Transport: integrability and topology
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Motivation:

unconventional transport (linear conductivities)

|. Integrability in I D systems and its consequences for transport
(Christoph Karrasch, Jens Bardarson, and JEM, PRL to appear)

2. Disorder and topological protection
(work with Balents, Essin, Turner,Vanderbilt, Ryu, Ludwig, et al.)

Basic idea: Many closed quantum systems are “localized” (have zero
conductivity) with disorder, particularly in low dimensions.

Surfaces of many topological phases are a subtle way around this.

3. Can we use gravity to define topological phases beyond weak
interactions!?
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Dissipationless transport

When is there a nonzero Drude weight D?
o(w) =Dd(w) + ...
Two easy examples:
. Superconductors (transport by condensate)

ll. Part of the current is conserved: Mazur lower bound

1 1 (J@w)°
= or7 i 0 J0) = o7 - <Q:2>

D
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Integrability

o(w) = Ddé(w) +

1 1 (J Q)"
D = 57T tgglo<<](t)<](0)> > oI T (Q12)

What about “integrable” models with an infinite number of
conserved local quantities, none of which gives a lower bound?

Actually this happens quite often in | D--simplest case is spinless
interacting fermions (XXZ model in zero magnetic field).

H = Z ver(SESE L+ SYSY, )+ ASFS7 | + hS]

The Drude weight is easy to calculate and nonzero at T=0.
20+ years of efforts to calculate it (or even show that it is
nonzero) at T>0, by either analytical or numerical methods, until...
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Some progress, 201 | -present

o(w)=Dd(w) + ...

1 1 (JQp)?
D =——1lim {J(t)J(0)) > —=
oL s (0JO) = 57 (Q12)
k
Prosen: there is an iterative process to construct a nonlocal
quantity that gives a lower bound that depends “fractally” on

anisotropy, with cusps at A=cos(TT/n).

KBM:The Drude weight can be calculated numerically for all but
the lowest temperatures at positive A, and essentially all

temperatures at negative A.

The lower bound appears to saturate the full value at the cusps.
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Drude weight of XXZ model
o(w) = Dd(w) + ...

| | | | |
zero temperature Bethe ansatz
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Time-dependent matrix-product-state numerics using an “‘entanglement-based” trick
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Agreement with lower bound:

T * Drude weight at T=infty
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L essons

Without disorder, transport can be very sensitive to
integrability--gapless integrable models seem to have
nonzero Drude weight in general.

(What happens in supersymmetric models in d>1?)

Two approaches in AdS/CMT to compute transport:

|. add massive particles and look at some pre-equilibrium time scale

2.add a lattice (insufficient in XXZ example)

3.add disorder

How does transport in gapless systems respond to disorder (and interactions)!?

Why does topology matter?
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Intro to disordered electronic systems

For non-interacting systems, we understand essentially completely the
effects of disorder.

For the simplest symmetries (orthogonal and unitary ensembles), disorder is
localizing for essentially all states in ID and 2D.

Real experimental systems typically have “dephasing” from interactions with
phonons, which ultimately leads to a finite diffusion constant.

The combination of interactions and disorder in closed systems (“many-
body localization™) is not well understood even in I D.

are the only two possibilities diffusive and localized? can there be
subdiffusive scaling? (“glassy”: r ~ log t)

Gapped topological phases have “protected”
surface states, i.e., no localization. In |ID these

are dissipationless, but not in higher dimensions.
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The “quantum spin Hall effect”

Spin-orbit coupling appears in nearly every atom and
solid. Consider the standard atomic expression

Hso = AL-S

For a given spin, this term leads to a momentum-
dependent force on the electron, somewhat like a
magnetic field.

The spin-dependence means that the time-reversal
symmetry of SO coupling (even) is different from a real
magnetic field (odd).

It is possible to design lattice models where spin-orbit
coupling has a remarkable effect: (Murakami, Nagaosa,

Zhang 04; Kane, Mele 05)

spin-up and spin-down electrons are in IQHE states,
with opposite “effective magnetic fields”.

X\

Ordinary insulator

2D topological

insulator

Ordinary insulator
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The 2D topological insulator

It was shown in 2005 (Kane and Mele) that, in real
solids with all spins mixed and no “spin current”,
something of this physics does survive.

In a material with only spin-orbit, the “Chern number”
mentioned before always vanishes.

Kane and Mele found a new topological invariant in
time-reversal-invariant systems of fermions.

But it isn’t an integer! It is a Chern parity (“odd” or
“even”), or a““Z2 invariant”.

2D topological

insulator

Ordinary insulator

Systems in the “odd” class are “2D topological insulators”

|.Where does this “odd-even” effect come from!?
2.What is the Berry phase expression of the invariant?

3. How can this edge be seen!?
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The 2D topological insulator

| . Where does this “odd-even” effect come from?

In a time-reversal-invariant system of electrons, all
energy eigenstates come in degenerate pairs.

The two states in a pair cannot be mixed by any T-
invariant perturbation. (disorder)

So an edge with a single Kramers pair of modes is
perturbatively stable (C. Xu-JEM, C.Wu et al., 2006).
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The 2D topological insulator

| . Where does this “odd-even” effect come from?

In a time-reversal-invariant system of electrons, all
energy eigenstates come in degenerate pairs.

The two states in a pair cannot be mixed by any T-
invariant perturbation. (disorder)

So an edge with a single Kramers pair of modes is
perturbatively stable (C. Xu-JEM, C.Wu et al., 2006).

But this rule does not protect
an ordinary quantum wire
with 2 Kramers pairs:

k

The topological vs. ordinary distinction depends on time-reversal symmetry.
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The 3D topological insulator surface is similarly
protected by having an odd number of 2+1D Dirac
fermions and time-reversal symmetry.

