Your complimentary

Constraints on Gauss-Bonnet Cosmologies

Ishwaree Neupane University of Canterbury

26-29 March 2007, Imperial College

Outstanding Questions for the Standard Cosmological Model, March 26-29 2007
$>$ Early Ininaition
> de Sitter space
$>$ During 10^{-30} sec $H_{i n f l} \leq 10^{-5} M_{p}$
A rapid acceleration of the new-born Universe

cordance Cosmology

$>$ Current Acceleration
> Almost de Sitter space
> During a few billion years

$$
H_{a c c e l} \sim 10^{-60} M_{P}
$$

A new and slow stage of inflation

How did the Universe start, and how it is going to end?

$>$ There may exist a fundamental and simple, concise relation

* between past and future (inflation/dark energy)
* between close-by and far-away (QM/GR)

ar Universe from string theory?

A Remarkable Progress in Physics (1995/1996)
How to get an allmost de Sitter Universe?

A natural link between "cosmic acceleration" and "string theory" is still missing

Motivations

Gauss-Bonnet gravity is motivated by \checkmark the form of a most general scalar-tensor theory,
\checkmark uniqueness of a gravitational Lagrangian in higher dimensions, \checkmark the leading order curvature corrections in (heterotic) string theory,

$$
L_{e f f}=\frac{1}{2 \kappa^{2}} R+\frac{\nabla S \nabla \overline{\mathrm{~S}}}{(\mathrm{~S}+\overline{\mathrm{S}})^{2}}+3 \frac{\nabla T \nabla \overline{\mathrm{~T}}}{(\mathrm{~T}+\overline{\mathrm{T}})^{2}}+\frac{1}{8}(\operatorname{Re} S)^{2} R_{G B}^{2}+\frac{1}{8}(\operatorname{Im} S)^{2} \varepsilon^{\mu \nu \rho \lambda} R_{\mu \nu}^{\sigma \tau} R_{\rho \lambda \sigma \tau}
$$

$$
\begin{aligned}
& \operatorname{Re} S \equiv \frac{2}{g_{s}^{2}} e^{\phi}, \phi \equiv \text { string dilaton } \\
& \operatorname{Im} S \equiv \tau \equiv \text { pseudoscalar axion } \\
& \operatorname{Re} T \equiv e^{2 \sigma} \equiv \frac{1}{{(\text { compactification radius })^{2}}^{2}}
\end{aligned}
$$

Compactification

General 4+n dimensional Lagrangian of pure gravity

$$
L_{4+n} \propto R-2 \Lambda+\alpha \mathfrak{R}^{2}
$$

which is of second order in the curvature operator

$$
\mathfrak{R}^{2} \equiv R^{2}-4 R_{A B} R^{A B}+R_{A B C D} \quad R^{A B C D}
$$

which are divergence free and have well defined and stable perturbations around the Minkowski vacuum. With the ansatz

$$
d s_{4+n}^{2}=e^{-n \varphi(x)} g_{\mu \nu}(x) d x^{\mu} d x^{\nu}+d Y_{a} d Y^{a} e^{2 \varphi(x)}
$$

upon dimensional reduction, we get

$$
L=\frac{1}{16 \pi G}\left(R-(\nabla \varphi)^{2}-2 V(\varphi)+f_{1}(\varphi)\left[\begin{array}{l}
\alpha \mathfrak{R}^{2} \\
+\beta g_{\mu \nu} \nabla^{\mu} \varphi \nabla^{v} \varphi \\
+\chi(\nabla \varphi)^{2} \nabla^{2} \varphi \\
+\delta(\nabla \varphi)^{4}
\end{array}\right]\right.
$$

Beleration and string theory

Consider the one-loop corrected superstring action
$S_{g}=\int d^{4} x \sqrt{-g}\left[\frac{R}{2 \kappa^{2}}-V(\sigma, \phi)-\frac{\gamma}{2}(\nabla \sigma)^{2}-\frac{\varsigma}{2}(\nabla \phi)^{2}+[\lambda(\phi)-\delta \xi(\sigma)] \mathrm{R}_{\mathrm{GB}}^{2}\right]$
I.P. Neupane hep-th/0602097

modulus

a Brans-Dicke-like runway dilaton
present at string tree level

$$
\frac{(\dot{a})^{2} \ddot{a}}{n^{3}}=24 H^{2}\left(\dot{H}+H^{2}\right)=R^{2}-4 R^{a b} R_{a b}+R^{a b c d} R_{a b c d}=R_{G B}^{2}
$$

$$
a
$$

In a known example of string compactification

Gauss-Bonnet
curvature invariant

$$
\lambda(\phi)=\lambda_{0} e^{\phi / \phi_{0}}+\ldots \ldots . \quad \xi(\sigma) \approx \ln (2)-\frac{2 \pi}{3} \cosh \left(\sigma / \sigma_{0}\right)+\ldots \ldots
$$

