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Why explore higher derivative corrections?

• Stringy corrections — the α′ expansion

low energy effective field theory
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• Black hole physics

black hole entropy, OSV, small black holes

• AdS/CFT finite ’t Hooft coupling corrections (α′ = L2/
√
λ)
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Higher derivative gravity

• Consider a pure gravity theory

e
−1L = R + α1R

2
+ α2R

2
µν + α3R

2
µνρσ + · · ·

• This generally gives rise to several unpleasant features

non-unitary propagation, propagation outside the lightcone

ill posed Cauchy problem, no generalized Gibbons-Hawking surface term

• These are related to the fourth (or higher) order equation of motion

One exception — the Gauss-Bonnet combination

e
−1LGB = α(R

2 − 4R
2
µν + R

2
µνρσ)

(this combination yields a second order equation of motion)

However: Not a problem as an effective field theory
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Field redefinitions

• One complication — we may perform a field redefinition of the form

gµν → gµν + aRµν + bgµνR

For pure gravity with Λ = 0 this is an on-shell field redefinition

• At linear order in αi, only α3R
2
µνρσ is physical

The α1R
2 and α2R

2
µν terms can be shifted away by an appropriate field redefinition

(This is more subtle at the non-linear and higher than four derivative level)

The above field redefinition can be generalized in the presence of matter

For Maxwell-Einstein gravity

gµν → gµν + aRµν + bgµνR + cFµ
λ
Fνλ + dgµνF

2
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Five dimensional supergravity

• Motivation comes from

D = 5 black holes and attractors (ungauged supergravity)

AdS/CFT (gauged supergravity)

• Minimal N = 2 gauged supergravity

e
−1L0 = R−

1

4
F

2
µν + 12g

2
+

1

12
√

3
ε
µνρλσ

FµνFρλAσ + fermi

• For higher derivative corrections

Also includes graviphoton (F 4) and mixed (RF 2) terms

Additional terms should come in supersymmetric combinations

This is in general a non-trivial task

Many potential terms to consider, even at the four derivative level
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Supersymmetric completion of A ∧ TrR ∧R

• Natural application of susy tensor calculus

i) off-shell formulation of D = 5, N = 2 sugra

ii) conformal supergravity (Weyl multiplet) coupled to

nV + 1 conformal vector multiplets

iii) add a conformal compensator (hypermultiplet)

iv) create invariants using superconformal tensor calculus

• At the four derivative level

L = L(V · L[H
2
])− 1

2L(V · L[V
2
]) + L(V · L[W

2
])

hyper vector four-derivative

K. Hanaki, K. Ohashi and Y. Tachikawa, hep-th/0611329
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Minimal supergravity up to four derivatives

• The four derivative terms are parameterized by a single coefficient c2

• After integrating out auxiliary fields (and working to linear order in c2)
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–
• What physical significance can we give to c2?
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The c2 parameter in the ungauged case

• Consider M-theory (11-dimensional supergravity) on CY3

• In 11 dimensions M.J. Duff, JTL and R. Minasian, hep-th/9506126

e
−1L11 = · · ·+ C3 ∧

„
1

6
F4 ∧ F4 +

1

768
(TrR

2
)
2 −

1

192
TrR

4

«
• After compactifying on CY3, with C3 = AI ∧ ωI

e
−1L5 = · · ·+

1

6
cIJKA

I ∧ F J ∧ FK
+

1

96
c2 IA

I ∧ TrR ∧ R + · · ·

cIJK = triple intersection number

c2 I = second Chern class on appropriate cycles of CY3

• The parameters of the five-dimensional supergravity are given by
topological data of the CY3

JTL 7



The c2 parameter in the gauged case

• IIB theory on S5 gives c2 = 0, but non-vanishing c2 can come from other
sources such as branes

• We can use input from AdS/CFT

i) The holographic Weyl anomaly⇒ C2
µνρσ

ii) The R-current anomaly⇒ A ∧ TrR ∧ R

• For the CFT4 Weyl anomaly
D.M. Capper and M. J. Duff, Nuovo Cimento, 23A (1974) 173

M. J. Duff, Nucl. Phys. B125 (1977) 334

g
µν〈Tµν〉 = b

“
C

2
µνρσ +

2

3
�R
”

+ b
′
“
R

2 − 4R
2
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2
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”
• Matching with the holographic AdS5 calculation gives

c2

24
= −

b+ b′

b′g2
or

c2

24
=
c− a
ag2

with b =
c

16π2
and b

′
= −

a

16π2
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Holographic thermodynamics

• The b and b′ (or a and c) anomaly coefficients depend on the gauge
theory

b = −b′ =
N2

64π2
for N = 4 SYM

More generally, we expect b+ b′ = O(N), hence
c2

24
= −

b+ b′

b′g2
∼ O

“ 1

N

”
• Holographic thermodynamics may be extracted from the flat horizon

black hole solution (to linear order in c2)

ds
2
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Temperature and entropy

• The temperature is related to the surface gravity at the horizon
(or, equivalently, from demanding the absence of a conical singularity)

T =
g2r0(2− q)(1 + q)1/2

2π

"
1−

c2

8

10− 59q − 4q2 − 3q3

(2− q)2

#

• We use Wald’s formula for the entropy density

s =
(gr0)

3(1 + q)3/2

4G5

"
1 +

c2

8

21 + 14q − 3q2

2− q

#

Note that we have defined c̄2 = −
b+ b′

b′
=
c− a
a

, q =
Q

r2
0

To lowest order, q is related to the R-charge chemical potential Φ through

Φ = gr0

q
3q(1 + q)
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Holographic hydrodynamics

• We may also extract the shear viscosity using the Kubo formula in the
scalar channel

η =
(gr0)

3(1 + q)3/2

16πG5

"
1 +

c2

8

5 + 6q + 5q2

2− q

#

• The result simplifies in the ratio

η

s
=

1

4π
[1− c2(1 + q)] =

1

4π

»
1 +

b+ b′

b′
(1 + q)

–

This was independently obtained in

R.C. Myers, M.F. Paulos and A. Sinha, arXiv:0903.2834
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More to be done

• A better understanding of violations of η/s ≥ 1/4π

Generic large N theories with a gravitational dual have (b+ b′)/b′ ≤ 0

Adding R-charge only increases the violation

• Universality of η/s including higher derivatives

• Going beyond O(1/N)

Obtaining ‘exact’ solutions to higher derivative gravity is a challenge

• What about the 1/λ corrections?

Much remains to be explored in higher derivative gravity
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