Some properties of superconformal M2 branes

Bengt E.W. Nilsson
Chalmers University of Technology, Göteborg

Duff fest
Imperial College, London
April 1-2, 2009

Talk based on:

- "Three-dimensional $N=8$ superconformal gravity and its coupling to BLG M2 branes" Ulf Gran and Bengt E.W. Nilsson,
arXiv:0809.4478 [hep-th] (v.3), in JHEP
- "Three dimensional topologically gauged $N=6$ superconformal ABJM type theories" Xiaoyong Chu and Bengt E.W. Nilsson, in prep

More references

see also

- "On relating M2 and D2 branes, Ulf Gran, Bengt E.W. Nilsson and Christoffer Petersson arXiv:0804.1784[hep-th], in JHEP
- "Superconformal M2-branes and generalized Jordan triple systems"
Bengt E.W. Nilsson and Jakob Palmkvist, arXiv:0807.5134 [hep-th], in CQG
- "Light-cone analysis of ungauged and topologically gauged BLG Bengt E.W. Nilsson, arXiv:0811.3388 [hep-th]

Introduction: Motivation

Motivation:

3-dim superconformal field theories are of interest in

- M-theory: M2-branes, $A d S_{4} / C F T_{3}$, 3d mirror symmetry, microscopic degrees of freedom, etc
- condensed matter: phase transitions, superconductivity, etc
- mathematics: integrability, 'vertex operators', etc

Symmetry properties are important both for applications and for our understanding of these theories.

Consider the $\mathcal{N}=8 \mathrm{BLG}$ and $\mathcal{N}=6 \mathrm{ABJM}$ superconformal matter systems
Question: Can we find new symmetries or algebraic structures in these theories?

Content: M2 branes with 8 or 6 supersymmetries

We will

- review the $\mathcal{N}=8$ superconformal theory $(N=2, k=1,2)$: BLG [Bagger, Lambert], [Gustavsson]
- discuss the gauging of its global symmetries [Gran,N]
- and how to analyse it in the light-cone gauge [N]
- review the more recent $\mathcal{N}=6$ version (any N, k): ABJM [Aharony, Bergman, Jafferis, Maldacena] [Benna,Klebanov,Klose,Smedbäck]
- discuss the topological gauging of these theories [Chu, N], in prep
- and introduce an infinite dimensional symmetry structure related to generalized Jordan triple systems
[N,Palmkvist]

3-dim $\mathcal{N}=8$ superconformal field theory : field content

Field content of BLG: (M2 branes in 11d)

- scalars X_{a}^{i}
- spinors ψ_{a}
- vector gauge potential $\tilde{A}_{\mu}{ }^{a}{ }_{b}=A_{\mu c d} f^{c d a}{ }_{b}$
- $i: S O(8)$ R-symmetry vector index,
- ψ_{a} has a hidden R-symmetry spinor index,
- a: three-algebra index related to $\left[T^{a}, T^{b}, T^{c}\right]=f^{a b c}{ }_{d} T^{d}$
- conformal dimensions (deduced from their kinetic terms):
- $-1 / 2$ for X_{a}^{i}
- -1 for ψ_{a}
- -1 for \tilde{A}_{μ} ("kinetic term" = Chern-Simons term) [Schwarz]

3-dim $\mathcal{N}=8$ superconformal field theory: Lagrangian

The BLG Lagrangian is

$$
\begin{aligned}
\mathcal{L}= & -\frac{1}{2}\left(D_{\mu} X^{i a}\right)\left(D^{\mu} X_{a}^{i}\right)+\frac{i}{2} \bar{\Psi}^{a} \gamma^{\mu} D_{\mu} \Psi_{a}-\frac{i}{4} \bar{\Psi}_{b} \Gamma_{i j} X^{i}{ }_{c} X^{j}{ }_{d} \Psi_{a} f^{a b c d} \\
& -V+\frac{1}{2} \varepsilon^{\mu \nu \lambda}\left(f^{a b c d} A_{\mu a b} \partial_{\nu} A_{\lambda c d}+\frac{2}{3} f^{c d a}{ }_{g} f^{e f g b} A_{\mu a b} A_{\nu c d} A_{\lambda e f}\right),
\end{aligned}
$$

