Holographic Fermions

Koenraad Schalm

Institute Lorentz for Theoretical Physics, Leiden University

A. Bagrov, J. Brill, M. Cubrovic, E. Gubankova, B. Overbosch, J. Mydosh, Y. Liu, A. Parnachev, P. Schijven, J. She, Y.-W. Sun, J. Zaanen.

Gravity, Black Holes and Condensed Matter Chicheley Hall, Apr 2012

- Holographic Quantum Critical Fermion Matter
 - Minimally coupled charged Fermion in AdS-RN BH

$$G(\omega,k) = rac{Z}{\omega - v_F(k-k_F) - e^{i\gamma}\omega^{2
u_{k_F}}} + \dots$$
 Lee

Lee; Cubrovic, Zaanen, KS; Faulkner, Liu, McGreevy, Vegh

dispersion
$$\omega \sim (k - k_F)^z$$
 with $z = \begin{cases} 1/2\nu_{k_F} & \nu_{k_F} < 1/2 \\ 1 & \nu_{k_F} > 1/2 \end{cases}$

-
$$u_{k_F} \sim \sqrt{m^2 + k_F^2 - q^2}$$
 is a free parameter

- Holographic Quantum Critical Fermion Matter
 - Minimally coupled charged Fermion in AdS-RN BH

$$G(\omega,k) = \frac{Z}{\omega - v_F(k-k_F) - e^{i\gamma}\omega^{2\nu_{k_F}}} + \dots$$
 Lee;

Cubrovic, Zaanen, KS; Faulkner, Liu, McGreevy, Vegh

dispersion
$$\omega \sim (k - k_F)^z$$
 with $z = \begin{cases} 1/2\nu_{k_F} & \nu_{k_F} < 1/2 \\ 1 & \nu_{k_F} > 1/2 \end{cases}$
A non-Fermi liquid
- $\nu_{k_F} \sim \sqrt{m^2 + k_F^2 - q^2}$ is a free parameter

String theory embedding/Top-down construction: DeWolfe, Gubser, Rosen

• An explanation of the "strange metal"

- An explanation of the "strange metal"
 - Marginal Fermi liquid: $u_{k_F} = 1/2$ Varma, Littlewood, ...

In AdS/CFT: Faulkner, Liu,

The puzzles of AdS/CMT...

- Is the near-horizon AdS-RN the quantum critical pt? What are its instabilities?
- What is the zoo of Fermi liquids in the stable ground state? How should we think of the gravitational dual of a single Fermi surface?
- When is large N good? When is it bad?
- What is the AdS2 metal?

- How does the LFL emerge from the strange metal?
- Why is only the marginal Fermi liquid observed?
- Can we explain high Tc?
- What is the pseudogap phase?
- Lattice effects?...

The puzzles of AdS/CMT...

- Is the near-horizon AdS-RN the quantum critical pt? What are its instabilities?
- What is the zoo of Fermi liquids in the stable ground state? How should we think of the gravitational dual of a single Fermi surface?
- When is large N good? When is it bad?
- What is the AdS2 metal?

- How does the LFL emerge from the strange metal?
- Why is only the marginal Fermi liquid observed?
- Can we explain high Tc?
- What is the pseudogap phase?
- Lattice effects?...

Note: we will not discuss defect fermions [Kachru, Karch, Yaida]

- Local Quantum Criticality is an unstable fixed point:
 - T=0 extremal AdS-RN has groundstate entropy.
- What are its instabilities?

• What are its instabilities?

- Whether the local quantum critical region is reached depends on the true UV.

• What are its instabilities?

Minimal AdS/CFT only probes T/μ

- Whether the local quantum critical region is reached depends on the true UV.
- Charged scalar (holographic superconductor)
- Neutral scalar $(q \ll m \ll m_{BF AdS_2})$
- Charged fermions
- Neutral fermions/Neutral scalar ($m \gg m_{BF AdS_2}$)

 $T_c \sim \mu$ $T_c \sim \mu e^{-1/\sqrt{m^2}}$ $T_c \sim \mu e^{-N_c^{2/3}}$ XXX

• Semi-local Quantum Liquid: Bosons

- Need another scale, e.g. double trace deformation κ

[Faulkner, Horowitz, Roberts]

FIG. 15. Finite temperature phase diagram with the quantum critical region for marginal criticality at u = 0 and changing $(\kappa_+ - \kappa_+^*)$. The susceptibility in the bowl-shaped quantum critical region is given by (9.16) with the $\omega \gg T$ limit given by (9.8)

[lqbal, Liu, Mezei]

• Semi-local Quantum Liquid: Bosons

- Need another scale, e.g. double trace deformation κ

• Semi-local Quantum Liquid: Fermions

- Log-oscillatory = Discrete Scale Invariance

• Semi-local Quantum Liquid: Fermions

- Log-oscillatory = Discrete Scale Invariance

• Semi-local Quantum Liquid: Fermions

- Log-oscillatory = Discrete Scale Invariance

Towards a holographic Fermi liquid...

