Higher derivative corrections in five-dimensional supergravity

James T. Liu

2 April 2009
$\begin{array}{ll}\text { JTL and P. Szepietowski, } & \text { arXiv:0806.1026 } \\ \text { S. Cremonini, K. Hanaki, JTL and P. Szepietowski, } & \\ & \text { arXiv:0812.3572, arXiv:0903.3244 }\end{array}$

DuffFest

Why explore higher derivative corrections?

- Stringy corrections - the α^{\prime} expansion low energy effective field theory

$$
e^{-1} \mathcal{L}=R+\alpha^{\prime} R^{2}+\alpha^{\prime 2} R^{3}+\alpha^{\prime 3} R^{4}+\cdots
$$

- Black hole physics
black hole entropy, OSV, small black holes
- AdS/CFT finite 't Hooft coupling corrections ($\alpha^{\prime}=L^{2} / \sqrt{\lambda}$)

$$
\begin{array}{lll}
\text { entropy: } & s=\frac{3}{4} s_{0}\left[1+\frac{15}{8} \zeta(3) \lambda^{-3 / 2}+\cdots\right] \quad s_{0}=\frac{2 \pi^{2}}{3} N^{2} T^{3} \\
\text { shear viscosity: } & & \frac{\eta}{s}=\frac{1}{4 \pi}\left[1+15 \zeta(3) \lambda^{-3 / 2}+\cdots\right]
\end{array}
$$

Higher derivative gravity

- Consider a pure gravity theory

$$
e^{-1} \mathcal{L}=R+\alpha_{1} R^{2}+\alpha_{2} R_{\mu \nu}^{2}+\alpha_{3} R_{\mu \nu \rho \sigma}^{2}+\cdots
$$

- This generally gives rise to several unpleasant features
non-unitary propagation, propagation outside the lightcone
ill posed Cauchy problem, no generalized Gibbons-Hawking surface term
- These are related to the fourth (or higher) order equation of motion

One exception - the Gauss-Bonnet combination

$$
e^{-1} \mathcal{L}_{\mathrm{GB}}=\alpha\left(R^{2}-4 R_{\mu \nu}^{2}+R_{\mu \nu \rho \sigma}^{2}\right)
$$

(this combination yields a second order equation of motion)

Higher derivative gravity

- Consider a pure gravity theory

$$
e^{-1} \mathcal{L}=R+\alpha_{1} R^{2}+\alpha_{2} R_{\mu \nu}^{2}+\alpha_{3} R_{\mu \nu \rho \sigma}^{2}+\cdots
$$

- This generally gives rise to several unpleasant features
non-unitary propagation, propagation outside the lightcone ill posed Cauchy problem, no generalized Gibbons-Hawking surface term
- These are related to the fourth (or higher) order equation of motion One exception - the Gauss-Bonnet combination

$$
e^{-1} \mathcal{L}_{\mathrm{GB}}=\alpha\left(R^{2}-4 R_{\mu \nu}^{2}+R_{\mu \nu \rho \sigma}^{2}\right)
$$

(this combination yields a second order equation of motion)

- However:

Not a problem as an effective field theory

Field redefinitions

- One complication - we may perform a field redefinition of the form

$$
g_{\mu \nu} \rightarrow g_{\mu \nu}+a R_{\mu \nu}+b g_{\mu \nu} R
$$

For pure gravity with $\Lambda=0$ this is an on-shell field redefinition

- At linear order in α_{i}, only $\alpha_{3} R_{\mu \nu \rho \sigma}^{2}$ is physical

The $\alpha_{1} R^{2}$ and $\alpha_{2} R_{\mu \nu}^{2}$ terms can be shifted away by an appropriate field redefinition
(This is more subtle at the non-linear and higher than four derivative level)