We do not have a precise knowledge about the potential; it may take into account non-perturbative effects: branes, fluxes or singularities in the internal spaces.
$>$ This simplifies the model a lot

One defines

$$
S_{\phi}=\int d^{4} x \sqrt{-g}\left[\frac{R}{2 \kappa^{2}}-V(\phi)-\frac{\gamma}{2}(\nabla \phi)^{2}\right]
$$

$$
X \equiv \kappa^{2} \frac{\gamma}{2}(\dot{\phi} / H)^{2}, Y \equiv \kappa^{2}\left(V / H^{2}\right), \varepsilon \equiv \dot{H} / H^{2}
$$

EOMs

$$
\begin{gathered}
Y=3+\varepsilon, X=-\varepsilon \\
\text { Sufficiently Simple! } \\
\text { Equation of state }
\end{gathered}
$$

Different choice of ε implies different Y and hence different potentials!
$X=0$ and $Y=3$ is a de Sitter fixed point with $w=-1$

so many possibilities?

$$
V(\phi)=V_{0}+\frac{1}{2} m^{2} \phi^{2}+\ldots
$$

Exponential potential

$$
V(\phi)=V_{0} e^{-\lambda\left(\phi / \phi_{0}\right)}
$$

Axion potential

Inverse power-law

$$
V(\phi)=\Lambda^{4}\left(C \pm \cos \left(\frac{\phi}{\phi_{0}}\right)\right)
$$

$$
V(\phi)=\Lambda^{4}\left(\frac{\phi_{0}}{\phi}\right)^{n}
$$

The issue cannot be merely to achieve a dark energy EOS

$$
w_{D E} \approx-1
$$

For the model to work a scalar field must relax its potential energy after inflation down to a sufficiently low value: very close to the observed value of CC

g the common modulus field T

mally coupled with a Gauss-Bonnet term

$$
\begin{array}{r}
S_{g}=\int d^{4} x \sqrt{-g}\left[\frac{R}{2 \kappa^{2}}-V(\phi)-\frac{\gamma}{2}(\nabla \phi)^{2}-\frac{1}{8} f(\phi) \mathrm{R}_{\mathrm{GB}}^{2}\right] \\
\frac{(\dot{a})^{2} \ddot{a}}{a^{3}}=24 H^{2}\left(\dot{H}+H^{2}\right)=R_{G B}^{2}=R^{2}-4 R^{a b} R_{a b}+R^{a b c d} R_{a b c d}
\end{array}
$$

GB term is topological in 4-D, and, if coupled, no Ghost for Minkowski background. But cosmology requires FRW, inflation \rightarrow Non-constant scalar-GB coupling!

$$
N \equiv \ln [a(t)] \equiv \phi / \phi_{0}+\mathrm{const}
$$

$>$ number of e-folds primarily

$$
\begin{aligned}
f(\phi) & =f_{0}+f_{1} \mathrm{e}^{\beta\left(\phi / \phi_{0}\right)} \\
\mathrm{V}(\phi) & =\frac{2(1-\delta)}{3 \kappa^{4} f^{\prime}}=V_{0} e^{-\beta\left(\phi / \phi_{0}\right)}
\end{aligned}
$$ depends on the field value

IPN hep-th/0602097 (CQG)
B.Leith and IPN hep-th/0702002
$\beta \equiv 1+3 \delta, \delta \equiv \gamma \kappa{ }^{2} \phi_{0}{ }^{2} / 2$
Consistent with string theory prediction, to the leading order

barrier of cosmological constant

Equation of state parameter for the potential
$\mathrm{V}(\phi)=V_{0} e^{-2 \phi / \phi_{0}}$ From top to bottom

$$
\phi_{0}=4,5,6,8,10
$$

ary solution: hep-th/0512262

Let $\Lambda(\phi) \equiv V(\phi)+\frac{1}{8} f(\phi) R_{G B}^{2}+. . \equiv(3+\varepsilon) H^{2}(\phi)$
The Universe starts with $\varepsilon \geq-3$ and hence $w \leq 1$

$$
f(\phi) H^{2} \equiv u(\phi) \equiv u_{0} e^{\alpha N}
$$

gives an explicit solution

$$
H=e^{\int \varepsilon d N}=H_{0} e^{-\beta_{0} N} \cosh \beta\left(N+N_{0}\right)
$$

$$
\beta_{0} \equiv 4+\frac{\alpha}{4}, \beta \equiv \frac{1}{4} \sqrt{9 \alpha^{2}+72 \alpha+208}
$$

