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Fermionic AdS/CMT: an El Dorado of Quantum Matter

• Holographic Quantum Critical Fermion Matter

- Minimally coupled charged Fermion in AdS-RN BH

-                                    is a free parameter 

G(ω, k) =
Z

ω − vF (k − kF )− eiγω2νkF
+ . . .

dispersion ω ∼ (k − kF )
z with z =

�
1/2νkF νkF < 1/2

1 νkF > 1/2

νkF ∼
�
m2 + k2F − q2



Lee;
Cubrovic, Zaanen, KS;

Faulkner, Liu, McGreevy, Vegh

Fermionic AdS/CMT: an El Dorado of Quantum Matter

• Holographic Quantum Critical Fermion Matter

- Minimally coupled charged Fermion in AdS-RN BH

-                                    is a free parameter 

G(ω, k) =
Z

ω − vF (k − kF )− eiγω2νkF
+ . . .

dispersion ω ∼ (k − kF )
z with z =

�
1/2νkF νkF < 1/2

1 νkF > 1/2

νkF ∼
�
m2 + k2F − q2

A non-Fermi liquid

String theory embedding/Top-down construction: DeWolfe, Gubser, Rosen



The promises of AdS/CMT

• An explanation of the “strange metal”



The promises of AdS/CMT

• An explanation of the “strange metal”

- Marginal Fermi liquid: 

- Explains linear resistivity

νkF = 1/2

Custers et al

Varma, Littlewood, ...

In AdS/CFT: Faulkner, Liu, 
McGreevy, Vegh



The puzzles of AdS/CMT...

• How does the LFL emerge 
from the strange metal?

• Why is only the marginal 
Fermi liquid observed?

• Can we explain high Tc?

• What is the pseudogap phase?

• Lattice effects?...

• Is the near-horizon AdS-RN the 
quantum critical pt? What are its 
instabilities?

• What is the zoo of Fermi liquids in 
the stable ground state? How should 
we think of the gravitational dual of a 
single Fermi surface?

• When is large N good? When is it 
bad?

• What is the AdS2 metal?
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Note: we will not discuss defect fermions [Kachru, Karch, Yaida]



The LQCP of extremal AdS-RN? 

• Local Quantum Criticality is an unstable fixed 
point:

- T=0 extremal AdS-RN has groundstate entropy.

• What are its instabilities?
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• What are its instabilities?

- Whether the local quantum critical region is reached 
depends on the true UV.
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• What are its instabilities?

- Whether the local quantum critical region is reached 
depends on the true UV.

Tc ∼ µe−N2/3
c

Tc ∼ µ
Tc ∼ µe−1/

√
m2

- Charged scalar (holographic superconductor)
- Neutral scalar
- Charged fermions
- Neutral fermions/Neutral scalar

(q � m � mBF AdS2)

The LQCP of extremal AdS-RN? 

Minimal AdS/CFT only 
probes T/µ

(m � mBF AdS2) XXX



• Semi-local Quantum Liquid: Bosons

- Need another scale, e.g. double trace deformation

[Iqbal, Liu, Mezei]

30

Now for T � ΛCO we find in the quantum critical region
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Taking the imaginary part and using the identity41 Imψ
�
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2 + ix
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= π

2 tanh(πx) we find the expression

Imχ(u=0,κ+=κ∗
+)(ω, k;T ) = πνUβ

2µ2νU
∗ tanh

� ω

2T
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(9.17)

which is simply a smoothed-out version of the step func-
tion (9.9) that we find at zero temperature.

Equation (9.17) implies that

Imχ(u=0,κ+=κ∗
+)(ω, k;T ) ∼

�
ω
T ω � T

sgn(ω) ω � T
(9.18)

which is precisely of the form for spin and charge fluc-
tuations in the phenomenological “Marginal Fermi liq-
uid” [21] description of High-Tc cuprates in the strange
metal region (see also [22, 23]). Thus the marginal crit-
ical point can be viewed as a concrete realization of
the bosonic fluctuation spectrum needed to support a
Marginal Fermi liquid. In particular, this gives an alter-
native approach to construct holographic Marginal Fermi
liquid [51].

In Fig. 15 we summarize the phase diagram for a
marginal critical point.
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FIG. 15. Finite temperature phase diagram with the quantum
critical region for marginal criticality at u = 0 and changing
(κ+ − κ

∗
+). The susceptibility in the bowl-shaped quantum

critical region is given by (9.16) with the ω � T limit given
by (9.8)

.