Field redefinitions

- One complication - we may perform a field redefinition of the form

$$
g_{\mu \nu} \rightarrow g_{\mu \nu}+a R_{\mu \nu}+b g_{\mu \nu} R
$$

For pure gravity with $\Lambda=0$ this is an on-shell field redefinition

- At linear order in α_{i}, only $\alpha_{3} R_{\mu \nu \rho \sigma}^{2}$ is physical

The $\alpha_{1} R^{2}$ and $\alpha_{2} R_{\mu \nu}^{2}$ terms can be shifted away by an appropriate field redefinition
(This is more subtle at the non-linear and higher than four derivative level)

- The above field redefinition can be generalized in the presence of matter For Maxwell-Einstein gravity

$$
g_{\mu \nu} \rightarrow g_{\mu \nu}+a R_{\mu \nu}+b g_{\mu \nu} R+c F_{\mu}{ }^{\lambda} F_{\nu \lambda}+d g_{\mu \nu} F^{2}
$$

Five dimensional supergravity

- Motivation comes from
$D=5$ black holes and attractors (ungauged supergravity)
AdS/CFT (gauged supergravity)
- Minimal $\mathcal{N}=2$ gauged supergravity

$$
e^{-1} \mathcal{L}_{0}=R-\frac{1}{4} F_{\mu \nu}^{2}+12 g^{2}+\frac{1}{12 \sqrt{3}} \epsilon^{\mu \nu \rho \lambda \sigma} F_{\mu \nu} F_{\rho \lambda} A_{\sigma}+\text { fermi }
$$

- For higher derivative corrections

Also includes graviphoton (F^{4}) and mixed ($R F^{2}$) terms
Additional terms should come in supersymmetric combinations

Five dimensional supergravity

- Motivation comes from
$D=5$ black holes and attractors (ungauged supergravity)
AdS/CFT (gauged supergravity)
- Minimal $\mathcal{N}=2$ gauged supergravity

$$
e^{-1} \mathcal{L}_{0}=R-\frac{1}{4} F_{\mu \nu}^{2}+12 g^{2}+\frac{1}{12 \sqrt{3}} \epsilon^{\mu \nu \rho \lambda \sigma} F_{\mu \nu} F_{\rho \lambda} A_{\sigma}+\text { fermi }
$$

- For higher derivative corrections

Also includes graviphoton (F^{4}) and mixed ($R F^{2}$) terms
Additional terms should come in supersymmetric combinations

- This is in general a non-trivial task

Many potential terms to consider, even at the four derivative level

Supersymmetric completion of $A \wedge \operatorname{Tr} R \wedge R$

- Natural application of susy tensor calculus
i) off-shell formulation of $D=5, \mathcal{N}=2$ sugra
ii) conformal supergravity (Weyl multiplet) coupled to $n_{V}+1$ conformal vector multiplets
iii) add a conformal compensator (hypermultiplet)
$i v$) create invariants using superconformal tensor calculus
- At the four derivative level

$$
\underset{\text { hyper }}{\mathcal{L}=\mathcal{L}\left(V \cdot L\left[H^{2}\right]\right)-\frac{1}{2} \mathcal{L}\left(V \cdot L\left[V^{2}\right]\right)+} \underset{\text { vector }}{\mathcal{L}\left(V \cdot L\left[W^{2}\right]\right)} \text { four-derivative }
$$

K. Hanaki, K. Ohashi and Y. Tachikawa, hep-th/0611329

Minimal supergravity up to four derivatives

- The four derivative terms are parameterized by a single coefficient c_{2}
- After integrating out auxiliary fields (and working to linear order in c_{2})

