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It is argued that conformal invariance cannot in general solve the problem of renormalization in quantum gravity.

‘This is due to the presence of conformal anomalies.

It has recently been suggested by several authors
[1,2] that the long: ding problem of 1
izing quantum gravity might be solved by appealing to
conformal invariance. The purpose of this note is to
point out that this is unlikely to be the case since con-
formal invariance is not a good symmetry at the quan-
tum level [3], i.e., the presence of conformal anoma-
lies in these models will spoil renormalizability.

The author of ref. [1] considered an Einstein-Yang-
Mills Lagrangian which was invariant under the Weyl
conformal transformation of the metric tensor

58,(6) = 0(x) 8, x), 0

with o arbitrary, in addition to the usual general coor-

may occur. Indeed, in ref. [3], the present authors
showed, using dimensional regularization, that
Lagrangian models initially invariant under the trans-
formation (1) do in fact exhibit anomalous behaviour
and that conformal invariance is violated. Having lost
conformal invariance in this way, one cannot then in-
voke it to restrict the possible types of counterterm.
This is analogous to the situation in the unified gauge
models of weak and electromagnetic interactions
where the 5 ies may spoil izabili
[4].

There are two further points concerning ref. [3]
that should be emphasized. Firstly, at the one-loop
level the counterterms will be correctly invariant
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Twistor String is a Finite Theory:

D = 4, N = 4 Conformal Supergravity coupled to N’ = 4 SYM
Dipole Ghosts

Tree Amplitudes

Comparison with Einstein Gravity

Weak-Weak Duality, Toward a QCD String
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Open Twistor String
The world sheet action with Euclidean signature is
S = Syz + Sghost + S where Sg has ¢ = 28
Syz = [d’z (Y?D,Z! + Y'Z2D;Z")
with D, =0, —iA,and 1 <] < 8.

The equations of motiog for Sy are
DsZ =D,Z =0, DLY? =DLY?=0

together with the constraints Y?Z = Y?Z = 0.

The end condition on the open string
n,Y?6Z = —n;Y35Z
is satisfied by the boundary conditions
Z=UZ, YZn, = —-U"1Y?ns
where U = %@, |U| = 1.
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World-sheet Field Content

The fields ZJ, 1 < J <8, comprise four boson fields,
N, 12,1 < a <2, and four fermion fields M, 1 < M < 4.

The gauge invariance insures that the Z” are effectively projective
coordinates in the target space CP3/4.

In a gauge where A, and As are zero, the mode expansion is

Z(z) = Z Z,z7", Y(z)= Z Yoz "l JA(2) = Z Szt

[[Zrlrv YJn]] = 556m,fn~, [J;g/JnB] — I‘fABCJC

m-+n

+ kmb — n6"E.

[.] denote anticommutators when /, J > 5, otherwise commutators
The vacuum satisfies ®,[0) =0 for n > —7. So  Z!|0) = 0 for
n>1.
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Gauge Transformations with Instanton Number

d=0,1,2,...
The current associated with the abelian gauge transformation is
8 8
Sy == V2D = Y ahe = Y g
J=1 J=1 =
1
J J, J | ot N
X (Z):q0+30 IOgZ—;nanz n7 qO—He qO
n

Gauge transformation with winding number d:
g(z) = 29 T0h " Uy = eMeTa U, Z(2) U, = g(2)Z(2)

(0|UgVi(21)Va(22) - - - Via(24)|0) = (099 V4 (21) Va(22) - . . Via(24)|0) Trree
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Scalar Products

fermions:
<O|Zo|0> =1= /dZoZo, Zo’O> = e_q°]0>, <0]ed‘7°Z_d PN Zo’O) =1

(Tree amplitude will vanish unless number of negative helicity
modes is d + 1).

bosons:

(0]£(Z)|0) = / dZyf(Zy),  or, equivalently,  (0|e’*%|0) = §(k)

(0] exp ZkZ_J 0) = H( )

j=0
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Vertex Opertors
Physical state |W) = lim,_o V(V, 2)|0).
Gluon vertex operator VA(W, z) = f(Z(z))JA(z) describes the
dependence on the mean position of the string in twistor
superspace CP3l*, 2/ = (72, w?, OM):
4

/ Hé (kN (2) 7)ok (2) ) T] (ki (2) 0" %

M=1
Multiply by polarizations: A(6) = A, + 0162030*A_
Fourier transform on w?, integrate over OM then

2
VA(z) = / dkk® [T 8(kX*(2) =)™ Doy (2)y2(2)03 (2)y* (2) JA(2)

a=1

2
VA(z) = / % [To00x%() = 2)ek % sA(z)
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Conformal Graviton Vertex Operators

Vertex Operator Helicities
Ve (z) = f3(Z(2))Ys(2) (2.3,1,4.0)
Vi(2) = 8.(2(2))0XN°(2) (0. -3 -1, -3, -2)
V(2) = £2(2(2)) Ya(Z) + F(2(2)) Ys(2) (23,140
Voi(2) = g:(Z(2))01(2) + 82(Z(2))0A(2) | (0, —1, —1, =3, —2)
Vi (2) = f"(Z(2)) Yi(2) + F3(Z(2)) Ys(2) (3.1.3.0.-3)
Ve(2) = gm(Z(2))00™(2) + 8:(Z(2))0N(2)| (3,0, -3, -1, =3)
Vi (2) = Vu(Z(2))4(2) (+1, 4(+3), 6(0))
25f=0,  Z/g;=0




N=/ Conformal Gravity Particle Content
Helicity SU(4)r Representation
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Dipole Pairs of Helicities