where $D_{\mu}=\partial_{\mu}+\tilde{A}_{\mu}$ and the potential is

$$
V=\frac{1}{12}\left(X_{a}^{i} X^{j}{ }_{b} X^{k}{ }_{c} f^{a b c d}\right)\left(X^{i}{ }_{e} X^{j}{ }_{f} X^{k}{ }_{g} f^{e f g}{ }_{d}\right) .
$$

- this assumes a Euclidean metric on the three-algebra $=>f^{[a b c d]}$
- the gauge theory is Chern-Simons with a split gauge group
- can have (quantized) non-trivial level k on orbifolds (but $k>2$ unclear): Large $k=$ weak coupling
[Lambert,Tong][Distler,Mukhi,Papageorgakis,Van Raamsdonk]
- no other free parameters!

BLG transformation rules

The BLG transformation rules for (global) $\mathcal{N}=8$ supersymmetry are

$$
\begin{aligned}
\delta X_{i}^{a} & =i \epsilon \Gamma_{i} \Psi^{a}, \\
\delta \Psi_{a} & =\tilde{D}_{\mu} X_{a}^{i} \gamma^{\mu} \Gamma^{i} \epsilon+\frac{1}{6} X_{b}^{i} X_{c}^{j} X_{d}^{k} \Gamma^{i j k} \epsilon f^{b c d}{ }_{a} .
\end{aligned}
$$

Imposing supersymmetry on the (Cov.der. $)^{2}$ terms in $\delta \mathcal{L}$ implies

$$
\delta \tilde{A}_{\mu}{ }^{a}{ }_{b}=i \bar{\epsilon} \gamma_{\mu} \Gamma^{i} X_{c}^{i} \psi_{d} f^{c d a}{ }_{b}
$$

and the fundamental identity

$$
f^{a b c}{ }_{g} f^{e f g}{ }_{d}=3 f^{e f[a}{ }_{g} f^{b c] g}{ }_{d},
$$

with alternative but equivalent form [Gran, N, Petersson]

$$
f^{[a b c}{ }_{g} f^{e l] g}{ }_{d}=0
$$

- one finite dim. realization, \mathcal{A}_{4}, with split $S O(4)$ gauge symmetry (with levels $(k,-k)$) [Papadopoulos][Gauntlett,Gutowski]
- ∞ dim'al case: Nambu bracket, $\operatorname{SDiff}\left(M_{3}\right)$ (volume preserving) [Bandos, Townsend], and Witt algebra [Curtright, Fairlie, Zachos]

BLG: more properties

- parity: interchanges the two gauge fields for $S O(4)=S U(2) \times S U(2)$ with levels $(k,-k)$
- BLG describes two M2 branes; attempts to find a similar theory for $\mathcal{N}>2 \mathrm{M} 2$ branes have used
- degenerate metrics with no Lagrangian (any Lie group possible), and not totally antisymmetric structure constants [Gran, N,Petersson]
if the scalar in the degenerate direction is frozen it can be obtained from a Lagrangian
- Lagrangian exists also if a Lorentzian metric is used but may be just D2 branes in disguise [Sen, Verlinde, Schwarz, ...]
- The field equations for the Chern-Simons gauge field is

$$
\tilde{F}_{\mu \nu}{ }^{b}{ }_{a}+\epsilon_{\mu \nu \rho}\left(X_{c}^{i} \partial^{\rho} X_{d}^{i}+\frac{i}{2} \bar{\Psi}_{c} \gamma^{\rho} \Psi_{d}\right) f^{c d b}{ }_{a}=0
$$

i.e. not dynamical. In the light-cone gauge one can even solve for the gauge field!

