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It is argued that conformal invariance cannot in general solve the problem of renormalization in quantum gravity. 
This is due to the presence of conformal anomalies. 

It has recently been suggested by several authors 
[ 1,2] that the long-outstanding problem of renormal- 
izing quantum gravity might be solved by appealing to 
conformal invariance. The purpose of this note is to 
point out that this is unlikely to be the case since con- 
formal invariance is not a good symmetry at the quan- 
tum level [3], i.e., the presence of conformal anoma- 
lies in these models will spoil renormalizability. 

The author of ref. [l] considered an Einstein-Yang- 
Mills Lagranglan which was invariant under the Weyl 
conformal transformation of the metric tensor 

g&,(x) = o(x)g,,(x), (1) 

with u arbitrary, in addition to the usual general coor- 
dinate transformations. Now the only possible counter- 
terms consistent with this symmetry are 

where C’$ is the Weyl conformal tensor and F,$ the 
Yang-Mills field strength. Thus it appears that con- 
formal invariance has led to a theory with only a fi- 
nite number of distinct counterterms, in contrast to 
the infinite number expected on the basis of power- 
counting in standard models of quantum gravity. How- 
ever, in quantum field theory it is well known that the 
process of regularization may not always preserve 
those symmetries which were present in the original 

Lagranglan and that perturbation theory anomalies 

* S.R.C. Postdoctoral Research Fellow. 

may occur. Indeed, in ref. [3], the present authors 
showed, using dimensional regularization, that 
Lagrangian models initially invariant under the trans- 
formation (1) do in fact exhibit anomalous behaviour 
and that conformal invariance is violated. Having lost 
conformal invariance in this way, one cannot then in- 
voke it to restrict the possible types of counterterm. 
This is analogous to the situation in the unified gauge 
models of weak and electromagnetic interactions 
where the rs anomalies may spoil renormalizability 

]41 f 
There are two further points concerning ref. [3] 

that should be emphasized. Firstly, at the one-loop 
level the counter-terms will be correctly invariant 
under (1) provided that, in the tree approximation, 
the bare Lagrangian is also invariant. The anomalous 
terms contribute only to the finite part of the one- 
loop effective Lagrangian. However, since this one- 
loop Lagrangian is no longer invariant then neither 
should one expect the two-loop (and higher-loop) 
counterterms to be invariant*. Secondly, within the 
context of dimensional regularization, anomalies will 
appear unless the appropriate Ward identities (A) are 

’ In ref. [ 31, it was shown that the one-loop anomalies could 
be “removed”, but only at the expense of introducing 
n-dimensional rather than 4dimensional counterterms, 
which amounts to the addition of conformal-breaking 
terms to the original Lagrangian. Either way, the anomalies 
will persist in higher-loop calculations. 
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Open Twistor String
The world sheet action with Euclidean signature is

S = SYZ + Sghost + SG where SG has c = 28

SYZ =
∫

d2z
(
Y IzDz Z̄

I + Y I z̄Dz̄Z
I
)

with Dµ = ∂µ − iAµ and 1 ≤ I ≤ 8.

The equations of motion for SYZ are
Dz̄Z = Dz Z̄ = 0, D ′zY

z = D ′z̄Y
z̄ = 0

together with the constraints Y z̄Z = Y z Z̄ = 0.

The end condition on the open string
nzY

zδZ̄ = −nz̄Y
z̄δZ

is satisfied by the boundary conditions
Z̄ = UZ , Y znz = −U−1Y z̄nz̄

where U = e2iα, |U| = 1.
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World-sheet Field Content
The fields Z J , 1 ≤ J ≤ 8, comprise four boson fields,
λa, µa, 1 ≤ a ≤ 2, and four fermion fields ψM , 1 ≤ M ≤ 4.

The gauge invariance insures that the Z J are effectively projective
coordinates in the target space CP3|4.