The spectral index

$$
n_{k}-1 \approx-4 \varepsilon_{H}+2 \eta_{H} \text { in the range }[-0.07,-0.03]
$$

Nature of the dark energy

Recent claim that w <-1 preferred with evolution from $\mathbf{w}=0$.

$$
w_{\text {eff }}<-1 ?
$$

Null dominant energy condition : energy doesn't propagate outside the light cone

A model with $w<-1$ negative kinetic energy

$$
L=-\frac{1}{2} \dot{\phi}^{2}-V(\phi)
$$

$$
|p| \leq|\rho| \Rightarrow-\rho \leq p \leq \rho
$$

Teomark et a. 2004

Instabilities cured by higher curvature terms? With stringy corrections, there is no need to introduce a wrong sign to the kinetic term to get $w<-1$!

nical Quintessence or

non-minimally coupled scalar field?

$$
S=S_{\text {grav }}+S_{\text {matter }}
$$

$$
S_{m}=S\left(\sigma, A^{2}(\phi), \psi_{m}\right)=\int d^{4} x \sqrt{-g}\left(A^{4}(\phi)\right)\left(\rho_{m}+\rho_{r a d}+\rho_{s}\right)
$$

$$
Q \equiv \frac{d \ln A(\phi)}{d(\kappa \phi)}
$$

Local GR constraints on \mathbf{Q} and its derivative loosely require imply that

$$
Q^{2} \leq 4 \cdot 10^{-5}, \quad \beta \equiv \frac{d Q}{d \phi}>-4.5
$$

The second constraint can arise from various tests of the force of gravity within solar system and laboratories distances: $(d G / d t) / G$ is less than

In the absence of the GB term, i.e. with a canonical scalar field:

$$
w_{e f f}=w_{m} \Omega_{m}+w_{\phi} \Omega_{\phi}
$$

$$
\begin{aligned}
& \rho_{D E}=\frac{1}{2} \dot{\phi}^{2}+V(\phi)+3 \mathrm{H}^{2} \dot{\mathrm{f}} \\
& p_{D E}=\frac{1}{2} \dot{\phi}^{2}-V(\phi)-\frac{\mathrm{d}}{\mathrm{dt}}\left(\mathrm{H}^{2} \dot{\mathrm{f}}\right)-2 \mathrm{H}^{2} \dot{\mathrm{f}}
\end{aligned}
$$

The energy condition

$$
\rho_{D E}+p_{D E}=\dot{\phi}^{2}-\frac{\mathrm{d}}{\mathrm{dt}}\left(\mathrm{H}^{2} \dot{\mathrm{f}}\right)+\mathrm{H}^{2} \dot{\mathrm{f}} \geq 0
$$

may be violated when there is an appreciable change in Gauss-Bonnet energy density

|llustrative Simple Example

Simple exponential terms for both the scalar potential and the scalar-Gauss-Bonnet coupling:

$$
V(\phi)=V_{0} e^{-\lambda \phi / m_{P}}, \quad f_{, \phi}=f_{0} e^{\alpha \phi / m_{P}}
$$

Perhaps too naïve choices (as the slopes of the potentials considered in a post inflation scenario are too large to allow the required number of e-folds of expansion in the Universe.
hold some validity as a post-inflation approximation

Dashed lines (SNe IA plus CMBR shift parameter)
Shaded regions (including baryon oscillation scale)

In the absence of (or trivial) GB-scalar coupling, a crossing between non-phantom $w \geq-1$ and phantom cosmology $w<-1$ is unlikely. But this is possible with scalar-GB coupling.
lowed a non-minimal coupling between matter fields

$$
Q \equiv \frac{d \ln A(\phi)}{d \phi}
$$

We find

$$
Q \phi^{\prime} \equiv \frac{\Omega_{r}}{\Omega_{m}}
$$

prime denotes a derivative with respect to e-folding time

For the present values of density fractions

$$
\Omega_{m} \approx 0.27, \Omega_{r} \approx 10^{-4}
$$

$$
p \equiv \ln [a]+\text { const }
$$

the effect of any non-minimal coupling is negligibly small unless that the (dark energy) field is rolling fast. For the validity of weak equivalence principle,

$$
\phi^{\prime} \leq 0.84, Q \sim \frac{\delta \rho}{\rho} \leq 5.10^{-5}
$$

Damour et al gr-qc/0204094 (PRL)
Especially on large cosmological scales

Evolution of the fractional densities and effective equation of state with

$$
\alpha=9, \beta=\sqrt{2 / 3}, \quad \Lambda_{0}=10^{-8}
$$

- A metric spacetime under quantum effect: perturbed metric about a FRW background

$$
d s^{2}=-(1+2 A) d t^{2}+2 a \partial_{i} B d x^{i} d t+a^{2}\left[(1+2 \psi) \delta_{i j}+2 \partial_{i j} E+2 h_{i j}\right] d x^{i} d x^{j}
$$

