Hybrid Inflation, Primordial Spectrum & Cosmic Strings Me	ethods F	Results of MCMC Analysis	Conclusions
0000000 00	0 (00000	00

Constraints on SUSY Hybrid Inflation with Strings

Björn Garbrecht

School of Physics & Astronomy The University of Manchester

Workshop on Outstanding Questions in Cosmology London, March 26th – 29th 2007 With Richard A. Battye and Adam Moss JCAP 09 (2006) 007 [astro-ph/0607339]

Hybrid Inflation, Primordial Spectrum & Cosmic Strings OCOCOCOC	Methods OO	Results of MCMC Analysis	Conclusions

Introduction

Presently, CMB data is well fitted by a set of six standard parameters

$$\{\Omega_{\rm b}h^2, \Omega_{\rm c}h^2, \tau_{\rm R}, \theta_{\rm A}, \log P_{\mathcal{R}}, n_{\rm s}\}$$

- **P**_{\mathcal{R}} and *n*_s are predicted by an inflationary model, *i.e. V*(ϕ).
- Models which depend on two parameters are of special interest ⇒ no large degeneracies between parameters.
- SUSY hybrid models satisfy this requirement.
 Furthermore, they are well motivated from particle physics.
- SUSY hybrid models: $n_{\rm s} \gtrsim 0.98$. WMAP3: $n_{\rm s} = 0.956 \pm 0.016$.
- Spontaneous symmetry breaking at the end of hybrid inflation ⇒ cosmic strings. Need to be taken into account when making predictions for the CMB.

Hybrid Inflation, Primordial Spectrum & Cosmic Strings	Methods	Results of MCMC Analysis	Conclusions
0000000	00	00000	00

F-Term Inflation

Copeland, Liddle, Lyth, Stewart, Wands (1994); Dvali, Shafi and Schaefer (1994).

- Superpotential: $W = \kappa \widehat{S}(\widehat{\overline{G}}\widehat{G} M^2).$
- S: inflaton. G, \overline{G} : waterfall fields.
- Tree level potential:

$$V_0 = \kappa^2 \left[\left| \overline{G}G - M^2 \right|^2 + \left| S\overline{G} \right|^2 + \left| SG \right|^2 \right].$$

During inflation, $\langle |S| \rangle > M$, $\langle |G| \rangle = \langle |\overline{G}| \rangle = 0$ $V = \kappa^2 M^4$.

- **Two parameters:** κ and M.
- We are interested in strings. Assume that G is gauged under a U(1).

Hybrid Inflation, Primordial Spectrum & Cosmic Strings	Methods	Results of MCMC Analysis	Conclusions
000000	00	00000	00

Additional Corrections to the F-Term Potential

• One-loop Coleman-Weinberg correction due to spontaneous SUSY breaking during inflation $(\dim G, \overline{G} = 1)$:

$$V_{\rm CW} = \frac{\kappa^4}{32\pi^2} \left\{ \left(S^2 + M^2\right)^2 \ln\left(1 + \frac{M^2}{S^2}\right) + \left(S^2 - M^2\right)^2 \ln\left(1 - \frac{M^2}{S^2}\right) + 2M^4 \ln\frac{\kappa^2 S^2}{Q^2} \right\} \right\}$$

• "Minimal" SUGRA: $V_{SUGRA} = 32\pi^2 \kappa^2 M^4 \frac{S^4}{m_{pl}^4}$. From canonical Kähler potential.

Full Potential

$$V = V_0 + V_{\rm CW} + V_{\rm SUGRA}$$

• Everything given in terms of κ and M.

Hybrid Inflation, Primordial Spectrum & Cosmic Strings	Methods	Results of MCMC Analysis	Conclusions
0000000	00	00000	00

D-Term Inflation Binetruy, Dvali (1996); Halyo(1996).

- Superpotential: $W = \kappa \widehat{SGGG}$.
- D-term: $D = \frac{g}{2} \left(|G|^2 |\overline{G}|^2 + m_{\text{FI}}^2 \right)$, where m_{FI} denotes the Fayet-Iliopoulos mass, *g* the U(1) gauge coupling.
- Tree-level potential: $V_0 = \kappa^2 \left[|\overline{G}G|^2 + |S\overline{G}|^2 + |SG|^2 \right] + \frac{1}{2}D^2$.
- Inflation: $\langle G \rangle = \langle \overline{G} \rangle = 0$, $\langle |S| \rangle > \frac{g^2}{4\kappa^2} m_{\text{FI}}^2$, $V = \frac{g^2}{8} m_{\text{FI}}^2$.

