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Motivation:
unconventional transport (linear conductivities)

1. Integrability in 1D systems and its consequences for transport
(Christoph Karrasch, Jens Bardarson, and JEM, PRL to appear)

2. Disorder and topological protection
(work with Balents, Essin, Turner, Vanderbilt, Ryu, Ludwig, et al.)

Basic idea: Many closed quantum systems are “localized” (have zero 
conductivity) with disorder, particularly in low dimensions.

Surfaces of many topological phases are a subtle way around this.

3. Can we use gravity to define topological phases beyond weak 
interactions?
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Dissipationless transport

When is there a nonzero Drude weight D?

Two easy examples:

I. Superconductors (transport by condensate)

II. Part of the current is conserved: Mazur lower bound
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Integrability

What about “integrable” models with an infinite number of 
conserved local quantities, none of which gives a lower bound?

Actually this happens quite often in 1D--simplest case is spinless 
interacting fermions (XXZ model in zero magnetic field).

The Drude weight is easy to calculate and nonzero at T=0.
20+ years of efforts to calculate it (or even show that it is 
nonzero) at T>0, by either analytical or numerical methods, until...
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Some progress, 2011-present

Prosen: there is an iterative process to construct a nonlocal 
quantity that gives a lower bound that depends “fractally” on 
anisotropy, with cusps at ∆=cos(π/n).

KBM: The Drude weight can be calculated numerically for all but 
the lowest temperatures at positive ∆, and essentially all 
temperatures at negative ∆.

The lower bound appears to saturate the full value at the cusps.
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Time-dependent matrix-product-state numerics using an “entanglement-based” trick
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Agreement with lower bound:
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Lessons
Without disorder, transport can be very sensitive to 
integrability--gapless integrable models seem to have 
nonzero Drude weight in general.

(What happens in supersymmetric models in d>1?)

Two approaches in AdS/CMT to compute transport:
1. add massive particles and look at some pre-equilibrium time scale

2. add a lattice (insufficient in XXZ example)

3. add disorder

How does transport in gapless systems respond to disorder (and interactions)?

Why does topology matter?
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Intro to disordered electronic systems

For non-interacting systems, we understand essentially completely the 
effects of disorder.
For the simplest symmetries (orthogonal and unitary ensembles), disorder is 
localizing for essentially all states in 1D and 2D.

Real experimental systems typically have “dephasing” from interactions with 
phonons, which ultimately leads to a finite diffusion constant.

The combination of interactions and disorder in closed systems (“many-
body localization”) is not well understood even in 1D.
are the only two possibilities diffusive and localized?  can there be 
subdiffusive scaling?  (“glassy”: r ~ log t)

Gapped topological phases have “protected” 
surface states, i.e., no localization.  In 1D these 
are dissipationless, but not in higher dimensions.
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The “quantum spin Hall effect”
Spin-orbit coupling appears in nearly every atom and 
solid.  Consider the standard atomic expression

For a given spin, this term leads to a momentum-
dependent force on the electron, somewhat like a 
magnetic field.

The spin-dependence means that the time-reversal 
symmetry of SO coupling (even) is different from a real 
magnetic field (odd).

It is possible to design lattice models where spin-orbit 
coupling has a remarkable effect: (Murakami, Nagaosa, 
Zhang 04; Kane, Mele 05)

spin-up and spin-down electrons are in IQHE states, 
with opposite “effective magnetic fields”.

n=1
IQHE

Ordinary insulator

e

HSO = �L · S

2D topological
insulator

Ordinary insulator
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The 2D topological insulator
It was shown in 2005 (Kane and Mele) that, in real 
solids with all spins mixed and no “spin current”, 
something of this physics does survive.

In a material with only spin-orbit, the “Chern number” 
mentioned before always vanishes.

Kane and Mele found a new topological invariant in 
time-reversal-invariant systems of fermions.

But it isn’t an integer! It is a Chern parity (“odd” or 
“even”), or a “Z2 invariant”.

2D topological
insulator

Ordinary insulator

Systems in the “odd” class are “2D topological insulators”

1. Where does this “odd-even” effect come from?
2. What is the Berry phase expression of the invariant?
3. How can this edge be seen?
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The 2D topological insulator
1. Where does this “odd-even” effect come from?

In a time-reversal-invariant system of electrons, all 
energy eigenstates come in degenerate pairs.

The two states in a pair cannot be mixed by any T-
invariant perturbation. (disorder)

So an edge with a single Kramers pair of modes is 
perturbatively stable (C. Xu-JEM, C. Wu et al., 2006).
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The 2D topological insulator
1. Where does this “odd-even” effect come from?

In a time-reversal-invariant system of electrons, all 
energy eigenstates come in degenerate pairs.

The two states in a pair cannot be mixed by any T-
invariant perturbation. (disorder)

So an edge with a single Kramers pair of modes is 
perturbatively stable (C. Xu-JEM, C. Wu et al., 2006).