• A Fermi-gas in AdS: various approaches

Fluid approx

Dirac Hair

Hartree-Fock

- # occ.wave func. large
- # radial harm. large
- # FS large

- # species large Neutron/Electron star:

> de Boer, Papadodimas, Verlinde; Hartnoll, Tavanfar, Hofman;

- # occ.wave func: one
- # radial harm: one
- # FS: one
- By construction

Cubrovic, Zaanen, KS.

- # occ.wave func: arb.
- # radial harm: arb.
- # FS: arb.

Exact, iterative procedure...

Sachdev

Allais, McGreevy, Josephine Suh

- Semi-local Quantum Liquid: Fermions
 - Log-oscillatory = Instability

Marginal?

- Semi-local Quantum Liquid: Fermions
 - Log-oscillatory = Instability

Marginal?

- Semi-local Quantum Liquid: Fermions
 - Log-oscillatory = Instability

Marginal?

- Other instabilities of fermions in AdS-RN?
 - Charged susceptibilities (Fermi pairing) [Hartman, Hartnoll]

$br^{-\Delta}$ • Other instabilities of fermions in AdS-RN?

IR - Charged susceptibilities (Fermi pairing) [Hartman, Hartnoll]

()

Tuning Δ FL to NFL; log-oscillatory vs isolated (order N))

0.5

Other instabilities of fermions in AdS-RN? $br^{-\Delta}$ Charged susceptibilities (Fermi pairing) IR[Hartman, Hartnoll] Tuning Δ FL to NFL; log-oscillatory vs isolated (order N)) k_F $(D - m)\Psi = 0, \ A_y = hx$ $(-m - ipF)\Psi = 0$ - If FL to NFL is 14 related[®]to a macroscopic k_F $\tilde{\nu}_{k_F} < 1$ instability, then -1 it selects marginal FL. -10 1 1.5 0.5 1.0 0.5 [Gubankova, Brill, Cubrovic, Schijven, KS, Zaanen; [Edalati, Leigh, Phillips] Gubankova et al] [possibly related to Bolognesi, Tong]

()

3

0.5

- Holographic Superconductor
 - I/N corrections restore ALRO [Anninos, Hartnoll, Iqbal]
 - I/N corrections ought to capture any non-mean field

[e.g. She, Overbosch, Liu, KS, Sun, Zaanen]

- Fermions
 - Single Fermi surface (Dirac Hair/Hartree Fock) is I/N effect.

- Holographic Superconductor
 - I/N corrections restore ALRO [Anninos, Hartnoll, Iqbal]
 - I/N corrections ought to capture any non-mean field

[e.g. She, Overbosch, Liu, KS, Sun, Zaanen]

- Fermions
 - Single Fermi surface (Dirac Hair/Hartree Fock) is I/N effect.
 - Isolated FL to NFL Fermions vs Confin-Deconfined

-O(1): marginal FL

- O(N): stability of LFL

- Holographic Superconductor
 - I/N corrections restore ALRO [Anninos, Hartnoll, Iqbal]
 - I/N corrections ought to capture any non-mean field

ch, Liu, KS, Sun, Zaanen]

- Sing () is I/N effect.
- Isolated FL to NFL Fermions vs Confin-Deconfined

-O(1): marginal FL

• Ferm

-O(N): stability of LFL

- What if there is no instability?
 - Tuning Δ all the way?

 $\mathrm{Im}G_R(\omega,k) \sim \mathrm{Im}\mathcal{G}(\omega,k)$

 $\mathcal{G}(\omega,k)\sim\omega^{2
u_k}$

- What if there is no instability?
 - Tuning Δ all the way?

- Connection to Strange Metal? Local Quantum Critical?

What a theory of High Tc superconductivity should explain...

- Strange Metal State
 - Local Quantum Criticality
 - Linear Resistivity
- High T superconductivity
 - What is the Glue?
- Stability of the FL
- The many orders of the Pseudogap/AFM phase
 - Nature of the QCP/Lattice effects

• • •

What a theory of High Tc superconductivity should explain...

- Strange Metal State
 - Local Quantum Criticality
 - Linear Resistivity
- High T superconductivity
 - What is the Glue?
- Stability of the FL
- The many orders of the Pseudogap/AFM phase
 - Nature of the QCP/Lattice effects

...

- Dominant Instability of AdS-RN w. fermions?
 - Holographic Fermions ...Requires understanding of the other instabilities
 AdS₄

CFT

 AdS_2

11

- Holographic Strange Metal State = Near Horizon AdS-RN
 - Local Quantum Criticality (yes)
 - Linear Resistivity (no)

-Need another scale/parameter

Why is only the marginal Fermi liquid observed?

