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one-slide summary
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�ΩU |a†i (w)aj(w
�)|ΩU � =

δijδ(w−w�)

eβ∗w − 1
.

�ξi(t)ξj(t�)� = κij(t, t
�)

Sj ∼
�

Trκ(ω)dω = T∗Φ(T/T∗)
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losing your equilibrium
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going away from equilibrium

• almost all results on transport (conductivity, viscosity, ...) rely on smallness of 
departure from equilibrium, so that a Kubo-type formula can be applied

H → H0 + δH(t) �O(t, x)� = Trρ(t)O(x)

time dependent 
disturbance

time dependent 
expectation value

causal correlation function with respect to equilibrium density matrix 

• example: (linear) conductivity is given in terms of current-current auto-
correlation (a.k.a. retarded two-point function) 

• almost all results on transport (conductivity, viscosity, ...) rely on smallness of 
departure from equilibrium, so that a Kubo-type formula can be applied
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δ�O(t, x)� = −iTrρ0

�
dt

� [O(t, x) , δH(t�)] + · · ·

= −i

�
dx�

dt
�
�
�
O(t, x),OF (t�, x�)

�
�µ(t�,x�)
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transport in ads/cft

• we saw that a quantum Boltzmann approach can overcome some of these 
difficulties: 1/N expansion makes it technically possible to compute σNL

• recall: balance of Schwinger pair production and scattering relaxation 
produces current-driven steady state (CDSS). consequence of large N!

• in ads/cft linear response is well established (GKPW formula). Son & 
Starinets showed how to do Lorentzian case

• non-equilibrium Lorentzian dynamics maps to (generally) time-dependent 
solutions of Einstein’s equations (see J. Bhaseen)
⇒ such problems can be addressed using numerical relativity

• Can we find a similar implementation of large N to produce (and solve) 
transport & noise in CDSS in ads/cft?

• almost all results on transport (conductivity, viscosity, ...) rely on smallness of 
departure from equilibrium, so that a Kubo-type formula can be applied
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a holographic z=1 QCP
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the brane setup

• consider the 2+1 intersection of N D3 branes and M D5 branes 
[see e.g. de Wolfe et al., Erdmenger et al.]

• almost all results on transport (conductivity, viscosity, ...) rely on smallness of 
departure from equilibrium, so that a Kubo-type formula can be applied

3

on long timescales, one obtains the non-equilibrium cur-

rent noise given by Eq.(1).

III. ADS REALIZATION

Heuristic Picture - General Case: As alluded to above,

the holographic approach uses a mapping between a crit-

ical gauge theory in d dimensions and a string theory in

d+1. The classical gravity saddlepoint of the string the-

ory encodes a strongly-correlated quantum state of the

gauge theory. The field theory may be thought of as

describing or living on the boundary of the gravitational

system. More generally, the extra dimension of the gravi-

tational system plays the role of a renormalization group

scale. The field theory is defined at all scales and the

boundary describes the ultra-violet fixed point.

The quantum correlations of the field theory are

mapped into classical properties of a gravitational sys-

tem. In particular, the interactions and scaling are em-

bodied in the metric. The horizon in the presence of a

black hole has particular importance in what follows. As

usual, its area determines the entropy of the black hole

and may be related to its temperature. This temperature

has the same interpretation in both the field theory and

the gravity.

Heuristic Picture - Non-Equilibrium transport: The

holographic system that we use to model non-linear

transport is the D3N/D5M brane intersection. We study

the dynamics of M D5 branes in the background of ND3

branes in the probe brane limit N � M . The specific

configuration is summarized in table I. The D3 brane

lead to the formation of an horizon in the background

metric modeling the effect of a thermal bath. Non-linear

transport is studied through the dynamics of gauge fields

on the D5 brane with boundary conditions corresponding

to the application of an in-plane electric field.

TABLE I: The D3N/D5M brane intersection. We la-
bel directions occupied by the branes by • and directions in
which they are localised by ◦. The field-theory directions are
x0, x1, x2 ≡ t, x, y. In addition the D5 wraps the RG direction
x4 ≡ u as well as an S2 ⊂ S5, parametrised by two angles
x5, x6 ≡ θ1,φ1. This system realises an out-of-equilibrium
steady state in 2 + 1 dimensions. Extending this to different
dimensions is a straightforward exercise, but is not the topic
of the current work.

0 1 2 3 4 5 6 7 8 9

D3 • • • • ◦ ◦ ◦ ◦ ◦ ◦
D5 • • • ◦ • • • ◦ ◦ ◦

The way in which this permits us to study out-of-

equilibrium steady states is very similar to the 1/N trick

used on the condensed matter side. Since N � M , gauge

fields on the D5 brane do not modify the metric. Just

as the single component of the O(N) field coupled to

the electric field does not modify the distribution of the

N − 1 modes corresponding to the critical bath on the

condensed matter side.