41 This can be proved using the reflection formula ψ(1−x)−ψ(x) =
π cot(πx).

X. DISCUSSION

In this paper we have discussed several types of quan-
tum critical points from gauge-gravity duality which to
different degrees lie outside the Landau-Ginsburg-Wilson
paradigm. Let us first briefly summarize some key fea-
tures:

1. A hybridized QCP is described by an order param-
eter ϕ with a Landau-Ginsburg effective action SLG

hybridized with degrees of freedom in SLQL, i.e.

Seff = SSLQL[Φ] +

�
λΦϕ+ SLG[ϕ] . (10.1)

The SLQL sector is strongly coupled (with no
quasiparticle description). It has a scaling symme-
try in the time direction only, and gapless excita-
tions at generic finite momenta. Due to these fea-
tures, the phase transition could exhibit a rich spec-
trum of critical behavior, including locally quan-
tum critical behavior with nontrivial ω/T scaling,
depending on the scaling dimension of Φ in the
SLQL. At the level of effective theory, this criti-
cal point lies mildly outside the standard Landau
paradigm, as the phase transition is still driven by
soft fluctuations of the order parameter and all the
critical behavior is fully captured by (10.1), given
(still mysterious) properties of the SLQL.

On the gravity side the Landau-Ginsburg sector
is associated with the appearance of certain scalar
hair in the black hole geometry, which lies outside
the AdS2 region which describes the SLQL.

2. A bifurcating QCP arises from instabilities of the
SLQL itself to a confined state and appears not
driven by soft order parameter fluctuations. On the
condensed side, a scalar operator develops a com-
plex scaling dimension in the SLQL, generating a
tower of bound states, which then Bose-Einstein
condense (at a geometric series of exponentially
generated scales).42 In particular, one finds a fi-

42 SLQL may be considered as a “deconfined” state in which the
composite bound states deconfine and fractionalize into more
fundamental degrees of freedom.

κ
[Faulkner, Horowitz, Roberts]

T/µ

κ/µ#
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with the alternative quantization itself (κ− = 0) falling
into the unstable region. Note that turning on a dou-
ble trace deformation in the alternative quantization
1
2κ−µ2νU∗

�
O2 translates in the bulk description into

turning on a bulk boundary action 1
2f−

�
φ2 where f− ∝

κ− and φ is the bulk field dual to O. Thus we see that at
finite density one needs to turn on a nonzero “boundary
mass” to stabilize the alternative quantization.

D. A marginal quantum critical point

We can also tune κ+ and u together to have a doubly
tuned critical point at u = 0,κ+ = κ∗

+, where the sus-
ceptibility both diverges and bifurcates. The value of κ∗

+
can be obtained from u → 0 limit of the expression for
κc given in (4.8), leading to

κ∗
+ = −α

β
(4.11)

where α and β are constants defined in Eq. (A22). For
the specific example (4.7) of tuning the AdS4 mass of a
neutral scalar to reach u = 0, the values of α,β are given
in (A27)–(A28) which gives κ∗ = −2.10.
As we will show in sec. IX, the dynamical susceptibil-

ity around such a critical point coincide with that of the
bosonic fluctuations underlying the “Marginal Fermi Liq-
uid” postulated in [21] for describing the strange metal
region of the high Tc cuprates.14

The full phase diagram for a neutral scalar operator is
given in fig. 7.

V. EFFECTIVE THEORY DESCRIPTION OF
THE CRITICAL POINTS (µ∗ = 1)

In this section we illuminate the nature of various
quantum critical points discussed in the last section by
giving a low energy effective boundary theory description
for them. For a hybridized QCP, the discussion below
slightly generalizes an earlier discussion of [20].
For definiteness, for the rest of the paper we will re-

strict our discussion to a neutral scalar field with q = 0.
Almost all qualitative features of our discussion apply to
the charged case except for some small differences which
we will mention along the way. To avoid clutter we set
µ∗ = 1 in this section.
On general ground we expect that the low energy ef-

fective action of the system can be written as

Seff = SeCFT1 + SUV (5.1)

14 It has also been pointed out by David Vegh [42] that the retarded
function for a scalar operator with ν = 0 in AdS2 gives the
bosonic fluctuations of the “Marginal Fermi Liquid”.
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FIG. 7. The full phase diagram of the system for a neutral
scalar. C (U) denotes regions with (without) IR instabilities.
Top plot: standard quantization. For u < 0, i.e. m

2
R

2
<

−
3

2
the system is always unstable in the IR with u = 0 the

critical line for a bifurcating QCP. For −
3

2
< m

2
R

2
< 0, i.e.