Coleman-Weinberg Potential:

$$\begin{split} V_{\rm CW} &= \frac{1}{32\pi^2} \Big\{ (\kappa^2 s^2 + \frac{g^2}{4} m_{\rm FI}^2)^2 \ln \left(1 + \frac{g^2}{4\kappa^2} \frac{m_{\rm FI}^2}{s^2} \right) \\ &+ (\kappa^2 s^2 - \frac{g^2}{4} m_{\rm FI}^2)^2 \ln \left(1 - \frac{g^2}{4\kappa^2} \frac{m_{\rm FI}^2}{s^2} \right) + \frac{g^4}{8} m_{\rm FI}^4 \ln \frac{\kappa^2 s^2}{Q^2} \Big\} \,, \end{split}$$

where $s = Se^{8\pi \frac{S^2}{m_{Pl}^2}}$ within minimal SUGRA.

■ Results turn out not to depend on *g* for $g \leq 9 \times 10^{-2}$.

Adiabatic Perturbations

- Calculate $P_{\mathcal{R}}$ and n_s at the scale $k = 0.05 \text{Mpc}^{-1}$.
- Need to know the value σ_e of the inflaton field at the time when the scale *k* exits the horizon ($\sigma = \sqrt{2} \text{Re}[S]$).
- Number of e-foldings:

$$N_{\rm e} \approx 50 + \frac{1}{3} \log \frac{T_{\rm R}}{10^9 \text{GeV}} + \frac{2}{3} \log \frac{V^{1/4}}{10^{15} \text{GeV}}$$
$$N_{\rm e} = \int_{t_{\rm e}}^{t_{\rm c}} dt H = \frac{8\pi}{m_{\rm pl}^2} \kappa^2 M^4 \int_{\sigma_{\rm c}}^{\sigma_{\rm e}} d\sigma \left(\frac{\partial V}{\partial \sigma}\right)^{-1}$$

Amplitude of power spectrum:

$$\sqrt{P_{\mathcal{R}}(k)} = \frac{2^{\frac{7}{2}}\sqrt{\pi}}{\sqrt{3}m_{\rm pl}^3} \frac{V^{\frac{3}{2}}(\sigma)}{\partial V/\partial\sigma}\bigg|_{\sigma=\sigma_{\rm e}}$$

Scalar spectral index: $n_{\rm s} \approx 1 - 2 \frac{m_{\rm pl}^2}{8\pi} \frac{V''}{V} \Big|_{\sigma_{\rm e}}$.

• Can calculate $\sqrt{P_{\mathcal{R}}(k)}$ and n_s from the model parameters κ and M (or m_{FI} , respectively).

0000000 00 00000 00	Hybrid Inflation, Primordial Spectrum & Cosmic Strings	Methods	Results of MCMC Analysis	Conclusions
	00000000	00	00000	00

Cosmic String Tension

D-term

$$G\mu=2\pi\left(rac{m_{
m Fl}}{m_{
m pl}}
ight)^2$$
 (Bogomol'nyi strings).

F-Term

$$\begin{split} G\mu &= 2\pi \left(\frac{M}{m_{\rm Pl}}\right)^2 \epsilon(\beta) \propto \text{amplitude of string-induced spectrum.} \\ \beta &= \kappa^2/(2g^2), \ G &= \frac{1}{m_{\rm Pl}^2} \\ g: \ \text{gauge coupling, 0.7 as suggested by Grand Unification} \\ \epsilon(\beta) &= \begin{cases} 1.04\beta^{0.195} & \text{for } \beta > 10^{-2} \\ 2.4/\log(2/\beta) & \text{for } \beta \le 10^{-2} \end{cases} \\ \text{Hill, Hodges Turner (1987)} \end{split}$$

• ϵ smaller than one for the interesting range of parameters. \Rightarrow String constraints more severe in *D*-Term models.

String Contribution to Perturbation Spectrum

- Strings may give a subdominant contribution ($\lesssim 10\%$) to the power spectrum. Battye, Weller (2000).
- The amplitude of the string spectrum is $\propto G\mu$.
- $G\mu \lesssim 3 \times 10^{-7}$. Wyman, Pogosian, Wasserman (2005, 2006); Fraisse (2005); Seljak, Slosar, McDonald (2006); Bevis, Hindmarsh, Kunz, Urrestilla (2006).
- Calculate the string-induced spectrum from a moving segement model based on Albrecht, Battye, Robinson (1997); Pogosian, Vachaspati (1999).