The application of the electric field on the boundary

leads to a crucial modification of the metric induced on

the D5 brane. A new horizon appears in this reduced

metric with an area that ultimately corresponds to the

effective temperature T∗ given in Eq.(2). As we discuss

below, the consequences of this are potentially profound.

Our detailed calculation, which we sketch in a moment,

involves solving the equations of motion for gauge fields

on the D5 brane. The steady-state solution of this cor-

responds to a previous calculation that allows determi-

nation of the out-of-equilibrium conductivity. We ex-

plicitly propagate thermal fluctuations from the horizon

on the D5 brane to its boundary and derive a Langevin

equation for gauge fluctuations and hence current fluctu-

ations on the boundary. A major result of this analysis is

that the conductivity and current fluctuations are related

by an out-of-equilibrium fluctuation dissipation relation

that mimics the equilibrium one at the effective temper-

ature T∗. Such a relation was not found in the 1/N ex-

pansion on the condensed matter side, but appears to be

inevitable in the gravity dual.

IV. DETAILS OF ADS CALCULATION

The dynamics of the D3N/D5M brane intersection is

captured by the action

SD5 = −N5

�
d
6ξ
�

−det (gind + F ) + SWZ , (3)

where gind is the metric induced on the D5, and F is the

gauge field strength on the brane in string units. We do

not specify the Wess-Zumino term SWZ further as it does

not contribute to the configurations under study below.

The normalisation N5 = MT5 where T5 is the usual D5-

brane tension. We study this system in the background

of the non-extremal D3 brane metric, which we take to

be

Gmndx
m
dx

n
=

u2

R2

�
−f(u)dt

2
+ dx2

�
+

R2

f(u)u2
+R

2
dΩ2

5

(4)

with f(u) = 1− u4
h

u4 , and dΩ2
5 is the metric on a round five

sphere. By studying the regularity of the Euclidean ge-

ometry at uh or otherwise, one sees that the background

geometry (the bath) has a temperature

πT =
uh

R2
. (5)

1. Applying an electric field

Applying an external electric field in the x direction is

accomplished by choosing the gauge potential

A = (−Et−Ax(u)) dt . (6)

• The (non-) extremal D3 brane metric

Gmndx
mdxn =

u2

R2

�
−f(u)dt2 + d�x2

�
+

R2

f(u)u2
+R2dΩ2

5

f(u) = 1− u4
h

u4

• With temperature πT =
uh

R2

• The (non-) extremal D3 brane metric
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metallic AdS/dCFT

• Taking M << N we can treat the D5 branes as probes governed by DBI 
action; wrap AdS4 x S2 submanifold (angle θ gives position of S2 ⊂ S5: mass 
operator) ➠ Field theory (in this limit) lives on 2+1 intersection

• almost all results on transport (conductivity, viscosity, ...) rely on smallness of 
departure from equilibrium, so that a Kubo-type formula can be applied

• The (non-) extremal D3 brane metric

SD5 = −N5

�
d6ξ

�
−det (gind + F ) + SWZ

• To take system away from equilibrium apply strong electric field in x 
direction

A = (−Et−Ax(u)) dx .

• Embedding described by a set of non-linear ODEs determining Ax(u) and θ(u)
Taking θ(u) =0 (zero mass deformation) always a solution

• Coupled M << N degrees of freedom to field: non-equilibrium steady state

[Karch & O’Bannon, 2007]
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non-linear conductivity

• Ax(u) enters action as a cyclic coordinate. So it has a first integral

• almost all results on transport (conductivity, viscosity, ...) rely on smallness of 
departure from equilibrium, so that a Kubo-type formula can be applied

• The (non-) extremal D3 brane metric

A�
x(u) = C

�
Guu (E2 +GttGxx)

Gtt (C2 +GyyGtt)

• Vanishing point of denominator 
defines special point u✻

• Reality demands that the numerator also vanish at this point

u4
∗ = u4

h + E2R−4

E = C = jx/Ñ5

• Non-linear conductivity in d=2 is a constant.
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non-linear current noise
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open string metric; D5 black hole

• In order to study the current noise in the system, need to look at fluctuations 
around the non-linear current steady state

• almost all results on transport (conductivity, viscosity, ...) rely on smallness of 
departure from equilibrium, so that a Kubo-type formula can be applied

• The (non-) extremal D3 brane metric

• These propagate in the OSM (open string metric). Fluctuations see a black-
hole horizon at u✻ 

ds2 = −u4 − u4
∗

R2u2
dτ2 +

u2R2

u4 − u4
∗
du2

• Which has a temperature (look at surface gravity)