0 < u <
1

4
, the system develops an IR instability for κ+ <

κc(m
2) < 0 with κc(m

2) giving the critical line for hybridized
QCP. The marginal critical point lies at the intersection for
the critical lines for bifurcating and hybridized instabilities.
The system has a vacuum UV instability for κ+ > 0. For
m

2
> 0, i.e. u >

1

4
, as discussed in the caption of Fig. 6,

the vacuum instability is cured by finite density effect for
sufficiently large κ+. Bottom plot: phase diagram for the
alternative quantization (for νU ∈ (0, 1), hence the limited
range in u compared to the top plot, u <

1

24
), which can be

obtained from that of the standard quantization by using the
relation (3.4). In the vacuum, the system has an IR instability
for κ− < 0, i.e. with κ− = 0 the critical line. At a finite
density the critical line is pushed into the region κ− > 0.

where SeCFT1 is the action for the IR fixed point SLQL,
for which we do not have an explicit Lagrangian descrip-
tion, but (as discussed in Sec. II) whose operator di-
mensions and correlation functions are known from from
gravity in AdS2 × R2. SUV arises from integrating out
higher energy degrees of freedom, and can be expanded in
terms of scaling operators in SeCFT1 . The part relevant
for O can be written as

SUV =
1

2

�
χ(k)J�kJ−�k−

1

2

�
ξkΦ�kΦ−�k+

�
ηkΦ�kJ−�k+. . .

(5.2)
where Φ�k is the scaling operator at the IR fixed point

Imχ ∼
�

ω
T ω � T

sgn(ω) ω � T

κ
[Faulkner, Horowitz, Roberts;...]

T/µ
u =

�
m2 +

1

4
− q2

κ/µ#

“Marginal” Susceptibilities @ marginal QCP

Tuning ∆

The LQCP of extremal AdS-RN? 



• Semi-local Quantum Liquid: Fermions

- Log-oscillatory = Discrete Scale Invariance

[Phillips KITP’11]

β = (α− α∗)− (g − g∗)
2

g± = g∗ ±
√
α− α∗

β

g− g+g∗

α > α∗

α = α∗

α < α∗
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Below we will refer to the region k < µq√
6

as the oscil-

latory region. Note that the oscillatory region appears
to be the counterpart for fermions of the unstable region
for a charged boson, where the corresponding bosonic
modes have complex energies and want to condense. In
the fermion case, the oscillatory region does not appear
to indicate an instability, e.g. there is no singularity in
the upper half of the complex ω-plane.
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FIG. 7: Both ReG22(ω, k = 0.5) (blue curve) and
Im G22(ω, k = 0.5) (orange curve) are periodic in log ω as
ω → 0. The period appears to be given by ∆(log ω) ≈

π
√

6√
µ2

q/6−(k2+m2)
. This formula was guessed based on the be-

havior of the solution in the AdS2 region; the formula is con-
firmed by the numerics.

D. Finite temperature

Turning on a small temperature T appears to smooth
everything out. There is no longer a sharp Fermi surface,
i.e. there no longer exists a sharp momentum at which
Im G22 becomes singular for any real ω and k. Going to
the lower half ω-plane, one finds that all the singularities
are a finite distance away from the real axis, with the
closest distance given by T which happens at k ≈ 0.90
(see figure 8)15. This behavior is different from the Fermi
liquid where the width is quadratic in temperature. Note
that for a given small k⊥ < 0, as one turns on the tem-
perature, the corresponding quasi-particle-like pole in the
complex ω-plane appears to move down and to the right.
It is also interesting to note that at finite T , there are now
quasi-particle-like poles for momenta k > kF . Perhaps
they are generated from the branch point at T = 0.

At finite T , the functions Im Gii become smooth at
ω = 0 and in the oscillatory region there are only a finite
number of oscillations as the ω → 0 limit is approached.

15 Similar results have also been obtained by Carlos Fuertes. We
thank Carlos Fuertes and Subir Sachdev for communicating the
results to us.

FIG. 8: The complex omega plane for T = 4.13 × 10−4: now
the quasi-particle pole is finite distance below the real ω-axis.
The dashed line indicates the trajectory of the pole between
k = 0.87(left). . . 0.93(right). The closest distance to the real
axis is equal to the temperature T (up to 1% accuracy). There
is a numerical instability for Imω < −πT which can also be
seen directly from the wave equation. We leave it for future
work to explore this part of the lower half plane. Also shown
is the density plot for ImG22(ω) at k = 0.90, where the cor-
responding pole is closest to the real axis.

E. Charge dependence

When we increase (decrease) q to be greater (smaller)
than 1, the Fermi momentum kF increases (decreases)
with q approximately linearly. As q is further increased,
new branches of Fermi surfaces appear. These features
can be seen in figure 9, which gives the density plots of
Im G11 and ImG22 in the q − k plane at a fixed value of
ω = −0.001.