3-dim $\mathcal{N}=8$ superconformal gravity

Can the global symmetries of the BLG theory be gauged?
If yes, can it be done without adding new degrees of freedom?

- Off-shell field content of 3-dim. $\mathcal{N}=8$ conformal supergravity :

$$
e_{\mu}^{\alpha}[0], \chi_{\mu}^{i}[-1 / 2], B_{\mu}^{i j}[-1], b_{i j k l}[-1], \rho_{i j k}[-3 / 2], c_{i j k l}[-2],
$$

([scaling dimension])[Howe,Izquierdo,Papadopoulos,Townsend]

- On-shell the Lagrangian = three Chern-Simons-like terms ([Gran,N]) (compare $\mathcal{N}=1$ [Deser,Kay(1983)], [van Nieuwenhuizen], and for any \mathcal{N} [Lindström,Roček])

$$
\begin{gathered}
\mathcal{L}=\frac{1}{2} \epsilon^{\mu \nu \rho} \operatorname{Tr}_{\alpha}\left(\tilde{\omega}_{\mu} \partial_{\nu} \tilde{\omega}_{\rho}+\frac{2}{3} \tilde{\omega}_{\mu} \tilde{\omega}_{\nu} \tilde{\omega}_{\rho}\right) \\
-i e^{-1} \epsilon^{\alpha \mu \nu}\left(\tilde{D}_{\mu} \bar{\chi}_{\nu} \gamma_{\beta} \gamma_{\alpha} \tilde{D}_{\rho} \chi_{\sigma}\right) \epsilon^{\beta \rho \sigma}-\epsilon^{\mu \nu \rho} \operatorname{Tr}_{i}\left(B_{\mu} \partial_{\nu} B_{\rho}+\frac{2}{3} B_{\mu} B_{\nu} B_{\rho}\right)
\end{gathered}
$$

- supercovariant spin connection: $\tilde{\omega}_{\mu \alpha \beta}\left(e_{\mu}{ }^{\alpha}, \chi_{\mu}^{i}\right)$
- CS terms are of 3rd, 2nd and 1st order in derivatives, respectively
- 3-dim diff's and local $S O(8)$ R-symmetry
- local $\mathcal{N}=8$ supersymmetry (f^{ν} is the spin $3 / 2$ field strength)

$$
\begin{gathered}
\delta e_{\mu}{ }^{\alpha}=i \bar{\epsilon}(x) \gamma^{\alpha} \chi_{\mu}, \quad \delta \chi_{\mu}=\tilde{D}_{\mu} \epsilon(x), \\
\delta B_{\mu}^{i j}=-\frac{i}{2} \bar{\epsilon}(x) \Gamma^{i j} \gamma_{\nu} \gamma_{\mu} f^{\nu},
\end{gathered}
$$

- local scale invariance

$$
\begin{gather*}
\delta_{\Delta} e_{\mu}^{\alpha}=-\phi(x) e_{\mu}{ }^{\alpha}, \quad \delta_{\Delta} \chi_{\mu}=-\frac{1}{2} \phi(x) \chi_{\mu} \tag{1}\\
\delta_{\Delta} B_{\mu}^{i j}=0
\end{gather*}
$$

- and local $\mathcal{N}=8$ superconformal symmetry

$$
\begin{gathered}
\delta_{S} e_{\mu}^{\alpha}=0, \quad \delta_{S} \chi_{\mu}=\gamma_{\mu} \eta(x), \\
\delta_{S} B_{\mu}^{i j}=\frac{i}{2} \bar{\eta}(x) \Gamma^{i j} \chi_{\mu} .
\end{gathered}
$$

A proof a la Deser-Kay requires some nice Fierzing! [Gran, N]
Typical expressions that arise multiplying each other are

- the supercovariant dual spin connection

$$
\delta \tilde{\omega}_{\mu}^{* \alpha}=-2 i\left(\bar{\epsilon} \gamma_{\mu} f^{\alpha}-\frac{1}{2} e_{\mu}{ }^{\alpha} \bar{\epsilon} \gamma_{\nu} f^{\nu}\right)
$$