Blue: a model with $n_s = 1.00$, which fits the data when strings are added (NB: also the additional fit parameters differ).

Blue: a model with $n_s = 1.00$, which fits the data when strings are added (NB: also the additional fit parameters differ).

Cosmic Parameters and String Spectrum

Ratio of String spectrum at 3σ upper (solid) and lower (dashed) bound of cosmic parameters to string spectrum for best-fit value.

 $\begin{array}{ll} \Omega_{\rm b}h^2 = (0.0244, 0.0196) & \Omega_{\rm m}h^2 = (0.0148, 0.100) \\ h = (0.82, 0.61) & \tau_R = (0.172, 0) \end{array}$

Variation less than 20%

- When the string contribution is $\lesssim 10\%$, the error in the TT spectrum is $\lesssim 2\%$.
- cf. 1% accuracy rendered by the CAMB or CMBFAST codes.
- Calculate just one string spectrum (the amplitude of which is ∝ Gµ).

Hybrid Inflation, Primordial Spectrum & Cosmic Strings	Methods O●	Results of MCMC Analysis	Conclusions
MCMC Analysis			

- Use COSMOMC code Lewis, S. Bridle (2002).
- Parameters { $\Omega_{\rm b}h^2$, $\Omega_{\rm c}h^2$, $\tau_{\rm R}$, $\theta_{\rm A}$, $\log P_{\mathcal{R}}$, $n_{\rm s}$, $G\mu$ }
- For Determination of Model Parameters, derive $\{\log P_{\mathcal{R}}, n_s, G_{\mu}\}$ from $\{M, \log \kappa\}$ for *F*-term, $\{m_{\text{FI}}, \log \kappa\}$ for *D*-term inflation.
- For comparison, analyze models with $G\mu \neq 0$ and $G\mu = 0$.

Flat Priors			
Parameter	Prior	Parameter	Prior
$\Omega_{ m b}h^2$	(0.005, 0.1)	ns	(0.5, 1.5)
$\Omega_{ m c}h^2$	(0.01, 0.99)	$\log \kappa$	(-5.0, -0.3)
$\theta_{\rm A}$	(0.5, 10)	$\log(T_{\rm R}/10^9{\rm GeV})$	(-6.0, 1.0)
$ au_{ m R}$	(0.01, 0.9)	c_H^2	(-0.25, 0.03)
$\log(10^{10}P_{\mathcal{R}})$	(2.7, 5.0)	$\log g$	(-2.0, 0.0)

Hybrid Inflation, Primordial Spectrum & Cosmic Strings	Methods	Results of MCMC Analysis	Conclusions
0000000	00	●0000	00

Strings allow Blue Spectra { $\Omega_b h^2$, $\Omega_c h^2$, τ_R , θ_A , P_R , n_s , $G\mu$ } Standard Six Parameter Fit with Strings in Addition

- For large Gµ, values as large as n_s ≈ 1.02 are within 2σ contour.
- Imposing BBN constraints, $\Omega_b h^2 = 0.020 \pm 0.002$, we find $G\mu < 2.2 \times 10^{-7}$ and $n_s = 0.953 \pm 0.015$. (*cf.* Bevis, Hindmarsh, Kunz, Urrestilla (2007))
- Including strings fits the data slightly (but not significantly) better.

Hybrid Inflation, Primordial Spectrum & Cosmic Strings	Methods	Results of MCMC Analysis	Conclusions
0000000	00	0000	00

F-Term Inflation with Minimal SUGRA

 $\{\Omega_b h^2, \Omega_c h^2, \tau_R, \theta_A, \log \kappa, M\}, \ g = 0.7, \ T_R = 10^9 \text{GeV} \ G\mu \text{ derived from } \kappa, M \text{ and } g.$

Hybrid Inflation, Primordial Spectrum & Cosmic Strings	Methods OO	Results of MCMC Analysis	Conclusions

Nonminimal SUGRA A Remedy for the Spectral Index Crisis

- For a non-canonical K\u00e4hler potential, mass-square terms of the order V/(m²_{Pl}) arise.
- When these mass-squares are negative, they can "redden" the spectrum.

