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1 Introduction

Nobody really knows what dark energy is!
Eq. of state w = p/ρ ≈ −1.
Observational evidence for dark energy from

• supernovae (accelerated expansion of universe)

• cosmic microwave background fluctuations

• large-scale structure
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Many different theoretical models for dark energy:

• just a cosmological constant

• vacuum energy of suitable scalar fields

• quintessence

• phantom fields

• Born-Infeld quantum condensates

• Chaplygin gas

• fields with nonstandard kinetic terms

• chaotic scalar fields

• modifications of gravity

• ...
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Many different theoretical models for dark energy:

• just a cosmological constant

• vacuum energy of suitable scalar fields

• quintessence

• phantom fields

• Born-Infeld quantum condensates

• Chaplygin gas

• fields with nonstandard kinetic terms

• chaotic scalar fields

• modifications of gravity

• ...

Most observations consistent with w = −1 (constant dark energy).
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In the following I describe a
new model for constant dark energy in the universe
(C.Beck and M.C. Mackey, astro-ph/0703364),
which has several advantages as compared to other dark energy models:

1. just based on virtual photons —no exotic scalar fields such as the quintessence field
needed

2. dark energy identified as ordinary electromagnetic vacuum energy

3. generates a small cosmological constant for natural values of parameters (no fine-tuning)

4. is testable by laboratory experiments on the earth.
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2 A new model: Electromagnetic dark energy

Quantum field theory formally predicts infinite vacuum energy density:

ρvac =
1

2
(−1)2j(2j + 1)

∫ +∞

−∞

d3k

(2π)3

√
k2 + m2 (1)

(j spin, m mass). One such infinite contribution comes from electromagnetic vacuum
fluctuations (virtual photons).

For photons (m = 0) the above integral can be formally written as

ρvac =
2

c3

∫ ∞

0

1

2
hν · 4πν2dν = ∞ (2)

Relation between a given vacuum energy density ρvac and the cosmologocal constant Λ:

Λ = 8πGρvac (3)
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To construct realistic model that generates a small amount of vacuum energy density
ρvac = ρdark, assume that virtual photons (or any other bosons) can exist in two different
phases:

• A gravitationally active phase where they contribute to the cosmological constant Λ,
and a

• gravitationally inactive phase where they do not contribute to Λ.

(new additional property of ordinary (virtual) photons)
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• A gravitationally active phase where they contribute to the cosmological constant Λ,
and a

• gravitationally inactive phase where they do not contribute to Λ.

(new additional property of ordinary (virtual) photons)
Let |Ψ|2 be the number density of gravitationally active photons in the frequency interval

[ν, ν + dν]. Then

ρdark =

∫ ∞

0

1

2
hν|Ψ|2dν (4)

The standard choice |Ψ|2 = 2
c3 ·4πν2 makes sense in the low-frequency region but leads

to a divergent vacuum energy density for ν → ∞. Hence we conclude that |Ψ|2 must
exhibit more complicated type of behavior in the high frequency region. In the following
we construct a Ginzburg-Landau type theory for |Ψ|2.
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ρvac = ρdark, assume that virtual photons (or any other bosons) can exist in two different
phases:

• A gravitationally active phase where they contribute to the cosmological constant Λ,
and a

• gravitationally inactive phase where they do not contribute to Λ.

(new additional property of ordinary (virtual) photons)
Let |Ψ|2 be the number density of gravitationally active photons in the frequency interval

[ν, ν + dν]. Then

ρdark =

∫ ∞

0

1

2
hν|Ψ|2dν (4)

The standard choice |Ψ|2 = 2
c3 ·4πν2 makes sense in the low-frequency region but leads

to a divergent vacuum energy density for ν → ∞. Hence we conclude that |Ψ|2 must
exhibit more complicated type of behavior in the high frequency region. In the following
we construct a Ginzburg-Landau type theory for |Ψ|2.

Analogy:

• In superconductors: |Ψ|2 = number density of superconducting electrons

• Here: |Ψ|2 = number density of gravitationally active photons (in vacuum)
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Ginzburg-Landau free energy density given by

F = a|Ψ|2 +
1

2
b|Ψ|4 (5)

where a and b are temperature dependent coefficients.
Choose same temperature dependence as in Ginzburg-Landau theory of superconductivity.
After some calculations one obtains (details in C. Beck and M.C. Mackey, astro-ph/0703364):

|Ψ|2(ν) =
8π

c3
ν2

(
1 −

ν4

ν4
c

)
(6)

F (ν) =
1

2
a0

8π

c3
ν2

(
1 −

ν2

ν2
c

)2

, (7)

valid for ν < νc. For ν ≥ νc one has |Ψ|2(ν) = 0 and F (ν) = 0.
Model exhibits a phase transition at a critical frequency νc where gravitational activity

of photons ceases to exist.
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Number density |Ψ|2 of gravitationally active photons in the interval [ν, ν + dν] is
nonzero for ν < νc only. In this way we obtain a finite dark energy density when integrating
over all frequencies:

