The new vision on high redshift clusters with XMM: clusters scaling laws at Z ~ 0.5

Clusters:

Optical light

<u>X-ray light</u>

- \Rightarrow Stellar masses + metals
- \Rightarrow velocity dispersion
- \Rightarrow lensing
- ⇒ imagery
- ⇒ spectroscopy
- ⇒ pressure

- \Rightarrow total mass
- \Rightarrow total mass
- \Rightarrow gas mass
- \Rightarrow total mass+ metals
- \Rightarrow gas mass

2-10 keV \Leftrightarrow **M** ~ 10⁻¹⁵ M_{\odot} \Leftrightarrow **R** ~ 5-20 h⁻¹Mpc

IC 2007.

<u>SZ</u>

\mathbf{T} E S T N G \mathbf{T} H E

M A S S <mark>]</mark>[U N C T \bigcirc N

Scaling argument for Clusters:

Clusters are geometrically identical

With virial radius-mass relation

$$M = \frac{4\pi}{3}\rho_0(1+z)^3(1+\Delta)R_V^3$$

i.e.
$$R_V = \frac{3}{\sqrt{\frac{3M}{4\pi\rho_0(1+\Delta)1+z}}}$$

Mass-Temperature Relation : $T \propto GM/r$ whatever you do with gravity...

Numerical simulations, Bryan & Norman, 1998

Bryan & Norman (ApJ 495 80 1998)

Principle

Oukbir, Blanchard, 1992, A&A, 262, L21

X-ray clusters allow precision cosmology... **O**

Estimated N(T) at z 0.05

50-60 ROSAT clusters => "Convergence" : (Markevitch, 1998), Blanchard et al. (2000), Pierpaoli al (2001), Ikebe et al (2002), Pierpaoli et al (2002)

G₈ from X-ray clusters:

Number evolution

Mass-Luminosity Relation :

 $L_x \propto n^2 T^{1/2} V$

Observed Temperature -Luminosity Relation

No standard scaling for L-T and <u>its evolution...</u>

X-ray properties of distant SHARC clusters for Cosmology with a complete flux limited survey.

X M M R X J 2

XMM Lx-Tx evolution

Conclusion on evolution: remarkable convergence L_{X}/T_{X} = L_{X}/T_{X} = $(1+z)^{\beta}$ with $= 1.52 \quad 0.28$ D.Lumb et al., 2003 in full agreement with ASCA (Sadat et al., 1998; Novicki et al., 2003....), Chandra (Vikhlinin et al, 2002), and more

recent XMM analyses (Kotov & Vikhlinin, 2006; Maughan et al. 2006)

Number counts:

Vauclair et al, 2003 A&A 412, L37

 $\frac{300 \text{ clusters}}{\text{with } z > 0.3}$

Method:

 $f_x \to L_x \to s, T_x$

$$\begin{split} N(>f_x) &= \int_0^{+\infty} \int_0^{+\infty} s(T,z) N(T,z) dT dV(z) \\ > &\sim \int_0^{+\infty} N(>T(z)) dV(z) \end{split}$$

RDCS: 50 deg² fx \approx 3. 10⁻¹⁴ erg/s/cm²

MACS: 22 000 deg² fx \approx 10⁻¹² erg/s/cm²

Likelihood analysis:

(Vauclair et al., 2004)

Conclusion at that point is :

Clusters observations are inconsistent with self similar models in concordance cosmology!

Kill the Mass-Temperature Relation : $T \propto \frac{GM}{r + ...} \propto \frac{GM}{r} \frac{1+z}{1+z}$ i.e. ~ forget gravity... $T_x \simeq A M^{2/3} (\Omega \Delta)^{1/3} (1+z)^0 \text{ keV}$

Ω From X-ray m Clusters

Baryon Fraction evolution in the XMM Ω-project (Sadat et al., A&A 2005)

What do you do with a cluster?

Baryon Fraction (a) z = 0

R₂₀₀₀ in Vikhlinin, Forman, Jones 1999 (~35-45% Rv)

Baryon Fraction (a) z = 0

R in Vikhlinin, Forman, Jones 1999

Baryon Fraction (a) z = 0.6

0.06

0.04

0.02

0.00

0.0

0.2

0.4

0.6

R/R.

0.8

1.0

Baryon Fraction (a) z = 0.6

 $\Delta = 1000$

Baryon Fraction (a) z = 0.6

Breaking the degenracy...

T or $GM/r/(1+z) \propto \sigma^2/(1+z)$

 $\beta^{-1} \propto T/\sigma^2 \propto 1/(1+z)$

Conclusions I

Strong Evolution in the abundance of x-ray clusters appears from all existing surveys in a very consistent way.

This is inconsistent with standard scaling laws in concordance model...

Consistent with f evolution ... 🕲

Consistent with f amplitude ... 🕲

Conclusions H

➤ This could require a major revision of standard scaling of M-T (z) i.e. Tx ≠ GM/r New cluster (astro-)physics ?
No sign of it in observed clusters...