In a gauge where Az and Az̄ are zero, the mode expansion is

Z (z) =
∑

Znz
−n , Y (z) =

∑
Ynz

−n−1, JA(z) =
∑

JA
n z−n−1.

[[Z I
m,YJn]] = δIJδm,−n, [JA

m, J
B
n ] = i f AB

CJC
m+n + kmδm,−nδ

AB .

[[, ]] denote anticommutators when I , J ≥ 5, otherwise commutators
The vacuum satisfies Φn|0〉 = 0 for n > −J . So Z I

n|0〉 = 0 for
n ≥ 1.



Outline

Gauge Transformations with Instanton Number
d = 0, 1, 2, . . .

The current associated with the abelian gauge transformation is

J(z) = −
8∑

J=1

: Y J(z)ZJ(z) : = −
8∑

J=1
m

aJ
mz−m−1 = −

∑
m

amz−m−1,

X J(z) = qJ
0 +aJ

0 log z−
∑
n 6=0

1

n
aI
nz
−n, Z J(z) =: e−X J(z) : , e±q0 =

8∏
J=1

e±qJ
0

Gauge transformation with winding number d :

g(z) = zde−
P

n fnz−n
, Ug = edq0e

P
n f−nan , UgZ (z)U−1

g = g(z)Z (z)

〈0|UgV1(z1)V2(z2) . . .Vn(zn)|0〉 = 〈0|edq0V1(z1)V2(z2) . . .Vn(zn)|0〉Tree
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Scalar Products

fermions:

〈0|Z0|0〉 = 1 =

∫
dZ0Z0, Z0|0〉 = e−q0 |0〉, 〈0|edq0Z−d . . .Z0|0〉 = 1

(Tree amplitude will vanish unless number of negative helicity
modes is d + 1).

bosons:

〈0|f (Z0)|0〉 =

∫
dZ0f (Z0), or, equivalently, 〈0|e ikZ0 |0〉 = δ(k)

〈0|edq0 exp

i
d∑

j=0

kjZ−j

 |0〉 =
d∏

j=0

δ(kj)
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Vertex Opertors
Physical state |Ψ〉 = limz→0 V (Ψ, z)|0〉.

Gluon vertex operator V A(Ψ, z) = f (Z (z))JA(z) describes the
dependence on the mean position of the string in twistor
superspace CP3|4, Z ′ = (πa, ωa, θM):

W (z) =

∫ 2∏
a=1

δ(kλa(z)−πa)δ(kµa(z)−ωa)
4∏

M=1

(kψM(z)−θM)
dk

k

Multiply by polarizations: A(θ) = A+ + θ1θ2θ3θ4A−
Fourier transform on ωa, integrate over θM , then

V A
− (z) =

∫
dkk3

2∏
a=1

δ(kλa(z)−πa)e ikµa(z)π̄aψ1(z)ψ2(z)ψ3(z)ψ4(z)JA(z)

V A
+ (z) =

∫
dk

k

2∏
a=1

δ(kλa(z)− πa)e ikµa(z)π̄aJA(z)
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Conformal Graviton Vertex Operators

Vertex Operator Helicities

VF (z) = f ȧ(Z (z))Yȧ(z) (2, 3
2 , 1, 1

2
, 0)

VG (z) = ga(Z (z))∂λa(z) (0, − 1
2
, −1, −3

2 , −2)

VF ′(z) = f a(Z (z))Ya(Z ) + f̂ ȧ(Z (z))Yȧ(z) (2, 3
2 , 1, 1

2
, 0)

VG ′(z) = gȧ(Z (z))∂µȧ(z) + ĝa(Z (z))∂λa(z) (0, − 1
2
, −1, −3

2 , −2)

Vf (z) = f m(Z (z))Ym(z) + f̃ ȧ(Z (z))Yȧ(z) ( 3
2 , 1, 1

2
, 0, − 1

2
)

Vg (z) = gm(Z (z))∂ψm(z) + g̃a(Z (z))∂λa(z) ( 1
2
, 0, − 1

2
, −1, −3

2 )