- and the triple dual of the Riemann tensor

$$
\tilde{R}_{\mu}^{* * *}=i \bar{\chi}_{\nu} \gamma_{\mu} f^{\nu}
$$

- giving the Fierz basis (Gran's GAMMA is useful)

$$
\begin{array}{ll}
(-) & \left(\bar{\epsilon} \chi_{\mu}\right)\left(\bar{f}_{\nu} f_{\rho}\right) \epsilon^{\mu \nu \rho}=0, \\
(-) & \left(\bar{\epsilon} \chi_{\alpha}\right)\left(\bar{f} \bar{f}_{\rho} \gamma^{\alpha} f_{\beta}\right)=0, \\
(1) & \left(\bar{\epsilon} \chi_{\alpha}\right)\left(\bar{f} \gamma^{\alpha} \gamma^{\beta} f_{\beta}\right), \\
(2) & \left(\bar{\epsilon} \gamma^{\alpha} \chi_{\alpha}\right)\left(\overline{f^{\beta}} f_{\beta}\right), \\
(3) & \ldots .
\end{array}
$$

Topologically gauged BLG theory

- This supergravity theory has no propagating degrees of freedom!
- clear in the light-cone gauge: all non-zero field components (plus ∂_{+}on them) can be solved for [N] => "topologically gauged BLG"
- couplings have been checked to order (Cov.der. $)^{3}$ and (Cov.der.) ${ }^{2}$ [Gran,N]
- parity: a problem
- a new level k ([Horne,Witten])
- coordinate dependent parameters also on $\mathbf{R} \times S^{2}$ [Ali-Akbari]

Many questions concerning interpretation:

- AdS/CFT (compare [Liu,Tseytlin] for $A d S_{5} / \mathrm{CFT}_{4}$)
- curved M2's, topologically twisted BLG [Lee,Lee,Park], quantization (compare [Polyakov],[Brink,Di Vecchia,Howe])

Topologically gauged BLG theory: details

The Lagrangian: (up to a number of scalar and fermionic interaction terms; see gauged ABJM later)

$$
\begin{gathered}
L_{B L G}^{\text {top }}=L_{\text {grav }}^{\text {conf }}+L_{B L G}^{c o v} \\
+\frac{1}{\sqrt{2}} i e \bar{\chi}_{\mu} \Gamma^{i} \gamma^{\nu} \gamma^{\mu} \Psi^{a}\left(\tilde{D}_{\nu} X^{i a}-\frac{i}{2 \sqrt{2}} \bar{\chi}_{\nu} \Gamma^{i} \Psi^{a}\right) \\
+\frac{1}{6 \sqrt{2}} i e \bar{\chi}_{\mu} \gamma^{\mu} \Gamma^{i j k} \Psi_{a}\left(X_{b}^{i} X_{c}^{j} X_{d}^{k}\right) f^{a b c d} \\
-\frac{i}{4} \epsilon^{\mu \nu \rho} \bar{\chi}_{\mu} \Gamma^{i j} \chi_{\nu}\left(X_{a}^{i} \tilde{D}_{\rho} X_{a}^{j}\right)+\frac{i}{\sqrt{2}} \bar{f}^{\mu} \Gamma^{i} \gamma_{\mu} \Psi_{a} X_{a}^{i} \\
-\frac{e}{16} X^{2} \tilde{R}+\frac{i}{16} X^{2} \bar{f}^{\mu} \chi_{\mu}
\end{gathered}
$$