One then defines a gauge invariant quantity, so-called a comoving perturbation

$$
\Psi \equiv \psi-\frac{H}{\dot{\phi}} \delta \phi
$$

$$
S_{\text {linear }} \propto \int d t a^{3}\left[-\mathrm{C}(\mathrm{t}) \Psi \ddot{\Psi}+\frac{\mathrm{D}(\mathrm{t})}{\mathrm{a}^{2}} \Psi \nabla^{2} \Psi\right]
$$

Speed of propagation

$$
C_{k}^{2} \equiv \frac{D(t)}{C(t)}
$$

No-ghost and stability conditions: $C(t), D(t)>0$ and that $0<C_{k}^{2} \leq 1$ These conditions apply to scalar and tensor modes, while vector modes do not propagate

on speed of a scalar mode

Click Here to upgrade to
Unlimited Pages and Expan

$$
c_{R}=I+\frac{[4 \varepsilon(1-\mu)+f-\mu]}{\left[2 \gamma(1-\mu) x^{2}+3 \mu^{2}\right](1-\mu)}>0, c_{\mathrm{T}}^{2}=\frac{1-f}{1-\dot{f} H}>0
$$

$f_{, \phi}=f_{0} e^{\alpha \phi}+\ldots, \quad V(\phi)=V_{0} e^{-\beta \phi}+\ldots \quad \beta=\sqrt{2 / 3}$ and $\alpha=12,8,3, \sqrt{2 / 3}$ (left to right)

$$
f_{, \phi}=f_{0} e^{\alpha \phi}+\ldots, \quad V(\phi)=V_{0} e^{-\beta \phi}+\ldots
$$

$$
\beta=\sqrt{2 / 3} \text { and } \alpha=12,8,3, \sqrt{2 / 3} \text { (left toright) }
$$

effects of a Gauss-Bonnet term

The growth of matter fluctuations

$$
\ddot{\delta}+2 \dot{\delta} H=4 \pi \tilde{G} \rho_{m} \delta \quad \Omega_{f} \equiv \mu=\dot{\phi} \dot{f} H
$$

$\delta \equiv \frac{\delta \rho}{\rho}$
is the matter density contrast
$\tilde{G}=G\left[1+3 \Omega_{f}-\frac{\dot{\phi}}{H}\left(\frac{\ddot{\phi}}{\dot{\phi}^{2}}+\frac{f_{\phi \phi}}{f_{\phi}}\right) \Omega_{f}\right]$
$\frac{d \tilde{G} / d t}{\tilde{G}}<0.01\left|G_{\text {now }}-G_{\text {nucleo }}\right| / G_{\text {now }}\left(t_{\text {now }}-t_{\text {nucleo }}\right)<10^{-12} y r^{-1}$
It may work for some choice like
$\phi \equiv \frac{\dot{\phi}}{H} \sim O(0.1) \quad f(\phi) \sim e^{\alpha \phi / m_{P}} \quad$ even if $\alpha \sim O(1)$

$$
\left(\frac{\dot{\delta}}{\delta}\right)_{G B} \approx\left(\frac{\dot{\delta}}{\delta}\right)\left[1-\left(1+\frac{\dot{H}}{H^{2}}\right)\left(1+\frac{3 \Omega_{m}}{4}\right) \Omega_{f}\right]
$$

The limit on growth factor

$$
\frac{\delta^{\cdot}}{\delta} \approx 0.51 \pm 0.1
$$

implies that

$$
\left|\Omega_{G B}\right|<0.2
$$

Summary

> Curvature corrections (coupled to a scalar field) easily account for an accelerated universe with quintessence, cosmological constant or phantom equation-of-state without a wrong sign kinetic field. Such terms may trigger the onset of late dark energy domination after a scaling matter era.
$>$ Constraining cosmologies other than Lambda-CDM, using the available data may be difficult but seems promising.
$>$ Gauss-Bonnet cosmologies to be compatible with recent astronomical data, the fraction of energy density associated with the coupled GB term should not exceed 0.2