V A
Φ (z) = Vφ(Z (z))JA(z) (±1, 4(± 1

2
), 6(0))

∂
∂Z J f J = 0, Z JgJ = 0.
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N=4 Conformal Gravity Particle Content

Helicity SU(4)R Representation
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Dipole Pairs of Helicities
For the dipole conformal supergravity states, vertex operators are

VF (z) = f ȧ(Z (z)) Yȧ(z), VF ′ = f a(Z (z))Ya(Z )+f̂ ȧ(Z (z))Yȧ(z)

f ȧ(Z (z)) = i

∫
dk

k2
π̄ȧ

2∏
a=1

δ(kλa(z)− πa)e ikπ̄ḃµ
ḃ(z)

×
[
e2 + kψbη 3

2
b +

k2

2
ψbψcT1bc +

k3

3!
ψbψcψdΛ 1

2
bcd + k4ψ1ψ2ψ3ψ4C̄0

]
,

f a(Z (z)) = s̄a

∫
dk

k2

2∏
a=1

δ(kλa(z)− πa)e ikπ̄ḃµ
ḃ(z)

×
[
e ′2 + kψbη′3

2
b

+
k2

2
ψbψcT ′1bc +

k3

3!
ψbψcψdΛ′1

2
bcd

+ k4ψ1ψ2ψ3ψ4C̄ ′0

]
f̂ ȧ(Z (z)) = . . . s̄aπ

a = 1
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Tree Amplitudes

〈AA1
−1(z1)AA2

−1(z2)C (z3)〉tree =

∫
〈0|eq0AA1

−1(z1)AA2
−1(z2)C (z3)|0〉

3∏
r=1

dzr/dγMdγS

= −δ4(Σπr π̄r )〈12〉2δA1A2A−1(1)A−1(2)C0(3)

= δ4(Σπr π̄r )ε−1 · p2 ε
−
2 · p1 δ

A1A2C0(3).

〈AA1
−1(z1)AA2

−1(z2)C ′(z3)〉tree = 〈12〉2 δA1A2A−1(1)A−1(2)

C ′0(3)

2p0
3

∂

∂P0
δ4(Σπr π̄r )

where P0 =
∑3

r=1 p0
r .

Penrose spinors :
< rs >= πa

r πra, [rs] = π̄ȧ
r π̄r ȧ, praȧ = πraπ̄r ȧ.

Polarizations: ε+
r = A+

r s̄raπ̄r ȧ, ε−r = A−r πrasr ȧ
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Conformal gravity has higher derivative equations of motion.

(∂µ∂
µ)2C (x) = 0, then C (x) = e ip·x + A · x e ip·x .

The momentum operator acts on the dipole states as −i ∂
∂xaȧ .

−i ∂
∂xaȧ e

ip·x = paȧe
ip·x

−i ∂
∂xaȧ A · x e ip·x = paȧA · x e ip·x − iAaȧe

ip·x

The dipole pair is comprised of a plane wave state e ip·x that
diagonlizes the momentum operator, and a state A · x e ip·x that is

not an eigenstate of momentum. Choose iA0 =
C ′0

2C0p0
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Translational Invariance of Dipole Trees

the momentum operator acts on the coupling
〈AA1
−1(z1)AA2

−1(z2)C ′(z3)〉tree as

P0〈AA1
−1(z1)AA2

−1(z2)C ′(z3)〉tree −
C ′0(3)

C0(3)2p0
3

〈AA1
−1(z1)AA2

−1(z2)C (z3)〉tree

= 〈12〉2 δA1A2A−1(1)A−1(2)

C ′0(3)

2p0
3

P0 ∂

∂P0
δ(P0)δ3(P i )

+
C ′0(3)

2p0
3

〈12〉2 δA1A2A−1(1)A−1(2)δ(P0)δ3(P i )