We have sampled the exponents z, α for a few other val-
ues of q for the lowest branch of fermi surface in ImG22,
e.g. for q = 0.6, z ≈ 5.32, α ≈ 1.00, and for q = 1.2,
z ≈ 1.53, α ≈ 1.00. Compared to the values for q = 1
described earlier, it then appears that z decreases rapidly
with increasing q, while α = 1 is independent of q. Note
that in [23] it was argued that z ≥ α and z ≥ 1. Thus it
could be that z will asymptote to 1 for larger values of
q.16 We also find that the constant γ in (36) appears to
decrease rapidly with q. Thus it seems likely that as q
is increased, the non-Fermi liquid will become more like
a Landau Fermi liquid. Given that kF increases with q,
this is reminiscent of asymptotic freedom in high-density
QCD.

The q−k space in figure 9 is separated into two regions
by the (black) k = µq√

6
line. In the region to right (sta-

ble region), the locations of the quasi-particle lines (i.e.
orange lines in figure 9) stabilize in the limit ω → 0 and
indicate locations of Fermi surfaces. The region to the
left is the oscillatory region discussed earlier, where the
log-periodic oscillatory behavior is reflected in a down-
ward motion of the orange lines as |ω| is decreased; they
seem to become infinitely dense in the limit ω → 0. Also

16 At larger values of q the convergence of the exponents becomes
slower; we leave this for future work. Also note that the value
α = 1 is special according to the scaling theory of [23].

[Liu, McGreevy, Vegh]

The LQCP of extremal AdS-RN? 
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[Liu, McGreevy, Vegh]

- If true, it is not clear what 
the two CFTs are.

- Fermion spectral functions 
not marginal.

- Log-osc signals instability.

The LQCP of extremal AdS-RN? 
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. This formula was guessed based on the be-

havior of the solution in the AdS2 region; the formula is con-
firmed by the numerics.
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- If true, it is not clear what 
the two CFTs are.

- Fermion spectral functions 
not marginal.

- Log-osc signals instability.

Is Log-Osc instability also Marginal QCP? 

The LQCP of extremal AdS-RN? 



• A Fermi-gas in AdS: various approaches

Towards a holographic Fermi liquid...

Dirac HairFluid approx Hartree-Fock

- # occ.wave func. large
- # radial harm. large

- # FS large
      - # species large

Neutron/Electron star:

- # occ.wave func: one
- # radial harm: one

- # FS: one

By construction

- # occ.wave func: arb.
- # radial harm: arb.

- # FS: arb.

Exact, iterative 
procedure...

de Boer, Papadodimas, Verlinde;
Hartnoll, Tavanfar, Hofman;

Cubrovic, Zaanen, KS. Sachdev

Allais, McGreevy, Josephine Suh
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• Other instabilities of fermions in AdS-RN?

- Charged susceptibilities (Fermi pairing)

-                  FL to NFL; log-oscillatory vs isolated (order N))

- [Gubankova, Brill, Cubrovic, Schijven, KS, Zaanen; 
Gubankova et al]

[possibly related to Bolognesi, Tong]

Mechanism?

log-oscillatory

k_F moves into log-oscillatory region: IR
acquires a complex dimensionO±

UV

QFTIR

ψ ∝ ar∆ + br−∆

operators
O

where 
is k_F
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FIG. 2: Left: Effective Fermi momentum keff vs. the magnetic field for the first Fermi surface. The inner dashed line (closer
to x-axis) stands for ν = 0 and the outer dashed line for ν = 1

2 , q = 15√
3
. Right: Fermi velocity vF vs. the magnetic field h

for the first Fermi surface. In both plots, solid line depicts the case where discretization has been neglected, while a step-wise
dependence reflects discrete nature of kF and vF at nonzero magnetic field. Note that for the first Fermi surface kF = 0 and
it terminates at ν = 0 while vF = 0 at ν = 1/2 and it is only well defined within a coherent quasiparticle picture for nu > 1/2.
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FIG. 3: Critical temperature vs. the magnetic field (all in dimensionless units). The blue curve is for Gint = 1.1 and the red
curves are the dependencies for Gint = 1.5. The latter case shows two disconnected ordered regions, with two phase transitions.
The quantum critical points (Tc = 0) are located around at hc ≈ 1.60.

should be sufficient to extract the qualitative properties. For convenience, the maximum magnetic field hmax =
√
3 ≈

1.73 is depicted as a dashed line. As is already evident from eq.(??) at the critical field h = 1.70 for which ν = 1/2
one finds a quantum critical point for which Tc = 0. Note that beyond the quantum critical point h > hc the trend
Tc(h) changes from decreasing to increasing, clearly showing anomalous behavior.