$$
\begin{aligned}
e^{-1} \mathcal{L}= & R-\frac{1}{4} F_{\mu \nu}^{2}+12 g^{2}+\frac{1}{12 \sqrt{3}}\left(1-\frac{c_{2}}{6} g^{2}\right) \epsilon^{\mu \nu \rho \lambda \sigma} F_{\mu \nu} F_{\rho \lambda} A_{\sigma} \\
+ & \frac{c_{2}}{24}\left[\frac{1}{16 \sqrt{3}} \epsilon^{\mu \nu \rho \lambda \sigma} R_{\mu \nu \alpha \beta} R_{\rho \lambda}{ }^{\alpha \beta} A_{\sigma}+\frac{1}{8} C_{\mu \nu \rho \sigma}^{2}\right. \\
& +\frac{5}{64} F_{\mu \nu} F^{\nu \rho} F_{\rho \lambda} F^{\lambda \mu}-\frac{41}{2304}\left(F_{\mu \nu}^{2}\right)^{2} \\
& \left.+\frac{1}{16} C_{\mu \nu \rho \sigma} F^{\mu \nu} F^{\rho \sigma}+\frac{1}{3} R_{\mu \nu} F^{\mu \lambda} F_{\lambda}^{\nu}-\frac{1}{48} R F_{\mu \nu}^{2} \cdots\right]
\end{aligned}
$$

- What physical significance can we give to c_{2} ?

The c_{2} parameter in the ungauged case

- Consider M-theory (11-dimensional supergravity) on CY_{3}
- In 11 dimensions M.J. Duff, JTL and R. Minasian, hep-th/9506126

$$
e^{-1} \mathcal{L}_{11}=\cdots+C_{3} \wedge\left(\frac{1}{6} F_{4} \wedge F_{4}+\frac{1}{768}\left(\operatorname{Tr} R^{2}\right)^{2}-\frac{1}{192} \operatorname{Tr} R^{4}\right)
$$

- After compactifying on CY_{3}, with $C_{3}=A^{I} \wedge \omega_{I}$

$$
e^{-1} \mathcal{L}_{5}=\cdots+\frac{1}{6} c_{I J K} A^{I} \wedge F^{J} \wedge F^{K}+\frac{1}{96} c_{2} A^{I} \wedge \operatorname{Tr} R \wedge R+\cdots
$$

$c_{I J K}=$ triple intersection number
$c_{2 I}=$ second Chern class on appropriate cycles of CY_{3}

- The parameters of the five-dimensional supergravity are given by topological data of the CY_{3}

The c_{2} parameter in the gauged case

- IIB theory on S^{5} gives $c_{2}=0$, but non-vanishing c_{2} can come from other sources such as branes
- We can use input from AdS/CFT
i) The holographic Weyl anomaly $\Rightarrow C_{\mu \nu \rho \sigma}^{2}$
ii) The R-current anomaly $\Rightarrow A \wedge \operatorname{Tr} R \wedge R$
- For the CFT_{4} Weyl anomaly
D.M. Capper and M. J. Duff, Nuovo Cimento, 23A (1974) 173
M. J. Duff, Nucl. Phys. B125 (1977) 334

$$
g^{\mu \nu}\left\langle T_{\mu \nu}\right\rangle=b\left(C_{\mu \nu \rho \sigma}^{2}+\frac{2}{3} \square R\right)+b^{\prime}\left(R^{2}-4 R_{\mu \nu}^{2}+R_{\mu \nu \rho \sigma}^{2}\right)
$$

- Matching with the holographic AdS_{5} calculation gives

$$
\frac{c_{2}}{24}=-\frac{b+b^{\prime}}{b^{\prime} g^{2}} \quad \text { or } \quad \frac{c_{2}}{24}=\frac{c-a}{a g^{2}} \quad \text { with } \quad b=\frac{c}{16 \pi^{2}} \text { and } b^{\prime}=-\frac{a}{16 \pi^{2}}
$$

Holographic thermodynamics

- The b and b^{\prime} (or a and c) anomaly coefficients depend on the gauge theory

$$
b=-b^{\prime}=\frac{N^{2}}{64 \pi^{2}} \quad \text { for } \mathcal{N}=4 \mathrm{SYM}
$$

More generally, we expect $b+b^{\prime}=\mathcal{O}(N)$, hence $\frac{c_{2}}{24}=-\frac{b+b^{\prime}}{b^{\prime} g^{2}} \sim \mathcal{O}\left(\frac{1}{N}\right)$