πT∗ =
�
E2R−4 + (πT )4

�1/4

• Note this is not the same as the background ‘bath’ ➠ non-equilibrium

S(2) = Ñ5

�
dudt

√
−ααab

�
∂aa

�∂ba
� + Z(u)⊥∂aa

⊥∂ba
⊥ + Zt(u)∂aa

t∂ba
t
�
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current noise

• The noise in this system is characterised by a Langevin equation

• almost all results on transport (conductivity, viscosity, ...) rely on smallness of 
departure from equilibrium, so that a Kubo-type formula can be applied

• The (non-) extremal D3 brane metric

dj

dt
+

�
GR(t, t

�)j(t�)dt� = ξ(t)

• The stochastic noise term is governed by the Keldysh two-point function

�ξi(ω)ξj(−ω)� = Gij
sym(ω)

• So we need to calculate the retarded and symmetrised Green function of the 
probe degrees of freedom (Schwinger-Keldysh two-time formalism)

• This can be done by thinking carefully about the (1/2) whole Kruskal plane
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[see also de Boer et al., 2008, Teaney et al., 2009]
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current noise

• almost all results on transport (conductivity, viscosity, ...) rely on smallness of 
departure from equilibrium, so that a Kubo-type formula can be applied

• The (non-) extremal D3 brane metric

Minkowski signature Green’s functions is the usual AdS/CFT prescription worked out by

[2, 3] where one selects “natural” boundary conditions at the horizon with respect to the

analog of Kruskal time. In the context of Hawking radiation, Kruskal time is often used

to define a vacuum state. With respect to the gauge theory time, on the other hand, an

observer should see a thermal background. If we were to use gauge theory time to examine

the bulk behavior of a field, we would need to take into account this thermal background,

a complication which explains some of the early confusion in the literature with respect to

these Minkowski signature Green’s functions.

In Kruskal coordinates, the full Penrose diagram (see figure 1) for aAdS space becomes

apparent. Israel [18] pointed out that the fields in the mirror image universe in the L quadrant

of the Penrose diagram should be the doubler fields of the Schwinger-Keldysh formalism in

curved space. The authors of [8, 9, 10] made the further conjecture that the fields on the

boundary of the L quadrant should look like ghosts (or doubler fields) from the point of view

of the finite temperature CFT dual. Being careful about boundary conditions, we are able

to reproduce the 2 × 2 matrix of propagators for the field and its doubler using the aAdS

description.

U=
0

V=0

R

P

L

F

Figure 1: The Penrose diagram for AdS containing a black hole.

We begin by reviewing in section two the Schwinger-Keldysh formalism for real-time

finite temperature field theory. Section three contains details of our refined prescription

for calculating directly Minkowski signature correlators in AdS/CFT. We focus on the case

of a scalar in a non-extremal D3-brane background, but the prescription should be much

3

• Generating function in Lorentzian AdSBH in fact gets 
contributions from both asymptotic boundaries 

• Analyticity arguments at the horizon relate positive 
frequency modes in L and R and we find

Gij
sym(ω) = −(1 + 2n∗(ω))ImGij

R(ω)

• n✻ is a thermal factor at the effective temperature T✻

• Thus Langevin equation is fully determined by retarded correlation 
function, which we can obtain exactly (in k=0 sector)

Gij
R(ω) = −iδijσ

ω

πT∗
13
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noise power

• almost all results on transport (conductivity, viscosity, ...) rely on smallness of 
departure from equilibrium, so that a Kubo-type formula can be applied

• The (non-) extremal D3 brane metric

• A common way to characterise the noise in the system is noise power:

• Compare with result obtained using quantum Boltzmann at SI transition:

Sj = 4σE

√
E

Sj = −
� ∞

−∞
dωdkcoth(ω/2T∗)Im�j(ω) · j(−ω)�R

= 4σT∗ = 4σ

√
E

Rπ

�
1 +

(RπT )4

E2

�1/4

Sj = 4σTT

large field

zero field

• We obtain agreement in limits. Can we measure the interpolating function in 
experiment? Discriminating factor for holographic dual?
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CONCLUSIONS
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CONCLUSIONS
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sometimes noise
is more important 

than the 
background
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• Near-equilibrium calculations encode interesting features of quantum matter, 
such as Fermi surfaces, hydrodynamics, Non-equilibrium is next frontier

• Large N in ads/cft establishes CDSS. Non-linear conductivity easy to get!

• Horizon of the OSM encode subtle out-of equilibrium physics. Use this to 
calculate current noise

• Fluctuations about CDSS are precisely thermal at effective temperature T*

• Stochastic noise term related to quantum effect (Hawking radiation): Can we 
turn the tables and measure Hawking spectrum in a solid-state device (or cold 
atoms)?

(mental) health warning:
large-N may turn out to be problematic! Opens a can of worms: BH information 
paradox, coarse graining, ....

conclusions 
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