write

δEµνξν = ∇̄νFµν

and define the conserved charge associated
with Killing vectors ξµ as

Q(ξ) =
1

8πG

∫
Σ
δEµνξν dΣµ=

1

8πG

∫
∂Σ
FµνdΣµν

Σ is the initial spacelike surface.



Result for the boundary integral:

Deser & Tekin, Bouchareb & Clement

QADT [ξ] =
1

8πG

∫
∂Σ

(
FµνE (ξ) +

1

µ
FµνE (Ξ) +

1

µ
fµνC (ξ)

)
dΣµν

where

FµνE (ξ) =
1

2

(
ξν∇̄λhλµ + ξλ∇̄µhλν + ξµ∇̄νh+ · · · )

f
µν
C (ξ) = ε̄µνρδGρσξσ

Ξµ ≡
1

2
ε̄µνρ∇̄νξρ



QADT [ξ] for a timelike Killing vector is the
energy. Is it positive for any solution with
fixed boundary condition?

Consider the theory as the bosonic sector of
an appropriate supergravity theory. Exploit
the fact that formally

H =
1

~
∑
α
Q2
α

Deser & Teitelboim, 1977, Grisaru, 1978

Quantum theory and classical limit not un-
der control (Witten’81), and this argument
does not guarantee the positivity.

However, motivated by this, consider the
Noether supercurrent associated with local
supersymmetry, and study its susy variation
in turn.

Witten’ 81, Nester’81



How do we construct the Noether super-
current for which the associated conserved
charges agree with QADT [ξ]?

Start with N = (1,0) supergravity.

e−1L = R− 2εµνρψ̄µDν(ω)ψρ

+2m2 −mψ̄µγµνψν

−
1

4
µ−1 εµνρ

(
Rµν

abωρab + 2
3ω

ab
µ ωνb

cωρca
)

−µ−1R̄µγνγµR
ν

• Overall factor 1/16πG is set to one.

• Definition: Rµ = εµνρDν(ω)ψρ



Supersymmetry:

δeaµ = ε̄γaψµ

δψµ = Dµ(ω)ε− 1
2mγµε ≡ D̂

L
µε

We have constructed the 1st order formulation of
this model, and used the procedure developed by
Silva, Henneaux & Julia, Regge & Teitelboim to con-
struct the Noether supercurrent.

At the end we find:

J
µL
ε = ∇νUµνLε

U
µνL
ε = 4

(
1 + m

2µ

)
εµνρε̄ψρ + 2

µε̄γργ
µνRρ(ω)

L refers to N = (1,0) susy leading to SO(2,1) charges.
We also have R charges from N = (0,1) susy for
which m→ −m leads to SO(2,1)R charges.



The Witten-Nester charges

As a bulk integral: QLWN =
∫
Σ

(
δε2J

µL
ε1

)
dΣµ

As a boundary integral: QLWN =
∫
∂Σ

(
δε2U

µνL
ε1

)
dΣµν

Strategy:

• Under appropriate boundary conditions
show that the boundary integral for QWN
agrees precisely with QADT

• Study the bulk integral representation of
QWN to seek positivity property



• Attempt by Gibbons, Pope & E.S. uses
the µ independent part of the supercur-
rent, and treats the CS term as a source.

• Deser approach: It is not clear if the su-
percurrents, and consequently the defi-
nition of the Witten-Nester charges are
the same compared to ours.

We have shown that indeed QWN = QADT
by studying the boundary integral. More on
this slater. For now let us study the bulk
integral.