Topologically gauged BLG theory: details

The transformation rules are

$$
\begin{aligned}
\delta e_{\mu}{ }^{\alpha}= & i \sqrt{2} \bar{\epsilon} \gamma^{\alpha} \chi_{\mu}, \\
\delta \chi_{\mu}= & \sqrt{2} \tilde{D}_{\mu} \epsilon, \\
\delta B_{\mu}^{i j}= & -\frac{i}{\sqrt{2}} \bar{\epsilon} \Gamma^{i j} \gamma_{\nu} \gamma_{\mu} f^{\nu}-\frac{i}{2} \bar{\Psi}_{a} \gamma_{\mu} \Gamma^{[i} \epsilon X_{a}^{j]} \\
& -\frac{i}{2 \sqrt{2}} \bar{\chi}_{\mu} \Gamma^{k[i} \epsilon X_{a}^{j]} X_{a}^{k}-\frac{i}{16} \bar{\Psi}_{a} \Gamma^{k} \Gamma^{i j} \gamma_{\mu} \epsilon X_{a}^{k}+\frac{i}{16 \sqrt{2}} \bar{\epsilon} \Gamma^{i j} \chi_{\mu} X^{2}, \\
\delta X_{i}^{a}= & i \epsilon \Gamma_{i} \Psi^{a}, \\
\delta \Psi_{a}= & \left(\tilde{D}_{\mu} X_{a}^{i}-\frac{1}{\sqrt{2}} \bar{\chi}_{\mu} \Gamma^{i} \Psi_{a}\right) \gamma^{\mu} \Gamma^{i} \epsilon+\frac{1}{6} X_{b}^{i} X_{c}^{j} X_{d}^{k} \Gamma^{i j k} \epsilon f^{b c d}{ }_{a}, \\
\delta \tilde{A}_{\mu}{ }^{a}{ }_{b}= & i \bar{\epsilon} \gamma_{\mu} \Gamma^{i} X_{c}^{i} \Psi_{d} f^{c d a}{ }_{b}-\frac{i}{\sqrt{2}} \bar{\chi}_{\mu} \Gamma^{i j} \epsilon X_{c}^{i} X_{d}^{j} f^{c d a}{ }_{b} .
\end{aligned}
$$

BLG on the light-cone: components

$\mathcal{N}=4$ SYM in 3d can be proven perturbatively finite using the light-cone gauge [Brink,N,Lindgren],[Mandelstam]
Can this be done for BLG/ABJM theories?

- The light-cone BLG [N]: bosonic sector with $A_{-}=0$

$$
\begin{aligned}
\mathcal{L} & =\frac{1}{2} X_{A}^{I}\left(-2 \partial_{-} \partial_{+}+\partial^{2}\right) X_{A}^{I}-X_{A}^{I} \tilde{A}_{+}^{A B} \partial_{-} X_{B}^{I}+X_{A}^{I} \tilde{A}^{A B} \partial X_{B}^{I} \\
& +\frac{1}{2} X_{A}^{I}\left(\tilde{A}^{2}\right)^{A B} X_{B}^{I}-A_{+}^{A B} \partial_{-} \tilde{A}_{A B}-V
\end{aligned}
$$

- => the other two components of A_{μ} can be integrated out
- adding the fermions, also half the spinor field can be integrated out by using the matrix ($H=X X \delta$)

$$
M_{A B}^{C D}=\left(\begin{array}{ccc}
0 & \delta_{A B}^{C D} & 0 \\
\delta_{A B}^{C D} & H_{A B}^{C D} & -i \delta_{[A}^{C} \Psi_{B]}^{(-)} \\
0 & i \delta_{A}^{[C} \Psi^{D](-)} & i \sqrt{2} \delta_{A}^{C} \partial_{-}
\end{array}\right)
$$

- which is defined from $\mathcal{L}=\frac{1}{2} \mathcal{A}^{\dagger} M \mathcal{A}+\mathcal{A}^{\dagger} \mathcal{J}$ and

$$
\mathcal{A}=\left(\partial_{-} A_{+}^{A B} \tilde{A}^{A B}, \Psi_{A}^{(+)}\right)
$$

