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Perturbations 

• Perturbation types:

– Scalar: density fluctuations
– Vector: rotation
- Tensor: gravitational waves

Decouple to the linear order (in Friedmann universe)
However, they couple in the second-order!

Evolution:

– Scalar type: conserved in the super-sound horizon scale.
– Vector type: angular momentum conservation.
– Tensor type: conserved in the super horizon scale.



Why we assume the linearity? 

• Because

- Very small CMB temperature anisotropy:

- The large scale clustering of galaxies is nearly linear  as the 

scale becomes large.

- Valid in the early universe and the large scale in the

present. 

- However, as the scale becomes smaller, the distribution of 

galaxies apparently shows quasi-linear to fully non-linear 

structures.
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Perturbed Friedmann Universe
• Metric (Bardeen 1988):

• Energy momentum tensor:

• Pressure-less, irrotational fluid (comoving gauge):



• Background: (homogeneous and isotropic)

– Relativistic (Friedmann 1922)
– Newtonian (Milne-McCrea 1933)
– In the pressure-less medium, they coincide!

• Linear perturbations:

– Relativistic (Lifshitz 1946)
– Newtonian (Bonner 1957)
– In the pressure-less medium, they coincide!



Weakly Nonlinear Perturbations

• Newtonian:  (Peebles 1980)

give

valid to fully order.



We prove the correspondence

Using the Covariant equations (fully nonlinear)

gives

Energy conservation

Raychaudhury
equation



To the second order

• Identifying

• We have

Comoving gauge



• Second-order perturbation:

– Newtonian (Peebles 1980) 

– Relativistic (Noh-Hwang 2004; K=0, Λ≠0, irrotational):

– Except for the gravitational wave contribution, the relativistic
zero-pressure fluid perturbed to the second-order in a flat 
Friedmann background coincides exactly with the 
Newtonian one.



Third-order perturbations
(Physical Rev. D. 72, 044012 (2005))

• To the third-order,

• Pure scalar type perturbation gives

.1   , u⋅∇≡≡
aυυ δθδρδμ



• Non-vanishing pure relativistic corrections are       order higher 
than the Newtonian ones.

• For general

• The CMB temperature anisotropy shows )0( =Λ
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● Equations for the relativistic pressure-less fluid 
(except for the gravitational wave contribution) in a 
flat Friedmann universe coincide exactly with the 
Newtonian ones even to the second-order
perturbations.

● Up to the second order, the relativistic density and
the velocity perturbation variables are identified.  
Though, we do not identify the relativistic variable 
corresponding to the Newtonian gravitational 
potential.

● The cosmological constant is included.

● We show that the Newtonian dynamics is applicable 
even to the horizon scale in a pressure-less case.

SUMMARY



The third-order correction terms show the pure 
general relativistic effects, and are independent of 
the horizon scale. It depends only on the linear 
order gravitational potential perturbation.

Now one can use the large scale numerical 
simulations more reliably even as the simulation 
scale approaches near the horizon.



So far we assumed

Flat Friedmann background model

Pressure-less

Irrotational

Single component



In progress

Relaxing the above assumptions!

- Background Curvature
– Pressure: relativistic even to the linear order
– Rotation

– Multi-component fluids (irrotation,  pressure-less)

lead to pure general relativistic effects!
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