But this rule does not protect
an ordinary quantum wire
with 2 Kramers pairs:
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The topological vs. ordinary distinction depends on time-reversal symmetry.
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The 3D topological insulator surface is similarly 
protected by having an odd number of 2+1D Dirac 
fermions and time-reversal symmetry.

The robust 3D “strong topological insulator” has a metallic surface state, which in the 
simplest case is a single “Dirac fermion”.

Some fairly common 3D materials are topological insulators.

Confirmed experimentally by ARPES measurements.
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Electrodynamics in insulators

We know that the constants ε and μ in Maxwell’s equations can be modified 
inside an ordinary insulator.

Particle physicists in the 1980s considered what happens if a 3D insulator 
creates a new term (“axion electrodynamics”, Wilczek 1987)

This term is a total derivative, unlike other magnetoelectric couplings.
It is also “topological” by power-counting.

The angle θ is periodic and odd under T.

A T-invariant insulator can have two possible values: 0 or π.
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Axion E&M, then and now

This explains a number of properties of the 3D topological insulator when its 
surfaces become gapped by breaking T-invariance:

Magnetoelectric effect:
applying B generates polarization P, applying E generates magnetization M)
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Graphene QHE
The connection is that a single Dirac fermion contributes a half-integer QHE: this 

is seen directly in graphene if we recall the extra fourfold degeneracy. 
(Columbia data shown below)

© 2005 Nature Publishing Group 

 

Interference-induced colour shifts, cross-correlated with an atomic
force microscopy profile, allow us to identify the number of depos-
ited graphene layers from optical images of the samples (Supplemen-
tary Information). After a suitable graphene sample has been
selected, electron beam lithography followed by thermally evapor-
ated Au/Cr (30 nm and 5 nm, respectively) defines multiple electro-
des for transport measurement (Fig. 1a, right inset).With the use of a
Hall-bar-type electrode configuration, the magnetoresistance Rxx

and Hall resistance Rxy are measured. Applying a gate voltage, Vg,
to the Si substrate controls the charge density in the graphene
samples.
Figure 1a shows the gate modulation of Rxx at zero magnetic field

in a typical graphene device whose lateral size is,3 mm.Whereas Rxx

remains in the,100-Q range at high carrier density, a sharp peak at
,4 kQ is observed at V g < 0. Although different samples show
slightly different peak values and peak positions, similar behaviours
were observed in three other graphene samples that we measured.
The existence of this sharp peak is consistent with the reduced carrier
density as EF approaches the Dirac point of grapheme, at which the
density of states vanishes. Thus, the gate voltage corresponding to the
charge-neutral Dirac point, VDirac, can be determined from this peak
position. A separate Hall measurement provides a measure for the
sheet carrier density, n s, and for the mobility, m, of the sample, as
shown in Fig. 1b, assuming a simple Drude model. The sign of n s

changes at Vg ¼ VDirac, indicating that EF does indeed cross the
charge-neutral point. Mobilities are higher than 104 cm2V21 s21 for
the entire gate voltage range, considerably exceeding the quality of
graphene samples studied previously8,9.
The exceptionally high-mobility graphene samples allow us to

investigate transport phenomena in the extreme magnetic quantum
limit, such as the QHE. Figure 2a showsRxy and Rxx for the sample of
Fig. 1 as a function of magnetic field B at a fixed gate voltage Vg .
VDirac. The overall positive Rxy indicates that the contribution is
mainly from electrons. At high magnetic field, Rxy(B) exhibits
plateaux and Rxx is vanishing, which are the hallmark of the
QHE. At least two well-defined plateaux with values (2e2/h)21 and
(6e2/h)21, followed by a developing (10e2/h)21 plateau, are observed
before the QHE features transform into Shubnikov de Haas (SdH)
oscillations at lower magnetic field. The quantization of Rxy for these
first two plateaux is better than 1 part in 104, precise within the
instrumental uncertainty. We observed the equivalent QHE features
for holes with negative Rxy values (Fig. 2a, inset). Alternatively, we
can probe the QHE in both electrons and holes by fixing themagnetic
field and changing Vg across the Dirac point. In this case, as Vg

increases, first holes (Vg , VDirac) and later electrons (Vg . VDirac)
fill successive Landau levels and exhibit the QHE. This yields an
antisymmetric (symmetric) pattern of Rxy (Rxx) in Fig. 2b, with Rxy

quantization in accordance with

R21
xy ¼^gsðnþ 1=2Þe2=h ð2Þ

where n is a non-negative integer and ^ stands for electrons and
holes, respectively. This quantization condition can be translated to
the quantized filling factor v ¼ ^g s(n þ 1/2) in the usual QHE
language. In addition, there is an oscillatory structure developed
near the Dirac point. Although this structure is reproducible for any
given sample, its shape varies from device to device, suggesting
potentially mesoscopic effects depending on the details of the sample
geometry13. Although the QHE has been observed in many 2D