- Holographic Strange Metal State = Near Horizon AdS-RN
 - Local Quantum Criticality (yes)
 - Linear Resistivity (no)

-Need another scale/parameter

- Dominant Instability of AdS-RN w. fermions?
 - Holographic Fermions ...Requires understanding of the other instabilities

- The pseudogap mystery...
 - AdS2 metal is pseudogap for free

 $\mathrm{Im}G_R(\omega,k) \sim \mathrm{Im}\mathcal{G}(\omega,k)$

- The pseudogap mystery...
 - AdS2 metal is pseudogap for free

 $\operatorname{Im} G_R(\omega, k) \sim \operatorname{Im} \mathcal{G}(\omega, k) \qquad \qquad \mathcal{G}(\omega, k) \sim \omega^{2\nu_k}$

- The pseudogap mystery...
 - AdS2 metal is pseudogap for free

 $\operatorname{Im} G_R(\omega, k) \sim \operatorname{Im} \mathcal{G}(\omega, k) \qquad \qquad \mathcal{G}(\omega, k) \sim \omega^{2\nu_k}$

- The pseudogap mystery... Two holographic mysteries...
 - AdS2 metal is pseudogap for free

 $\mathrm{Im}G_R(\omega,k) \sim \mathrm{Im}\mathcal{G}(\omega,k)$

$$\mathcal{G}(\omega,k) \sim \omega^{2\nu_k}$$

- The pseudogap mystery... Two holographic mysteries...
 - AdS2 metal is pseudogap for free

 $\mathrm{Im}G_R(\omega,k) \sim \mathrm{Im}\mathcal{G}(\omega,k)$

 $\mathcal{G}(\omega,k) \sim \omega^{2\nu_k}$

AdS2 metal is pseudogap for free

 $\mathrm{Im}G_R(\omega,k) \sim \mathrm{Im}\mathcal{G}(\omega,k)$

 $\mathcal{G}(\omega,k) \sim \omega^{2\nu_k}$

Experimental Pseudogap features

Doping Dependence

Fig. 2. (a) High-resolution valence band photoemission spectra of the near E_F region obtained by using 50 eV photons. (b) First derivative of the spectra shown the panel (a) to highlight the temperature dependent dip near E_F resulting the formation of a pseudogap. (The temperature dependent dip near E_F corresponds to the energy scale of 80 meV marked by the solid line, measures the pseudogap.)

[Ulfat et al]

Holographic Fermions on the lattice

- Solid State 101:
 - Bands from eigenvalue repulsion

- Computing the spectral function from AdS/CFT
 - near the AdS boundary

$$\Psi(r) = \mathcal{A}\begin{pmatrix} 0\\1 \end{pmatrix} r^m + \mathcal{B}\begin{pmatrix} 1\\0 \end{pmatrix} r^{-m} + \dots$$

- The spectral function

$$G_R = \mathcal{B}\mathcal{A}^{-1}$$

- Matching the near-horizon AdS2 behavior to the boundary behavior

 $G_R = \frac{b^{(0)} + \omega b^{(1)} + \ldots + \mathcal{G}(\omega, k)(\bar{b}^{(0)} + \omega \bar{b}^{(1)} + \ldots)}{a^{(0)} + \omega a^{(1)} + \ldots + \mathcal{G}(\omega, k)(\bar{a}^{(0)} + \omega \bar{a}^{(1)} + \ldots)}$

with the AdS2 Green's function

 $\mathcal{G}(\omega,k)\sim\omega^{2
u_k}$ [Faulkner, Liu, McGreevy, Vegh]

• The novelty is the exponential IR local quantum criticality

 $\mathcal{G}(\omega,k) \sim \omega^{2\nu_k}$

- Large effect for the AdS2 metal

 $\mathrm{Im}G_R(\omega,k) \sim \mathrm{Im}\mathcal{G}(\omega,k)$

- Lattice induced dispersive effect in the FL regime

$$G_R \sim \frac{1}{\omega - v_F k + \mathcal{G}}$$

Lattice periodicity by a modulated chemical lacksquarepotential

$$\begin{split} ds^2 &= -r^2 f(r) dt^2 + \frac{dr^2}{r^2 f(r)} + r^2 (dx^2 + dy^2) \\ A_t &= [\mu_0 + \mu_1(x)](1 - \frac{1}{r}) \\ f(r) &= 1 - \frac{1 + Q^2}{r^3} + \frac{Q^2}{r^4} \\ \mu_0 &= 2Q \end{split} \quad \text{ignore gravitational backreaction} \end{split}$$

 $\mu_1 = 2\epsilon \cos(rac{x}{a})$, $\epsilon \ll Q$ [Flauger et al; Aperis et al; Horowitz]