For the dipole conformal supergravity states, vertex operators are

Vr(z) = 1°(2(2)) Ya(2), Ve =1(Z(2))Ya(2)+7°(Z(2)) Ys(2)
2 .
F(2(2)) =i / O [T o(ka(2) — o) an'ta
k a=1
b k2bc k3bcd 41,213 147
X [eerkl/J N3p+ SV Tibe + Sr ¥ U Ay + Kb ™07 Co],
2 .
fa(Z( / H k)\a o )eikﬁb,ub(z)

[ez+k¢b + wbwcmc+ wbw cz)"/\l,,cc,+k4w1w2w3w“66]
F(Z(z) = ... Sam? =1



Tree Amplitudes

3
(A% (21) A% (22) C(23)Vtree =/ (0]e% A% (21) A% (22) C(23)10) [ | dzr lvmdys

r=1
= —0*(Zm, 7, )(12)26™ 2 A_1 (1) A_1(2) Cog3)
= 54(Z7rr7_r,)61_ - P2 62_ * P1 5A1A2 C0(3)‘
A Ao / _ 2 cALA C6(3) 0 4
<A71(21)A71(22)C (23)>tree = <]_2> (5 Afl(l)A (2) 2 O 8P06 (Zﬂ'rﬂ'r)

where P0 = Zr:l pL.

Penrose spinors :
— ra _ =a= _ =
< IS >= T[Tra, [rs] =T, Tra Praa = TraTr;3-

Polarizations: € = AV5..7, € = A TraSea



Conformal gravity has higher derivative equations of motion.

(0,0")2C(x) =0, then C(x) =eP* + A.x ePx

The momentum operator acts on the dipole states as —iafaé.

0 _ipx _ ip-x
_Iaxaéep - paéep

—is25 A x €PX = pyA - x ePX — iAzelP

The dipole pair is comprised of a plane wave state e”* that
diagonlizes the momentum operator, and a state A - x e’P* that is

/

not an eigenstate of momentum. Choose iAg = ﬁ



Translational Invariance of Dipole Trees

the momentum operator acts on the coupling
<Aé11(zl)A621(Z2)C/(Z3)>tree as

C/
PO(AM, (21) A% (22) C'(23)) tree — —— 2 (A™ (21) A% (20) C(23) ) tree
Co(3)2pP3

G o )
03 ;
= (12)2 6" A 4 1)A_y(0) 2” PO o0 (PO)5*(PY)

C .
+ 20(3) (12)2 544 A_y (1) A_12)0(P°)83(P')



Comparison with Einstein Gravity

[/k]

(e_a(z1)e 2(z)ex(z3)ea(za))cc = (12)* [] Z

J= 34k#1

(12)*[32](21) ((43)(21) — (23)(41)) [42]<21)(< >(21>—<24><31>)
2

(31)2(41)%(34)2(23)(42)
4 4
_ <1§> [)324] _ 523524 <e_2(1)e_ ( )62(3) ( )>Emstein7
512 512

which has fewer poles than Einstein gravity, since the Berends
Giele Kuijf expression for Einstein gravity tree amplitudes as a
product of Yang-Mills trees is

B (12)3 (12)°
(e—2(1)e—2(2)ex(3)e2(4)) Einstein = s12 (23)(34)(41) (24)(43)(31)

= (512523524)_1 <12>4[34]4.
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Conformal three-graviton coupling for plane wave states vanishes:

(e_2(z1)e—2(z2)ex(z3)) cc = 0*(Em 7,) (12)° <23[>2<33]1>2 e_a(1)e-2(2)€3) = 0

12)° _
(e—2(z1)e—2(22)e2(23)) Einstein = 12) 2 54(Z7Tr77r)e—2(1)e—2(2)62(3)a

(23)2(31
But the dipole partners do couple,

12)6 _
(e a(z)e_a(z2)4(22)) cc = (2§>2<>31>2 5 (SmeR,) e_aye_a b

6
(e_2(z1)€ »(22)e2(23)) cc = <23<>122<>31>2

J. Broedel and B. Wurm, 0902.0550 [hep-th],
C. Hull, L. Mason, and M. Abou-Zeid, hep-th/0606272.

S (Em Tr) e_a(1y€ o) €23)-
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Conformal graviton-2 dilaton coupling for plane wave states
vanishes:

3
(Cla)lzz)ea(zce = 3'(En) (132 E ConGopre-a =0

_ 13)2(23)2 _
(C(21)C(22)e-2(23)) Einstein = <<>1§>2> 5 (Em ) e_a1yez(2)€2(3)
The dipole partners couple similarly,
- 13)2(23)2 _ .
(C(21)C(22)e »(23))cc = <<>1§>2> §*(Zm,7r) Co(l)Co(z)el,g(gy
_, 13)2(23)? _ _,
(Cz1)T'(22)ea(z3)) cc = <<>12<>2> 5 (S 7,) Cory Chyoy 2,
(13)2(23)2

<C’(21)E(22)e,2(23)) cG = 54(271',7_1',) Cé(l) 60(2)6_2(3).

(12)?
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Weak-Weak Duality, Toward a QCD String

The conformal supergraviton states have zero norm in our basis,
but non-trivial inner products. A different basis would have both
positive and negative norm states.

To avoid the lack of unitarity, could require a GSO-like projection
to a positive definite Hilbert space.

A further projection might avoid the gravity altogether in the
twistor string, leaving a string description of only Yang-Mills.
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Happy Birthday Michael
and Many Happy Returns

2009 - 1973 = 36 2009 + 36 = 2045...
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