In Appendix ??, the critical temperature is estimated within the variational approach. The qualitative change of
the T = 0 physics at ν = 1/2 was already noted in [? ] where it was surmised that this might be the location of a
quantum critical point. Our findings above, based on our computation of the critical temperature (??) and Appendix
??, show that this this is indeed the case. Importantly, our holographic setup allows us to compute the value of the
threshold field hc corresponding to the quantum critical point.

Physically, a drastic change in behavior of a material is certainly expected beyond the quantum critical point.
Remarkably, an increasing trend Tc(h) has been observed in experiments on the highly oriented pyrolitic graphite in
strong magnetic fields [? ]. Comparing the critical value hc ≈ 1.7 to the experimental value hexp

c
= 2.6×104 G, which

is an upper estimate of a critical value above which the anomalous behavior Tc(h) is observed, we find the allowed
region for the quantum critical metal to be δh ≈ 0.5 × 103G, and the inverse energy scale in the model is estimated
as R2/r0 ∼ 0.3× 10−7m where R = 1 is the AdS radius and r0 the radius of the horizon.

We can conclude that from the zero-temperature spectral functions and the bulk Landau-Ginzburg analysis that
there is a quantum critical point at h = hC � 1.70, the location where vF (h, T ) = 0 and the self-energy scaling
ν = 1/2 is marginal. As expected, by increasing the temperature the small scale-invariant region around the quantum
critical point at absolute zero will produce a wide region of unusual metallic behavior at finite temperatures [? ].

[Edalati, Leigh, Phillips]

Tuning  ∆
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should be sufficient to extract the qualitative properties. For convenience, the maximum magnetic field hmax =
√
3 ≈

1.73 is depicted as a dashed line. As is already evident from eq.(??) at the critical field h = 1.70 for which ν = 1/2
one finds a quantum critical point for which Tc = 0. Note that beyond the quantum critical point h > hc the trend
Tc(h) changes from decreasing to increasing, clearly showing anomalous behavior.

In Appendix ??, the critical temperature is estimated within the variational approach. The qualitative change of
the T = 0 physics at ν = 1/2 was already noted in [? ] where it was surmised that this might be the location of a
quantum critical point. Our findings above, based on our computation of the critical temperature (??) and Appendix
??, show that this this is indeed the case. Importantly, our holographic setup allows us to compute the value of the
threshold field hc corresponding to the quantum critical point.

Physically, a drastic change in behavior of a material is certainly expected beyond the quantum critical point.
Remarkably, an increasing trend Tc(h) has been observed in experiments on the highly oriented pyrolitic graphite in
strong magnetic fields [? ]. Comparing the critical value hc ≈ 1.7 to the experimental value hexp

c
= 2.6×104 G, which

is an upper estimate of a critical value above which the anomalous behavior Tc(h) is observed, we find the allowed
region for the quantum critical metal to be δh ≈ 0.5 × 103G, and the inverse energy scale in the model is estimated
as R2/r0 ∼ 0.3× 10−7m where R = 1 is the AdS radius and r0 the radius of the horizon.

We can conclude that from the zero-temperature spectral functions and the bulk Landau-Ginzburg analysis that
there is a quantum critical point at h = hC � 1.70, the location where vF (h, T ) = 0 and the self-energy scaling
ν = 1/2 is marginal. As expected, by increasing the temperature the small scale-invariant region around the quantum
critical point at absolute zero will produce a wide region of unusual metallic behavior at finite temperatures [? ].

[Edalati, Leigh, Phillips]

Tuning  ∆

- If FL to NFL is 
related to a 
macroscopic 
instability, then 
it selects 
marginal FL.

νkF < 1/2



• Holographic Superconductor

- 1/N corrections restore ALRO

- 1/N corrections ought to capture any non-mean field

• Fermions 

- Single Fermi surface (Dirac Hair/Hartree Fock) is 1/N 
effect.

[e.g. She, Overbosch, Liu, KS, Sun, Zaanen]

When is large N good? When is it bad?

[Anninos, Hartnoll, Iqbal]
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When is large N good? When is it bad?

[Anninos, Hartnoll, Iqbal]

• Holographic Superconductor

- 1/N corrections restore ALRO

- 1/N corrections ought to capture any non-mean field

• Fermions 

- Single Fermi surface (Dirac Hair/Hartree Fock) is 1/N 
effect.

- Isolated FL to NFL Fermions vs Confin-Deconfined

-O(1): marginal FL -O(N): stability of LFL

Is there still a marginal FL?
(simply 1/N?)
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What is the AdS2 metal?