Figure 2 | Quantized magnetoresistance and Hall resistance of a graphene
device. a, Hall resistance (black) and magnetoresistance (red) measured in
the device in Fig. 1 at T ¼ 30mK and Vg ¼ 15V. The vertical arrows and the
numbers on them indicate the values of B and the corresponding filling
factor n of the quantumHall states. The horizontal lines correspond to h/e2n
values. The QHE in the electron gas is shown by at least two quantized
plateaux in Rxy, with vanishing Rxx in the corresponding magnetic field
regime. The inset shows the QHE for a hole gas at Vg ¼ 24V, measured at
1.6 K. The quantized plateau for filling factor n ¼ 2 is well defined, and the
second and third plateaux with n ¼ 6 and n ¼ 10 are also resolved. b, Hall

resistance (black) and magnetoresistance (orange) as a function of gate
voltage at fixed magnetic field B ¼ 9T, measured at 1.6K. The same
convention as in a is used here. The upper inset shows a detailed view of
high-filling-factor plateaux measured at 30mK. c, A schematic diagram of
the Landau level density of states (DOS) and corresponding quantum Hall
conductance (jxy) as a function of energy. Note that, in the quantum Hall
states, jxy ¼ 2Rxy

21. The LL index n is shown next to the DOS peak. In our
experiment the Fermi energy EF can be adjusted by the gate voltage, andRxy

21

changes by an amount g se
2/h as EF crosses a LL.

LETTERS NATURE|Vol 438|10 November 2005

202
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Topological response
Idea of “axion electrodynamics in insulators”

there is a “topological” part of the magnetoelectric term

that is measured by the orbital magnetoelectric polarizability

and computed by integrating the “Chern-Simons form” of the Berry phase

(Qi, Hughes, Zhang, 2008; Essin, JEM, Vanderbilt 2009)
This integral is quantized only in T-invariant insulators, but contributes in all insulators.
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The tenfold way

For “free-fermion” Hamiltonians, there are 10 symmetry classes 
robust to disorder. 
There are 2 discrete symmetries (time-reversal and particle-
hole), which can square to +1,-1, or be absent.

from Schnyder, Ryu, Ludwig
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Other responses & symmetries
Can we understand this response in a more fundamental way, and use similar arguments to 
show that other topological insulators and superconductors in the “periodic 
table” (Schynder et al.; Kitaev) are stable?

One simple option: there can be a conserved SU(2) spin current (gives electric field).
In superconducting classes, charge may not be conserved; energy conserved in all classes.
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Periodic table from anomalies?
Result: we can understand how some integer-valued classes are related to anomalies of 
different types, indicated by different colors in the table below.  (Ryu, JEM, Ludwig)

The other classes (incl. Z2) may be related to “mixed” or “global” anomalies?
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Physical meaning of gravitational response
We can understand the meaning of the gravitational term by defining a rest frame and 
applying a small thermal gradient to a solid cylinder of topological superconductor.

“Gravitoelectromagnetism”:
the first non-Newtonian terms can be described
as “electric” and “magnetic” components.

The electric component includes the usual 
Newtonian force, while B includes effects such as 
rotational frame-dragging.

A temperature gradient induces a rotational 
energy flow, which would cause a gyroscope 
placed along the axis of the cylinder to co-rotate.

⇡ ✓Eg ·Bg
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Gravitational anomaly derivation
Luttinger pointed out that thermal conductivity is connected to gravitational response: the 
required current can be obtained by variation with respect to the metric.

This variation is not uniquely specified for a lattice model, so we focus on the “Dirac 
representative”.  Will focus here on class DIII in 3 dimensions (superfluid 3He).
Sign of Dirac mass determines “ordinary” or “topological”.
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Open questions:
“fractional” topological phases
gapless “topological” phases

Fractional quantum Hall phases in 2+1D can have 
Abelian or non-Abelian “anyons” (particles with 
statistics neither bosonic nor fermionic).

These are connected to 1+1D CFTs in a beautiful way:
quasiparticle braiding is related to CFT fusion rules;
the gapless edge realizes a CFT.

We now have an “integer” topological phase in 3D.  Are 
there fractional gapped topological phases in 3D?  What 
are their surfaces like?
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 What are the transport signatures of fractionalization?

Experimental evidence for 2D gapless spin liquid

Spinon Fermi surface?

M. Yamashita et al., Science 2009
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Three questions about AdS/CMT for transport

How much “uniqueness of solutions” can we expect?

Is AdS a very general framework that describes more than the “natural 
physical space” of field theories?
At least in 1+1d, that space is pretty tightly constrained.

How are the levels of transport approximations 
reflected in AdS/CMT?

At low order in scattering, one gets a cross section -> diffusion.
From resumming crossed diagrams, one gets localization. 
Adding a bath restores diffusion. 
Adding interactions but no bath gives ???.

How do anyons (simple fractionalization) show up in AdS?
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