ρdark =

∫ ∞

0

1

2
hν|Ψ|2dν (8)

=
4πh

c3

∫ νc

0

ν3

(
1 −

ν4

ν4
c

)
dν =

1

2

πh

c3
ν4

c (9)

The astronomically observed dark energy density in the universe of about 3.9 GeV/m3

implies

νc = 2.01THz (10)
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Number density |Ψ|2 of gravitationally active photons in the interval [ν, ν + dν] is
nonzero for ν < νc only. In this way we obtain a finite dark energy density when integrating
over all frequencies:

ρdark =

∫ ∞

0

1

2
hν|Ψ|2dν (8)

=
4πh

c3

∫ νc

0

ν3

(
1 −

ν4

ν4
c

)
dν =

1

2

πh

c3
ν4

c (9)

The astronomically observed dark energy density in the universe of about 3.9 GeV/m3

implies

νc = 2.01THz (10)

Note that in our model virtual photons exist (in the usual quantum field theoretical sense)
for both ν < νc and ν ≥ νc, hence there is no change either to quantum electrodynamics
(QED) nor to measurable QED effects such as the Casimir effect at high frequencies. The
only thing that changes at νc is the gravitational behavior of virtual photons. This is a new
physics effect at the interface between gravity and electromagnetism, which solely describes
the gravitational properties of virtual photons.
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There are two free parameters in this dark energy model, a0 and hνc. Remarkably, our
model gives the correct amount of dark energy density in the universe if the parameters
have similar order of magnitude as in superconductors of solid state physics.

What are typical parameter values in solid state physics? The Bardeen-Cooper-Schrieffer
(BCS) theory yields the prediction [?]

a0 = −αkTc, (11)

where

α :=
6π2

7ζ(3)

kTc

µ
. (12)

Here µ denotes the Fermi energy of the material under consideration. For example, in
copper µ = 7.0 eV, and the critical temperature of a YBCO (Yttrium-Barium-Copper
Oxid) high-Tc superconductor is around 90 K. This yields typical values of kTc ∼ 9 ·10−3

eV and α ∼ 8 · 10−3.
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There are two free parameters in this dark energy model, a0 and hνc. Remarkably, our
model gives the correct amount of dark energy density in the universe if the parameters
have similar order of magnitude as in superconductors of solid state physics.

What are typical parameter values in solid state physics? The Bardeen-Cooper-Schrieffer
(BCS) theory yields the prediction [?]

a0 = −αkTc, (11)

where

α :=
6π2

7ζ(3)

kTc

µ
. (12)

Here µ denotes the Fermi energy of the material under consideration. For example, in
copper µ = 7.0 eV, and the critical temperature of a YBCO (Yttrium-Barium-Copper
Oxid) high-Tc superconductor is around 90 K. This yields typical values of kTc ∼ 9 ·10−3

eV and α ∼ 8 · 10−3.
Our electromagnetic dark energy model works well if we choose the universal parameters

describing the vacuum as a0 = −αelhνc, where hνc ∼ mνc
2 ∼ 8 · 10−3 eV (typical

neutrino mass scale) and α = αel ≈ 1/137 ≈ 7.3 · 10−3.
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3 Josephson junctions as detectors for zeropoint fluctuations

A Josephson junction consists of two superconductors with an insulator sandwiched in-
between.

These device can be used to measure high-frequency stochastic currents induced by
zeropoint fluctuations.

Reason why this works: Fluctuation Dissipation Theorem and ac Josephson effect
more details in: C.B. and M.C. Mackey, Physica A 379, 101 (2007) [astro-ph/0605418]
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3 Josephson junctions as detectors for zeropoint fluctuations

A Josephson junction consists of two superconductors with an insulator sandwiched in-
between.

These device can be used to measure high-frequency stochastic currents induced by
zeropoint fluctuations.

Reason why this works: Fluctuation Dissipation Theorem and ac Josephson effect
more details in: C.B. and M.C. Mackey, Physica A 379, 101 (2007) [astro-ph/0605418]
(has nothing to do with Casimir effect or van der Waals forces!)
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Experimentally confirmed: Measured noise currents through Josephson junctions have a
power spectrum given by

S(ν) =
2hν

R
coth

(
hν

kT

)
=

4

R

(
1

2
hν +

hν

exp(hν/kT ) − 1

)
.
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coth
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hν
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)
=

4

R

(
1

2
hν +

hν

exp(hν/kT ) − 1

)
.

First term due to zeropoint fluctuations, second one due to ordinary Bose-Einstein sta-
tistics. Experimental verification (Koch et al 1982) up to frequencies of 0.5 THz

Fig.1: Spectral density of current noise as measured in Koch et al.’s 1982 experiment.
Solid line: prediction including zeropoint fluctuations. Dashed line: without zeropoint term.