- Holographic thermodynamics may be extracted from the flat horizon black hole solution (to linear order in c_{2})

$$
\begin{aligned}
& d s^{2}=-H^{-2} f d t^{2}+H\left[\frac{d r^{2}}{f}+r^{2} d \vec{x}^{2}\right] \\
& f=-\frac{\mu}{r^{2}}+g^{2} r^{2} H_{0}^{3}+\frac{c_{2}}{24}\left[\frac{\mu^{2}}{4 r^{6} H_{0}}-\frac{8 g^{2} Q \mu}{3 r^{4}}\right], H=1+\frac{Q}{r^{2}}+\frac{c_{2}}{24}\left[-\frac{Q \mu}{3 r^{6} H_{0}^{2}}\right] \\
& A_{t}=\sqrt{\frac{3 \mu}{Q}}\left(1-\frac{1}{H_{0}}+\frac{c_{2}}{24}\left[\frac{Q \mu}{2 r^{8} H_{0}^{4}}\left(Q-r^{2}\right)\right]\right)
\end{aligned}
$$

Temperature and entropy

- The temperature is related to the surface gravity at the horizon (or, equivalently, from demanding the absence of a conical singularity)

$$
T=\frac{g^{2} r_{0}(2-q)(1+q)^{1 / 2}}{2 \pi}\left[1-\frac{\bar{c}_{2}}{8} \frac{10-59 q-4 q^{2}-3 q^{3}}{(2-q)^{2}}\right]
$$

- We use Wald's formula for the entropy density

$$
s=\frac{\left(g r_{0}\right)^{3}(1+q)^{3 / 2}}{4 G_{5}}\left[1+\frac{\bar{c}_{2}}{8} \frac{21+14 q-3 q^{2}}{2-q}\right]
$$

Note that we have defined $\quad \bar{c}_{2}=-\frac{b+b^{\prime}}{b^{\prime}}=\frac{c-a}{a}, \quad q=\frac{Q}{r_{0}^{2}}$
To lowest order, q is related to the R-charge chemical potential Φ through

$$
\Phi=g r_{0} \sqrt{3 q(1+q)}
$$

Holographic hydrodynamics

- We may also extract the shear viscosity using the Kubo formula in the scalar channel

$$
\eta=\frac{\left(g r_{0}\right)^{3}(1+q)^{3 / 2}}{16 \pi G_{5}}\left[1+\frac{\bar{c}_{2}}{8} \frac{5+6 q+5 q^{2}}{2-q}\right]
$$

- The result simplifies in the ratio

$$
\frac{\eta}{s}=\frac{1}{4 \pi}\left[1-\bar{c}_{2}(1+q)\right]=\frac{1}{4 \pi}\left[1+\frac{b+b^{\prime}}{b^{\prime}}(1+q)\right]
$$

This was independently obtained in
R.C. Myers, M.F. Paulos and A. Sinha, arXiv:0903.2834

More to be done

- A better understanding of violations of $\eta / s \geq 1 / 4 \pi$

Generic large N theories with a gravitational dual have $\left(b+b^{\prime}\right) / b^{\prime} \leq 0$
Adding R-charge only increases the violation

- Universality of η / s including higher derivatives
- Going beyond $\mathcal{O}(1 / N)$

Obtaining 'exact' solutions to higher derivative gravity is a challenge

- What about the $1 / \lambda$ corrections?

More to be done

- A better understanding of violations of $\eta / s \geq 1 / 4 \pi$

Generic large N theories with a gravitational dual have $\left(b+b^{\prime}\right) / b^{\prime} \leq 0$
Adding R-charge only increases the violation

- Universality of η / s including higher derivatives
- Going beyond $\mathcal{O}(1 / N)$

Obtaining 'exact' solutions to higher derivative gravity is a challenge

- What about the $1 / \lambda$ corrections?

Much remains to be explored in higher derivative gravity