• What if there is no instability?
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FIG. 3: A(ω) for p = 0 (dotted), 1 (dot-dashed), 1.5 (dashed), 4

(solid) and 4.5 (large dashed). The onset of the gap is at p � 4.
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FIG. 4: The width ∆ of the dynamically generated gap as a func-

tion of p.

are of non-Fermi liquid type. The right plot, for which
p = 4.5, clearly shows a gap around ω = 0. In Figure 2,
we plot A(ω, k) for p = 0 and p = 4.5 for sample values
of k. Figure 2(b) emphasizes that the gap in the spectral
density exists for all k. In Figure 3, we show the density
of states near the chemical potential for various values of
p. Our numerical computations indicate that the onset
of the gap is near p = 4. Finally, in Figure 4, we plot
the width of the gap ∆ versus p. What we see from the
numerical results is the following. For small p, the dom-
inant feature of the spectral density is the well-known
Fermi peak at k = kF . As p increases, the intensity of
this peak degrades, and spectral density begins to appear
at negative ω. We will refer to this as the lower band.
At a critical value pcrit., a gap separating the lower band

from the original (upper) band emerges, for all k. As
p increases further, this gap widens, and peaks begin to
appear in the lower band.
The behavior for p > pcrit. strongly reminds us of the

Mott gap in a half-filled band in which no continuous
symmetry is broken in the formation of the gap. This
would naively suggest that p plays the role of the dimen-
sionless interaction strength, U/t, in the Hubbard model.
However, in the present work lowering p not only closes
the gap but also shifts spectral weight from the upper to
the lower band. In the Hubbard model, it is the doping
that leads to spectral weight transfer. Hence, the param-
eter p seems to, in terms of the Hubbard model, mimic
the combined effects of doping and interaction strength.
It would be interesting to determine (but is beyond the
scope of this discussion) if a condensate violating some
discrete symmetry is present when ∆ �= 0. Note how-
ever, that such a transition is expected to only involve
energy scales O(∆), in contrast to the re-distributions of
the spectral weight on all energy scales seen in Figure 3.
Finally, it is important to appreciate the vagaries of

holographic studies such as this one. We are not claim-
ing that turning on the Pauli coupling to a probe fermion
opens up a gap in charge transport. Indeed, because
we are not considering back reaction in any sense, one
expects that charge current correlators are unmodified.
The probe fermion makes a negligible contribution to
charge transport in the dual field theory. However, trans-
port of the dual fermion operator is gapped.
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Figure 4: a) Spectral density A(ω, k) at T = 0. As before, the largest peak associated

with the phonino pole, is cut-off and the cut-out region shown in pink to distinguish

it from the white areas of the plots. Values of low spectral density are in shades of

blue, whereas regions of high density are in shades of red. b) The spectral density

at discrete values of k� ∈ (0.1, 1.1), with increasing values of momentum in darker

shades of grey. c) For higher values of k� ∈ (1.2, 2.1), as is already apparent from

panel a), the bump at positive frequency becomes the dominant feature of the spectrum.

The inset highlights the emergence of a power-law gap at zero frequency by fitting the

numerics close to the origin to the analytic result ∝ ω2νk , where as shown in section

9.2, νk =
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What a theory of High Tc superconductivity should explain...

• Strange Metal State

- Local Quantum Criticality

- Linear Resistivity
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• Stability of the FL 

• The many orders of the 
Pseudogap/AFM phase
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Stability of the Fermi liquid

• Dominant Instability of AdS-RN w. fermions?

- Holographic Fermions ...Requires understanding of the 
other instabilities
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FIG. 7: A cartoon of the bound-state structure for the full spacetime, i.e. including the asymptotic

AdS4 region. The Fermi surfaces (3.5) appear as bound states in a potential well in the UV region.

Our procedure of solving the Dirac equation in the backreacted geometry (3.7) is self-

consistent and extracts the leading non-perturbative behavior in 1/N2. There are also

perturbative loop corrections in the bulk, which give perturbative corrections in 1/N2 to

the self-energy. We expect the qualitative features of our results (e.g the family of densely

spaced Fermi surfaces etc) to be robust against these corrections, as they have to do with

the global structure of the backreacted geometry (3.7). Near the Fermi surface perturbative

corrections to the self-energy should give rise to a term c
N2ω

2 with c some complex O(1)

coefficient, which will dominate over the iΓ
4 term in (3.17) for ω in the range (3.11). Thus

we expect that the quasiparticle decay rate should be proportional to ω2 as in a Landau

Fermi liquid. Nevertheless, the much smaller non-perturbative correction proportional to

Γ does signal some nontrivial underlying physics beyond that of a Landau Fermi liquid.

Similar arguments apply to (3.5); for ω in the range (3.25), the imaginary part of Σ should

be proportional to ω2.