= 0
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Comparison with Einstein Gravity

〈e−2(z1)e−2(z2)e2(z3)e2(z4)〉CG = 〈12〉4
∏

j=3,4

∑
k 6=j

[jk]〈kξ〉2

〈jk〉〈jξ〉2

= −〈12〉4[32]〈21〉 (〈43〉〈21〉 − 〈23〉〈41〉) [42]〈21〉 (〈34〉〈21〉 − 〈24〉〈31〉)
〈31〉2〈41〉2〈34〉2〈23〉〈42〉

(choose ξ = 1)

=
〈12〉4[34]4

(s12)2
=

s23s24

s12
〈e−2(1)e−2(2)e2(3)e2(4)〉Einstein,

which has fewer poles than Einstein gravity, since the Berends
Giele Kuijf expression for Einstein gravity tree amplitudes as a
product of Yang-Mills trees is

〈e−2(1)e−2(2)e2(3)e2(4)〉Einstein = s12
〈12〉3

〈23〉〈34〉〈41〉
〈12〉3

〈24〉〈43〉〈31〉
= (s12s23s24)−1 〈12〉4[34]4.
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Conformal three-graviton coupling for plane wave states vanishes:

〈e−2(z1)e−2(z2)e2(z3)〉CG = δ4(Σπr π̄r ) 〈12〉6 [23]

〈23〉〈31〉2
e−2(1)e−2(2)e2(3) = 0

〈e−2(z1)e−2(z2)e2(z3)〉Einstein =
〈12〉6

〈23〉2〈31〉2
δ4(Σπr π̄r ) e−2(1)e−2(2)e2(3),

But the dipole partners do couple,

〈e−2(z1)e−2(z2)e ′2(z3)〉CG =
〈12〉6

〈23〉2〈31〉2
δ4(Σπr π̄r ) e−2(1)e−2(2)e

′
2(3),

〈e−2(z1)e ′−2(z2)e2(z3)〉CG =
〈12〉6

〈23〉2〈31〉2
δ4(Σπr π̄r ) e−2(1)e

′
−2(2)e2(3).

J. Broedel and B. Wurm, 0902.0550 [hep-th],
C. Hull, L. Mason, and M. Abou-Zeid, hep-th/0606272.
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Conformal graviton-2 dilaton coupling for plane wave states
vanishes:

〈C (z1)C̄ (z2)e−2(z3)〉CG = δ4(Σπr π̄r ) 〈13〉2 [23]〈23〉3

〈12〉2
C0(1)C̄0(2)e−2(3) = 0

〈C (z1)C̄ (z2)e−2(z3)〉Einstein =
〈13〉2〈23〉2

〈12〉2
δ4(Σπr π̄r ) e−2(1)e−2(2)e2(3),

The dipole partners couple similarly,

〈C (z1)C̄ (z2)e ′−2(z3)〉CG =
〈13〉2〈23〉2

〈12〉2
δ4(Σπr π̄r ) C0(1)C̄0(2)e

′
−2(3),

〈C (z1)C̄ ′(z2)e−2(z3)〉CG =
〈13〉2〈23〉2

〈12〉2
δ4(Σπr π̄r ) C0(1)C̄

′
0(2)e−2(3),

〈C ′(z1)C̄ (z2)e−2(z3)〉CG =
〈13〉2〈23〉2

〈12〉2
δ4(Σπr π̄r ) C ′0(1)C̄0(2)e−2(3).
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Weak-Weak Duality, Toward a QCD String

The conformal supergraviton states have zero norm in our basis,
but non-trivial inner products. A different basis would have both
positive and negative norm states.

To avoid the lack of unitarity, could require a GSO-like projection
to a positive definite Hilbert space.

A further projection might avoid the gravity altogether in the
twistor string, leaving a string description of only Yang-Mills.
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Happy Birthday Michael
and Many Happy Returns

2009 - 1973 = 36 2009 + 36 = 2045...
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