Different from explicit "brane intersection" lattices: -[Kachru, Karch, Yaida] • Solve Dirac equation in perturbation in $\delta \mu \sim \epsilon$

$$(e_A^{\mu} \mathcal{D}_{\mu} \Gamma^A + m) \Psi = 0$$
$$\Psi(x) = \int_{-1/2a}^{1/2a} \frac{dk}{2\pi} \sum_{\ell \in Z} \Phi^{(\ell)}(k) e^{i(k+\ell K)x}$$

- single particle Green's function

$$G_R = \mathcal{B}\mathcal{A}^{-1}$$

- and similar for $\mathcal{B}_{\alpha\ell,\beta\ell'}$

Opening a bandgap (holographically)

- In the Fermi-liquid regime ($q \gg m$): a bandgap
 - Predictable from semi-holography

• What happens to $\mathcal{G}(\omega,k)$

 $\mathcal{G}(\omega,k) = \alpha_k \omega^{2\nu_k} + \beta_k^{(-)} \omega^{2\nu_{k-K}} + \beta_k^{(0)} \omega^{2\nu_k} \ln \omega + \beta_k^{(+)} \omega^{2\nu_{k+K}} + \dots$

- Term with $\beta_k^{(0)}$ is basically first term in $\nu_k + \delta \mu \frac{\partial \nu_k}{\partial \mu} + \dots$

• What happens to $\mathcal{G}(\omega,k)$

 $\mathcal{G}(\omega,k) = \alpha_k \omega^{2\nu_k} + \beta_k^{(-)} \omega^{2\nu_{k-K}} + \beta_k^{(0)} \omega^{2\nu_k} \ln \omega + \beta_k^{(+)} \omega^{2\nu_{k+K}} + \dots$

- Term with $\beta_k^{(0)}$ is basically first term in $\nu_k + \delta \mu \frac{\partial \nu_k}{\partial \mu} + \dots$
- Other term are true lattice effects:

(1) Qualitative change the IR behavior (II) Quantitative effect depends on the Brillioun zone

The AdS2 metal latticized

The AdS2 metal latticized

The AdS2 metal latticized

Summary

- In FL regime higher BZs are softened
 - width of QP peak $Im\Sigma = G$

Ist Brillioun Zone $\mathcal{G}(\omega,k) = \alpha_k \omega^{2\nu_k} + \beta_k^{(0)} \omega^{2\nu_k} \ln \omega + \dots$ 2nd Brillioun Zone $\mathcal{G}(\omega,k) = \beta_k^{(-)} \omega^{2\nu_{k-K}} + \dots$

Summary

- In FL regime higher BZs are softened
 - width of QP peak $Im\Sigma = G$

Ist Brillioun Zone $\mathcal{G}(\omega,k) = \alpha_k \omega^{2\nu_k} + \beta_k^{(0)} \omega^{2\nu_k} \ln \omega + \dots$ 2nd Brillioun Zone $\mathcal{G}(\omega,k) = \beta_k^{(-)} \omega^{2\nu_{k-K}} + \dots$

• The AdS2 metal (natural holographic pseudogap)

(1) Qualitative change the IR behavior Thermodynamics?
 (II) Quantitative effect depends on the Brillioun zone

Summary

- In FL regime higher BZs are softened
 - width of QP peak $Im\Sigma = G$

Ist Brillioun Zone $\mathcal{G}(\omega, k) = \alpha_k \omega^{2\nu_k} + \beta_k^{(0)} \omega^{2\nu_k} \ln \omega + \dots$ 2nd Brillioun Zone $\mathcal{G}(\omega, k) = \beta_k^{(-)} \omega^{2\nu_{k-K}} + \dots$

• The AdS2 metal (natural holographic pseudogap)

(1) Qualitative change the IR behavior Thermodynamics?
 (II) Quantitative effect depends on the Brillioun zone

If so, could this be seen in experiment....?

Conclusion

- Holographic Fermions
 - Does its success, NFL and MFL, survive the stability?
 - What is the physics of marginality?

the confluence of two QCPs?

a FL to NFL transition?

both?

- What are the other instabilities?

Onset of superconductivity; pseudogap, other orders?

Lattice effects?

Conclusion

- Holographic Fermions
 - Does its success, NFL and MFL, survive the stability?
 - What is the physics of marginality?

the confluence of two QCPs?

a FL to NFL transition?

both?

- What are the other instabilities?

Onset of superconductivity; pseudogap, other orders?

Lattice effects?

Conclusion

- Holographic Fermions
 - Does its success, NFL and MFL, survive the stability?
 - What is the physics of marginality?

the confluence of two QCPs?

a FL to NFL transition?

both?

- What are the other instabilities?

Onset of superconductivity; pseudogap, other orders?

Lattice effects?

Thank you.