12



Experimentally confirmed: Measured noise currents through Josephson junctions have a
power spectrum given by

S(ν) =
2hν

R
coth

(
hν

kT

)
=

4

R

(
1

2
hν +

hν

exp(hν/kT ) − 1

)
.

First term due to zeropoint fluctuations, second one due to ordinary Bose-Einstein sta-
tistics. Experimental verification (Koch et al 1982) up to frequencies of 0.5 THz

Fig.1: Spectral density of current noise as measured in Koch et al.’s 1982 experiment.
Solid line: prediction including zeropoint fluctuations. Dashed line: without zeropoint term.

Could there be some interesting behaviour near νc ∼ 2 THz? C.B. and M.C. Mackey,
Phys. Lett. B 605, 295 (2005)
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4 Possible measurable effects of dark energy in superconductors

We now describe how our gravitationally active photons could influence superconducting
electrons in superconductors.

Denote the macroscopic wave function of gravitationally active photons by ΨG (previ-
ously this was denoted as Ψ), and that of superconducting electrons (Cooper pairs) in a
superconductor by Ψs. So far we only dealt with absolute values of these wave functions,
but we now introduce phases ΦG and Φs by writing

Ψs = |Ψs|eiΦs (13)

ΨG = |ΨG|eiΦG. (14)

In superconductors one has |Ψs|2 = 1
2
ns, where ns denotes the number density of

superconducting electrons. Similarly, in our model |ΨG|2 is proportional to the number
density of gravitationally active photons.
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Spatial gradients in the phase Φs give rise to electric currents

~js =
eh̄

m
|Ψs|2∇Φs = −

ieh̄

2m
(Ψ∗

s∇Ψs − Ψs∇Ψ∗
s), (15)

Similarly, spatial gradients in the phase ΦG of gravitationally active photons generate a
current given by

~jG =
ẽh̄

m̃
|ΨG|2∇ΦG = −

iẽh̄

2m̃
(Ψ∗

G∇ΨG − ΨG∇Ψ∗
G). (16)

Whereas the strength of the electromagnetic current is proportional to the Bohr magneton
µB = eh̄

2m
, the strength of the current given by eq. (16) is proportional to a kind of

‘gravitational magneton’ µG := ẽh̄
2m̃

whose strength is a priori unknown. Presumably, µG

is very small so that this current is normally unobservable in the vacuum.
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In superconducting devices, however, the situation may be very different. Here both
the phases Φs and ΦG exist and the corresponding wave functions might interact. The
strength of this interaction is a priori unknown since ΨG represents new physics. If the
interaction strength is sufficiently strong then in equilibrium the phases may synchronize:

Φs = ΦG. (17)

If phase synchronization sets in, then fluctuations in ΦG would produce measurable sto-
chastic electric currents of superconducting electrons given by

~js =
eh̄

m
|Ψs|2∇ΦG. (18)

These currents could only exist up to the critical frequency νc. For ν > νc one has
ΨG = 0 and hence ∇ΦG = 0. Noise currents that are produced by gravitationally
active photons would thus cease to exist at a critical frequency νc given by about 2 THz.
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5 Theoretical predictions of quantum noise spectra and comparison with data

Our theory of electromagnetic dark energy allows for a coupling between the macroscopic
wave functions Ψs describing superconducting electrons and the macroscopic wave function
ΨG describing gravitationally active photons. Coupling strength a priori unknown, since
this is new physics. For sufficiently strong coupling phase synchronization may set in,
resulting in the following prediction for the quantum noise power spectrum in Josephson
junctions:

S̃(ν) =
4

R

[
1

2
hν

(
1 −

ν4

ν4
c

)
+

hν

e
hν
kT − 1

]
. (19)

(C.B., M.C. Mackey, astro-ph/0703364)
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4
S̃(ν) as generated by gravitationally active photons at

two different temperatures (solid and dashed lines) and comparison with the data of the
experiment of Koch et al. Filled squares correspond to measurements at 4.2K, open squares
to measurements at 1.6 K.
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New Josephson experiments are currently being built up at UCL (P. Warburton) and
Cambridge (Z. Barber) which will reach the THz region.
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6 Summary

• We have introduced a new model for dark energy (‘electromagnetic dark energy’) where
the gravitational behaviour of virtual photons is described by a Ginzburg-Landau-like
theory.

• The model yields the correct amount of (constant) dark energy density in the universe
for natural parameters.

• If phase synchronisation sets in, then these types of dark energy models lead to mea-
surable effects in superconductors. Measured quantum noise spectrum in Josephson
junctions should have a cutoff near 2.0 THz.

• CMB spectrum is a property of real photons—our suggestion here is to to do a kind
of ‘zeropoint fluctuation spectroscopy’ and look at power spectra generated by virtual
photons as well.

All relevant references can be found in
C.Beck and M.C.Mackey, astro-ph/0703364
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