To summarize, imagine a system with only a single fermionic operator O satisfying the

condition q2 > 2m2R2, and no other instabilities. Then at very low energies, the system is

described by a Fermi liquid with O(N2) densely spaced Fermi surfaces, each of size O(N0).

The quasiparticle excitations have a very large effective mass (proportional to eN
2
). When

q2 > 3m2R2 there could be some additional isolated Fermi surfaces with an O(1) effective

18
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Why is only the marginal Fermi liquid observed?

• Holographic Strange Metal State =                     
Near Horizon AdS-RN

- Local Quantum Criticality (yes)

- Linear Resistivity (no)
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[Gubankova et al,
Bolognesi, Tong]

Why is only the marginal Fermi liquid observed?

• Holographic Strange Metal State =                     
Near Horizon AdS-RN

- Local Quantum Criticality (yes)
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[Hartman, Hartnoll]

Can we explain high Tc?

• Dominant Instability of AdS-RN w. fermions?

- Holographic Fermions ...Requires understanding of the 
other instabilities



• The pseudogap mystery...

Ω�Ω0

ImG

0

[Liu, KS, Sun, Zaanen]

[Pseudogap in AdS/CMT:
Iqbal, Liu, Mezei,Si; 

Aperis et al; 
Edalati et al;

....]



• The pseudogap mystery...

- AdS2 metal is pseudogap for free

Ω�Ω0

ImG

0

ImGR(ω, k) ∼ ImG(ω, k) G(ω, k) ∼ ω2νk



• The pseudogap mystery...

- AdS2 metal is pseudogap for free

Ω�Ω0

ImG

0

ImGR(ω, k) ∼ ImG(ω, k) G(ω, k) ∼ ω2νk

d

2

Fermi-Liquid

CFT

0
d− 1

2

T

|µ0| ↑

∆Ψ →

CFT

Log-osc 

Bulk Fermi gas

AdS4

AdS2



• The pseudogap mystery...

- AdS2 metal is pseudogap for free

Ω�Ω0

ImG

0

ImGR(ω, k) ∼ ImG(ω, k) G(ω, k) ∼ ω2νk

d

2

Fermi-Liquid

CFT

0
d− 1

2

T

|µ0| ↑

∆Ψ →

CFT

Log-osc 

Bulk Fermi gas Pseudogap?

AdS4



• The pseudogap mystery...

- AdS2 metal is pseudogap for free

Ω�Ω0

ImG

0

ImGR(ω, k) ∼ ImG(ω, k) G(ω, k) ∼ ω2νk

d

2

Fermi-Liquid

CFT

0
d− 1

2

T

|µ0| ↑

∆Ψ →

CFT

Log-osc 

Bulk Fermi gas

- Two holographic mysteries...

Pseudogap?

AdS4



• The pseudogap mystery...

- AdS2 metal is pseudogap for free

Ω�Ω0

ImG

0

ImGR(ω, k) ∼ ImG(ω, k) G(ω, k) ∼ ω2νk

d

2

Fermi-Liquid

CFT

0
d− 1

2

T

|µ0| ↑

∆Ψ →

CFT

Log-osc 

Bulk Fermi gas

- Two holographic mysteries...

-Marginal FL to NFL transition

Pseudogap?

AdS4



• The pseudogap mystery...

- AdS2 metal is pseudogap for free

ImGR(ω, k) ∼ ImG(ω, k) G(ω, k) ∼ ω2νk

d

2

Fermi-Liquid

CFT

0
d− 1

2

T

|µ0| ↑

∆Ψ →

CFT

Log-osc 

Bulk Fermi gas

- Two holographic mysteries...

-Marginal FL to NFL transition

Pseudogap is thought to be 
connected to lattice features...Pseudogap?

AdS4



Experimental Pseudogap features
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Fig. 2. (a) High-resolution valence band photoemission spectra of the near EF region
obtained by using 50 eV photons. (b) First derivative of the spectra shown the panel (a) to
highlight the temperature dependent dip near EF resulting the formation of a pseudogap.
(The temperature dependent dip near EF corresponds to the energy scale of 80 meV
marked by the solid line, measures the pseudogap.)

