Suzaku and XMM study of the Warm-Hot Intergalactic Medium in cluster vicinities

Yoh Takei (SRON*)

*Most of the works were done when YT was at ISAS/JAXA, Japan.

Netherlands Organisation for Scientific Research

Missing baryon problem and the Warm-hot intergalactic medium (WHIM)

- About a half of the baryons in the local universe is 'missing' (assuming standard model...).
- Most of the remaining baryons are thought to reside in a form of Warmhot intergalactic medium (WHIM).

WHIM and the large-scale structure

Red: Clusters

Yellow/green: WHIM

Cosmological large-scale structure by N-body simulation (Dave et al. 2001)

How to detect the WHIM

- Through emission/absorption lines of ionized *metals* in the WHIM.
 - O, Ne, N, C, Fe...
- UV and X-ray spectroscopy is essential.
- Warm ($\sim 10^6$ K) WHIM have been detected via OVI absorptions in UV.
 - About 10% of the total baryons (e.g., Tripp et al. 2004).
- Most missing baryons seems to be hotter (10⁶⁻⁷ K).
 - Should be detected in X-ray; more difficut due to sensitivity limits.
 - Only one controversial detection in absorption (Nicastro et al. 2005).

X-ray Emission study of the WHIM

- Dense region (around clusters) may be observable.
- Energy resolution of the CCDs limits the sensitivity.
- Possible origin of the `soft excess' observed in soft X-ray and UV spectra of clusters (e.g., Lieu et al. 1996).
- Detection of redshifted lines is essential, though difficult.

Emission in cluster outskirts

- Soft excess with OVII lines (Kaastra et al. 2003, Finoguenov et al. 2003).
- Counterarguments...
 - Bonamente et al. (2005); Bregman & Lloyd-Davies (2006); Nevalainen et al. (2006)
- Should be careful: foreground Galactic emission, ICM emission, instrument calibration.

Suzaku observations of A2218

- Study a moderate redshift (0.18) cluster to see redshifted O lines.
- Suzaku: better energy spread function. (Imaging capability is worse).
- On-source/offset observations to estimate Galactic foreground emission.

Suzaku observations of A2218 (cont.)

- No redshifted lines are observed
- Tight upper limit on the OVII/ OVIII intensity
 - corresponding to δ <270 (assuming 2x10⁶ K)

Absorption/emission combination

- Fortunate orientation of a bright QSO (X Comae) behind the Coma cluster (Takei et al. 2007).
- NeIX absorption/emission were detected, though not very significant (~3 sigma).
- Redshift of the absorption line is consistent of the Coma cluster.

Absorption/emission combination (cont.)

- Constraint on the density and the lineof-sight length of the plasma.
 - with simple assumptions (uniform, isothermal, in CIE).
- NeIX plasma extends over the scale of r_{vir} in line-of-sight direction.
 - $T = 2-6 \times 10^6 K$
 - L > r_{vir} = 2.4Mpc
 - n_H > 2x10⁻⁶ cm⁻³
- WHIM origin is supported.

Sensitivity of the emission study

- Sensitivity is reaching to detect the dense end of the WHIM.
- Larger sample of cluster vicinities is important to statistical discussion.

(Possible) impact on structure formation

- Direct constraints on metal budget in the universe.
 - Observations are sensitive to *metals* in the WHIM.
- A useful clue to the metal enrichment history of the IGM.
 - One of the key questions of the structure formation/evolution.
 - Not a direct gravitational effect (i.e., difficult to predict).
 - Little knowledge. No concensus so far.
- The study of the WHIM will answer:
 - What is the real structure of the (warm/hot) universe?
 - How and how much metals pollutes IGM?
 - (Possibly) how much missing baryons resides in the WHIM?

Future study with microcalorimeters

- Microcalorimeters can achieve 2 eV energy resolution (60 times better than CCD).
- Galactic and low-redshift (z~0.01) emission lines can easily be distinguished.
- NeXT: Japanese middle class satellite (2013?).
 - Main science: cluster dynamics.
- EDGE: Europe middle class satellite. Will be proposed to cosmic vision program (2017?).
 - Main science: mapping WHIM emission and study WHIM absorption using GRBs.
 - Large FOV/A_{eff} (1000cm²/~1deg²)
 - Fast slew capability (~60s)

Explorer of Diffuse Emission and Gamma-ray burst Explosions

Example of observation with EDGE mission

• WHIM with δ >100 (possibly δ >20) can be detected with redshift resolution of 0.003.

Simulated overdensity map (Kawahara et al. 2007 in prep)

Simulated OVIII intensity map 1 Ms observation with 1000 cm²

Example of observation with EDGE mission

• WHIM with δ >100 (possibly δ >20) can be detected with redshift resolution of 0.003.

Simulated overdensity map

(Kawahara et al. 2007 in prep)

Simulated OVIII intensity map 1 Ms observation with 1000 cm²

Example of observation with EDGE mission

• WHIM with δ >100 (possibly δ >20) can be detected with redshift resolution of 0.003.

Simulated overdensity map (Kawahara et al. 2007 in prep)

Simulated OVIII intensity map 1 Ms observation with 1000 cm²

Summary

- Warm-hot intergalactic medium is a key to understand:
 - where the missing half of baryons resides
 - the structure of the warm/hot universe
 - how and how much metals are diffused in IGM
- Currently available instruments can probe high-density WHIM clouds.
- Larger sample of cluster vicinity observations will enable us to constrain N-body simulations or cosmology models.
- Observations with microcalorimeters are expected to map the WHIM in detail.