Bastero-Gil, King, Shafi (2006)

• Parametrise these by c_H^2 :

$$V_{\rm NMSUGRA} = c_H^2 H^2 S^2 \, .$$

Hybrid Inflation, Primordial Spectrum & Cosmic Strings	Methods	Results of MCMC Analysis	Conclusions
0000000	00	00000	00

F-Term Inflation with Nonminimal SUGRA

 $\{\Omega_b h^2, \Omega_c h^2, \tau_{\mathrm{R}}, \theta_{\mathrm{A}}, \log \kappa, M, c_H^2\}, \ g = 0.7, \ T_{\mathrm{R}} = 10^9 \mathrm{GeV}, a_S = 1 \mathrm{TeV}$

Best-Fit Values

$$\begin{split} \log \kappa &= -1.87 \pm 0.66 \\ M &= (0.417 \pm 0.093) \times 10^{16} \text{GeV} \\ c_{H}^{2} &= -0.030 \pm 0.035 \\ \text{Introducing } c_{H}^{2} \text{ is yet not} \\ \text{necessary in order to resolve} \\ \text{the spectral index problem for} \\ \text{hybrid inflation with strings.} \end{split}$$

For Comparison

Without strings.

Hybrid Inflation, Primordial Spectrum & Cosmic Strings	Methods	Results of MCMC Analysis	Conclusions
0000000	00	00000	00

D-Term Inflation $\{\Omega_{\rm b}h^2, \Omega_{\rm c}h^2, \tau_{\rm R}, \theta_{\rm A}, \log \kappa, m_{\rm FI}\}, g = 0.001, T_{\rm R} = 10^9 {\rm GeV}$

 $\log \kappa = -4.24 \pm 0.19$ $m_{\rm FI} = (0.24 \pm 0.03) \times 10^{16} {\rm GeV}$

Without strings.

Hybrid Inflation, Primordial Spectrum & Cosmic Strings	Methods OO	Results of MCMC Analysis	Conclusions • O
Conclusions			

- We have computed up to date precision constraints on the parameters κ and M, $m_{\rm FI}$ of SUSY hybrid inflation models.
- Determination of important GUT parameters from cosmic observations (given the models are correct).
- Crucial is the improved WMAP3 data, allows in particular for strong bounds on n_s.
- Puts the simplest SUSY hybrid models without strings under pressure.
- A string contribution of order 10% to the CMBR power spectrum does however allow for larger values of n_s .

Hybrid Inflation, Primordial Spectrum & Cosmic Strings	Methods	Results of MCMC Analysis	Conclusions
0000000	00	00000	00

Conclusions

Madal	Dama at a d Cat	# D= =	1	(10) (10 6G V	121 6
Iviodei	Parameter Set	# Par.	$\log \kappa$	$(M, m_{\rm FI})/10^{-6}{\rm GeV}$	$-\Delta 2 \log \mathcal{L}$
6Par	$\{\Omega_{\rm b}h^2, \Omega_{\rm c}h^2, \tau_{\rm R}, \theta_{\rm A}, P_{\mathcal{R}}, n_{\rm s}\}$	6	-	-	0
6Par & <i>G</i> µ	$\{\Omega_{\rm b}h^2, \Omega_{\rm c}h^2, \tau_{\rm R}, \theta_{\rm A}, P_{\mathcal{R}}, n_{\rm s}, G\mu\}$	7	-	-	-2.7
F	$\{\Omega_{\rm b}h^2, \Omega_{\rm c}h^2, \tau_{\rm R}, \theta_{\rm A}, \log\kappa, M\}$	6	-2.34 ± 0.38	0.518 ± 0.059	-2.2
FNoStr	$\{\Omega_{\rm b}h^2, \Omega_{\rm c}h^2, \tau_{\rm R}, \theta_{\rm A}, \log \kappa, M\}$	6	-2.40 ± 0.88	0.495 ± 0.139	2.9
FNMSUGRA	$\{\Omega_{\rm b}h^2, \Omega_{\rm c}h^2, \tau_{\rm R}, \theta_{\rm A}, \log\kappa, M, c_H^2\}$	7	-1.87 ± 0.66	0.417 ± 0.093	-2.9
D	$\{\Omega_{\rm b}h^2, \Omega_{\rm c}h^2, \tau_{\rm R}, \theta_{\rm A}, \log \kappa, m_{\rm FI}\}$	6	-4.24 ± 0.19	0.245 ± 0.031	-0.5
DNoStr	$\{\Omega_{\rm b}h^2, \Omega_{\rm c}h^2, \tau_{\rm R}, \theta_{\rm A}, \log \kappa, m_{\rm FI}\}$	6	-2.10 ± 0.89	0.730 ± 0.171	2.4