The bulk integral and a bound on QWN

QLWN =
∫

Σ
dΣµ

[
4
(
1 + m

µ

) (
∇̂Lν ε̄1γµνρ∇̂Lρ ε2

−
1

2µ
Cµν ε̄1γνε2

)
−

2

µ2
∇ν (εµνρCρσε̄1γ

σε2)
]

Not very instructive. A more useful form
obtains by defining

∇̃Lµε :=
(
∇µ − 1

2mγµ −
1

2µ(µ+m)Cµνγ
ν
)
ε

Next, we impose a generalized version of the
Witten spinor condition as

γiei
µ∇̃Lµε = 0 , i = 1,2



Next, we use the identity γ0ij = −γiγ0γj −
δijγ0. This gives our key result:

QLWN = 4
(
1 + m

µ

) ∫
Σ

(
∇̃Li ε1

)† (
∇̃Li ε2

)
e0
µdΣµ

− 2
µ3(µ+m)

∫
Σ
daXµν u

µv(+)

Spacelike initial value surface: dΣµ = uµda

v(+)ν := ε̄γνε where ε obeys the generalized
Witten condition, and approaches Killing spinors
from D̂L

µε = 0.

Xµν = CµλCλν − 1
2gµνC

2



Thus we have the bounds:

µ ≥ m : QLWN ≥ −
2

µ3(µ+m)

∫
Σ daXµν uµv(+)ν

µ > m : QRWN ≥ −
2

µ3(µ−m)

∫
Σ daXµν uµv(−)ν

µ = m : QRWN = 0

with standard Brown-Henneaux b.c. assumed
in the last case.



Boundary conditions (brief)

AdS metric: ds̄2 = `2
[
− cosh2 ρ dτ2 + sinh2 ρ dφ2 + dρ2

]
Let hab = ēaµēb

νhµν.

|µ`| > 1 : h++ = e−2ρf++ + · · ·

h+− = e−2ρf+−+ · · ·

h22 = e−2ρf22 + · · ·

h−− = e−2ρf−−+ · · ·

h+2 = e−3ρf+2 + · · ·

h−2 = e−3ρf−2 + · · ·

( f ’s depend only on τ and φ). These are
the standard Brown-Henneaux b.c.



|µ`| = 1 : h++ = e−2ρf++ + · · ·

h+− = e−2ρf+−+ · · ·

h22 = e−2ρf22 + · · ·

h−− = ρe−2ρf̃−−+ e−2ρf−−+ · · ·

h+2 = e−3ρf+2 + · · ·

h−2 = ρe−3ρf̃−2 + e−3ρf−2 + · · ·

The f̃ terms represent slower fall-off terms.
These are the weak Brown-Henneaux b.c.

Grumiller & Johansson; Henneaux, Martinez
& Troncoso

Chiral gravity of Li, Song & Strominger is
defined with the standard Brown-Henneaux
b.c.



What can we conclude from these results?

• The fact that for G < 0 the BTZ black
hole has negative energy can already be
deduced directly from the ADT formula.

So, let us focus on G > 0, and to have
nonnegative boundary CFT central charge
µ` ≥ 1

• For µ` > 1 there is negative energy per-
turbative helicity 2 state, even in case
of standard Brown-Henneaux b.c., let us
consider the case of µ` = 1.

• For µ` = 1, there exist negative en-
ergy solutions (Deser et al, Grumiller et
al ) if weak (i.e. logarithmic) Brown-
Henneaux b.c. are allowed. So, let us
focus on standard Brown-Henneaux b.c.



So, what can we deduce from our result in
the case of chiral gravity? (i.e. µ` = 1 and
standard Brown-Henneaux b.c.) We have:

EWN ≥ − `4

32πG

∫
Σ

(
Cµ

λCλν −
1

2
gµνC

2
)
uµ vν da ,

So, in particular (existence of regular gen-
eralized Witten spinor understood):

• Solutions with Cµν = 0 , have positive

energy. These are all locally, including
the BTZ black hole.

• Spacetimes with Cotton tensor of the
form Cµν = uµuν where uµ is a null vec-

tor have positive energy.



• If these are the only exact solutions of
chiral gravity, then we have a positive
energy theorem.

• At present, the only known exact so-
lutions of chiral gravity are locally AdS
type.

• Partition function of chiral gravity with
based on locally AdS solutions have been
computed recently by Maloney, Wei &
Strominger who find a result that does
have physical interpretation. Encourag-
ing but see their paper for a list of what
could still go wrong!