[Shen et al]

[Golden et al]

[Ulfat et al]



Holographic Fermions on the lattice



Lattice aspects of holographic fermions

• Solid State 101:

- Bands from eigenvalue repulsion

k

ω

Ψ(x) =

� 1/2a

−1/2a

dk

2π

�

�∈Z

Φ(�)(k)ei(k+�K)x

k

1

2a

1

2a
− 1

2a

− 1

2aω

“Umklapp”

[Other aspects of Holographic Umklapp: 
Hartnoll,Hofman]



[Faulkner, Liu, McGreevy, Vegh]

Holographic metals

• Computing the spectral function from AdS/CFT

- near the AdS boundary

- The spectral function

- Matching the near-horizon AdS2 behavior to the 
boundary behavior

with the AdS2 Green’s function

GR =
b(0) + ωb(1) + . . .+ G(ω, k)(b̄(0) + ωb̄(1) + . . .)

a(0) + ωa(1) + . . .+ G(ω, k)(ā(0) + ωā(1) + . . .)

G(ω, k) ∼ ω2νk

Ψ(r) = A
�
0
1

�
rm + B

�
1
0

�
r−m + . . .

GR = BA−1



The holographic question

• The novelty is the exponential IR local quantum 
criticality

- Large effect for the AdS2 metal

- Lattice induced dispersive effect in the FL regime

G(ω, k) ∼ ω2νk

GR ∼ 1

ω − vF k + G

ImGR(ω, k) ∼ ImG(ω, k)



• Lattice periodicity by a modulated chemical 
potential

- Different from explicit “brane intersection” lattices: 
[Kachru, Karch, Yaida]

Lattice aspects of holographic fermions

ds2 =− r2f(r)dt2 +
dr2

r2f(r)
+ r2(dx2 + dy2)

At =[µ0 + µ1(x)](1−
1

r
)

f(r) =1− 1 +Q2

r3
+

Q2

r4

µ0 =2Q

µ1 =2� cos(
x

a
) , � � Q [Flauger et al; Aperis et al; Horowitz]

ignore gravitational backreaction



Standard exercise but much more intricate!

• Solve Dirac equation .... in perturbation in 

- single particle Green’s function

- and similar for 

(eµADµΓ
A +m)Ψ = 0

Ψ(x) =

� 1/2a

−1/2a

dk

2π

�

�∈Z

Φ(�)(k)ei(k+�K)x

Bα�,β��

GR = BA−1

Aα�,β�� =





. . .
Cδαβ + �2Sαβ + . . . �Fαβ + . . .

�F †
αβ + . . . Cδαβ + �2Sαβ + . . . �Fαβ + . . .

�F †
αβ + . . . Cδαβ + �2Sαβ + . . .

. . .





δµ ∼ �



[Liu, Sun, KS, Zaanen]

Opening a bandgap (holographically)

• In the Fermi-liquid regime (              ): a bandgap

- Predictable from semi-holography

kx

ky

1�2a�1�2a 0kx

ky

1�2a�1�2a 0

GR ∼ 1

ω − vF k + G

kF ∼ µ0 = K ≡ 1

a
kF ∼ µ0 � K ≡ 1

a

q � m



Novel Physics: Periodic Dispersion

• What happens to 

- Term with         is basically first term in

G(ω, k) = αkω
2νk + β(−)

k ω2νk−K + β(0)
k ω2νk lnω + β(+)

k ω2νk+K + . . .

β(0)
k νk + δµ

∂νk
∂µ

+ . . .

G(ω, k)



Novel Physics: Periodic Dispersion

• What happens to 

- Term with         is basically first term in

- Other term are true lattice effects: 

kx

Νk

Νk

Ν�k�K�

Ν�k�K�

�K�2 K�2

G(ω, k) = αkω
2νk + β(−)

k ω2νk−K + β(0)
k ω2νk lnω + β(+)

k ω2νk+K + . . .

β(0)
k νk + δµ

∂νk
∂µ

+ . . .

(1) Qualitative change the IR behavior
(II) Quantitative effect depends on the Brillioun zone

G(ω, k)
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 excess states at low energies



Summary

• In FL regime higher BZs are softened

- width of QP peak 

G(ω, k) = αkω
2νk + β(0)

k ω2νk lnω + . . .

G(ω, k) = β(−)
k ω2νk−K + . . .

1st Brillioun Zone

2nd Brillioun Zone 

ImΣ = G
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Summary

• In FL regime higher BZs are softened

- width of QP peak 

• The AdS2 metal (natural holographic pseudogap)

G(ω, k) = αkω
2νk + β(0)

k ω2νk lnω + . . .

G(ω, k) = β(−)
k ω2νk−K + . . .

1st Brillioun Zone

2nd Brillioun Zone  

ImΣ = G

Thermodynamics?

If so, could this be seen in experiment....?



Conclusion

• Holographic Fermions

- Does its success, NFL and MFL, survive the stability?

- What is the physics of marginality?

the confluence of two QCPs?

a FL to NFL transition?

both?

- What are the other instabilities?

Onset of superconductivity; pseudogap, other orders? 

Lattice effects?                   
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Thank you.