BLG on the light-cone: superspace

- Light-cone superfield $\Phi\left(x^{\mu}, \theta^{m}\right)$ with θ in $\mathbf{4}$ of $S U(4)$

$$
\begin{aligned}
d_{m} d_{n} \Phi & =\frac{1}{2} \epsilon_{m n p q} \bar{d}^{p} \bar{d}^{q} \bar{\Phi} \\
\left.\Phi\right|_{0} & =\frac{1}{\partial_{-}} A,\left.d_{m} \Phi\right|_{0}=\sqrt{2} \frac{1}{\partial_{-}} \chi_{m},\left.\quad d_{m} d_{n} \Phi\right|_{0}=2 \sqrt{2} i C_{m n}
\end{aligned}
$$

- Superspace Lagrangian (surpressing the three-algebra indices)

$$
\begin{aligned}
\mathcal{L}_{2} & =A \square \bar{A}+\frac{1}{4} C_{m n} \square \bar{C}^{m n}-\frac{i}{\sqrt{2}} \bar{\chi}^{m} \frac{\square}{\partial_{-}} \chi_{m} \\
& =-2^{-7} \int d^{4} \theta d^{4} \bar{\theta}\left(\Phi \frac{\square}{\partial_{-}^{2}} \bar{\Phi}\right)
\end{aligned}
$$

- interaction terms are more complicated (six-point not done yet)
- should work the same way for ABJM but possibly more close to $4 \mathrm{~d} \mathcal{N}=4$ SYM. 2 3-dim $\mathcal{N}=6$ superconformal field theory: ABJM basics

How to describe stacks with more than two M2's?

- More than two M2-branes seems to require less susy than $\mathcal{N}=8$ ABJM: $\mathcal{N}=6$, any k and gauge group $U(N) \times U(N)$ or $S U(N) \times S U(N)$ (and some other possible choices)
- scalar fields now complex Z^{A} : in bifundamental, A an $S U(4)$ fund. index (after breaking the R-symmetry to $S U(4) \times U(1)$)
- supersymmetry parameters are $\epsilon^{A B}$ in a 6 of $S U(4)$
- the ABJM version uses no three-algebra f symbols,
- but f can be reinstated [Bagger,Lambert]: then the f 's are only antisymmetric separately in the first and second pair of indices
- $U(2) \times U(2)$ BLG requires 't Hooft (vortex) operators $(k=1,2)$ [Klebanov,Klose,Murugan],[Borokhov,Kapustin,Wu], also for $N>2$?

3-dim $\mathcal{N}=6$ superconformal field theory: more structure

It is natural to use [N,Palmkvist]

- $f^{a b} c d$
- $\left(Z_{a}^{A}\right)^{*}=Z_{A}^{a},\left(\Psi_{A a}\right)^{*}=\Psi^{A a}$

Then

$$
\begin{aligned}
\mathcal{L}= & -\frac{1}{2}\left(D_{\mu} Z_{a}^{A}\right)\left(D^{\mu} \bar{Z}_{A}^{a}\right)+\frac{i}{2} \bar{\Psi}^{A a} \gamma^{\mu} D_{\mu} \Psi_{A a} \\
& -\frac{i}{2} f^{a b}{ }_{c d} \bar{\Psi}^{A d} \Psi_{A a} Z_{b}^{B} \bar{Z}_{B}^{c}+i f^{a b}{ }_{c d} \bar{\Psi}_{A a} \Psi_{B b} Z_{c}^{B} \bar{Z}_{A}^{d} \\
& -\frac{i}{4} \epsilon_{A B C D} f^{a b}{ }_{c d} \bar{\Psi}^{A c} \Psi^{B d} Z_{a}^{C} Z_{b}^{D}-\frac{i}{4} \epsilon^{A B C D} f^{a b}{ }_{c d} \bar{\Psi}_{A a} \Psi_{B b} \bar{Z}_{C}^{c} \bar{Z}_{B}^{d} \\
& -V+\frac{1}{2} \epsilon^{\mu \nu \lambda}\left(f^{a b}{ }_{c d} A_{\mu b}^{d} \partial_{\nu} A_{\lambda a}^{c}+\frac{2}{3} f^{b d}{ }_{{ }_{g}} f^{g f}{ }_{a e} A_{\mu b}^{a} A_{\nu d}^{c} A_{\lambda f}^{e}\right),
\end{aligned}
$$

and the fundamental identity

$$
f^{e[a}{ }_{c c} f^{b] d}{ }_{g h}=f^{a b}{ }_{d[g} f^{e d}{ }_{h] c} .
$$

Since ABJM is much less rigid than BLG it should be easier to gauge

- The complete Lagrangian is easy (but tedious) to derive [Chu, N], in prep
- it has a number of new scalar interaction terms with one or no structure constant
- and new Yukawa like terms with no structure constants
- the transformation rules change compared to the BLG situation above
- new terms in $\delta \Psi_{A a}$
- new transformation rules for a special $U(1)$

The generalized Jordan triple structure

- The index properties in ABJM suggest a connection to generalized Jordan triple systems [N,Palmkvist]
- examples of triple systems (finite gradings) :

Jordan, Kantor, Freudenthal

- triple systems may be based on a graded involution τ mapping between g_{1} and g_{-1} in some n-graded Lie algebra:

$$
(a b c)=[[a, \tau(b)], c]
$$

- all triple systems obey:

$$
(a b(x y z))-(x y(a b z))=((a b x) y z) \pm(x(b a y) z)
$$

with

- minus sign=>the generalized Jordan identity,
- plus sign $=>$ Freudenthal (5-graded only)
plus additional relations if the Lie algebra is finite dimensional.

The connection to generalized Jordan triple systems (GJTS)

GJTS:

- $\hat{f}^{a}{ }_{b}{ }^{c}{ }_{d}$ are structure constants of the triple system

ABJM/BL :

- $f^{a b}{ }_{c d}$ have two antisymmetric pairs of indices:
- imposing this property on the triple systems =>
- generalized Jordan identity = fundamental identity
- no additional relations =>
- the whole Lie algebra is infinitely graded (the BLG/ABJM gauge symmetry is here in g_{0})
- could be either Kac-Moody or Borcherds-like

Summary

We have discussed

- local symmetries of BLG and ABJM theories: topological gauging
- infinite dimensional Lie algebra structures in ABJM/BLG: GJTS
- light-cone methods to understand the physics and superspace

Future goals: to better understand 3-dim superconformal field theories

- ABJM -> BLG symmetry enhancement, 't Hooft (or monopole) operators, quantization, integrability, mirror symmetry, etc
- applications: M-theory, condensed matter

We have discussed

- local symmetries of BLG and ABJM theories: topological gauging
- infinite dimensional Lie algebra structures in ABJM/BLG: GJTS
- light-cone methods to understand the physics and superspace

Future goals: to better understand 3-dim superconformal field theories

- ABJM -> BLG symmetry enhancement, 't Hooft (or monopole) operators, quantization, integrability, mirror symmetry, etc
- applications: M-theory, condensed matter

THANKS FOR YOUR ATTENTION!

Summary

We have discussed

- local symmetries of BLG and ABJM theories: topological gauging
- infinite dimensional Lie algebra structures in ABJM/BLG: GJTS
- light-cone methods to understand the physics and superspace

Future goals: to better understand 3-dim superconformal field theories

- ABJM -> BLG symmetry enhancement, 't Hooft (or monopole) operators, quantization, integrability, mirror symmetry, etc
- applications: M-theory, condensed matter

THANKS FOR YOUR ATTENTION!

AND MIKE:

We have discussed

- local symmetries of BLG and ABJM theories: topological gauging
- infinite dimensional Lie algebra structures in ABJM/BLG: GJTS
- light-cone methods to understand the physics and superspace

Future goals: to better understand 3-dim superconformal field theories

- ABJM -> BLG symmetry enhancement, 't Hooft (or monopole) operators, quantization, integrability, mirror symmetry, etc
- applications: M-theory, condensed matter

THANKS FOR YOUR ATTENTION!

AND MIKE: CONGRATULATIONS!!