The robust 3D “strong topological insulator’” has a metallic surface state, which in the
simplest case is a single “Dirac fermion”.

Some fairly common 3D materials are topological insulators.

Confirmed experimentally by ARPES measurements.
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Electrodynamics in insulators

We know that the constants ¢ and u in Maxwell’s equations can be modified
inside an ordinary insulator.

Particle physicists in the 1980s considered what happens if a 3D insulator
creates a new term (‘axion electrodynamics”,Wilczek 1987)

0e? 0 e?
AL - — . B — aﬁW&Fa F ]
EM 21mh 16mh ‘ B0

This term is a total derivative, unlike other magnetoelectric couplings.
It is also “topological” by power-counting.

The angle 0 is periodic and odd under T.

A T-invariant insulator can have two possible values: 0 or 7.
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Axion E&M, then and now

A = 2 p g9 apep p
— = € o -
EM = 21mh 16h BEo

This explains a number of properties of the 3D topological insulator when its
surfaces become gapped by breaking T-invariance:

Magnetoelectric effect:
applying B generates polarization P, applying E generates magnetization M)

E » gy = n+—% j@

Topological insulator slab 5 >

E)me m———]®

27Th
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Graphene QHE

The connection is that a single Dirac fermion contributes a half-integer QHE: this
is seen directly in graphene if we recall the extra fourfold degeneracy.
(Columbia data shown below)

-80 -60 -40 -20 0 20 40 60 80
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Topological response

|dea of “axion electrodynamics in insulators”

there is a “topological” part of the magnetoelectric term
fe? fe?
ALgpy = —E-B= PV F,5F,s.
2mh 167h B

that is measured by the orbital magnetoelectric polarizability

g _OM 9 0 oP
orh OE OF OB~ OB

and computed by integrating the “Chern-Simons form” of the Berry phase

1 2
0 = —— dSk €ijk TI‘[.AZa]Ak — Z—AZA]AH
47T BY, 3

(Qi, Hughes, Zhang, 2008; Essin, JEM,Vanderbilt 2009)
This integral is quantized only in T-invariant insulators, but contributes in all insulators.
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The tenfold way

For “free-fermion” Hamiltonians, there are 10 symmetry classes
robust to disorder.

There are 2 discrete symmetries (time-reversal and particle-
hole), which can square to +1,-1, or be absent.

AZ || space of projectors in momentum space BL | N/ fermionic replica topological or
class class NLoM target space WZW term
A | Q(k) € Gnm M(C') } 0 | U(2N)/U(N) x U(N) Pruisken

Al |{Q(k) € Gmm+n(C) | Q(k)" = Q(—k) } 4. 2 Sp(2N)/Sp(N) x Sp(N) N/A

All |I{ Q(k) € G2m . 2(m+n) (C) | (za )Q(A] (—ioy) =Q(—k) }|| 3+ 1 O(2N)/O(N) x O(N) Zio
AllT||{ g(k) € U(m) } lor2|lor2|] UN)xU(N)/UN) WZIW
BDI[[{q(F) € U(m)la(k) = a(—k) ] O UN)/Sp(V) N/A
CII Jl{ g(k) € U(2m) | (ioy)q(k)" (—ioy) = q(—k) } 9_ 2 U(N)/O(N) Lo

D lI{Q(k) € Gm.2m( ‘,) -Q(k) 17 = —Q(—k) } - | O(2N)/U(N) Pruisken
C [[{Q(k) € Gmom(C T,,Q(A )*1y = —Q(—k) } 4_ 2 Sp(N)/U(N) Pruisken
DIII||{ q(k) € U(2m) |0bq_ Y o, = —q(—k)} 5or 7|1 or2|] O(N)xO(N)/O(N) WZW
CI [[{q(k) € U(m)|q(k)" =q(—k)} 6 or 8|2 or 4|| Sp(N) x Sp(N)/Sp(N) WZW

TABLE II: The space of projectors in momentum space for each Altland-Zirnbauer (AZ) class. The BL classes represent
the classification of 2D Dirac Hamiltonians obtained by Bernard and LeClair,”® and N }“i“ i1s the smallest possible number of
flavors of 2D two-component Dirac fermions. The fermionic replica NLoM target spaces, with possible 2D critical behavior [in
terms of whether it is possible for a given NLoM to have a topological term, either of Pruisken (IQHE) type or Zs type, or a
Wess-Zumino-Witten (WZW) term| are also listed according to Refs. 82 and 83.

from Schnyder, Ryu, Ludwig
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Other responses & symmetries

Can we understand this response in a more fundamental way, and use similar arguments to
show that other topological insulators and superconductors in the “periodic
table” (Schynder et al.; Kitaev) are stable?

One simple option: there can be a conserved SU(2) spin current (gives electric field).
In superconducting classes, charge may not be conserved; energy conserved in all classes.

TABLE I. Electromagnetic and gravitational (thermal) responses
for five out of ten Altland-Zirnbauer symmetry classes (All, CI, CII,
DIII, and AIII). The assumptions made in the first four classes are
that U(1) conserved currents arise from electrical charge and that
SU(2) conserved currents arise from spin. In class AlII (as indicated
by asterisks), the U(1) conservation law may arise either from charge
or one component of spin.

Symmetry Charge Gravitational Dipole
All v v

cI J J
CII J J
DIII J

AIIl * J *
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Periodic table from anomalies?

Result: we can understand how some integer-valued classes are related to anomalies of
different types, indicated by different colors in the table below. (Ryu, JEM, Ludwig)

The other classes (incl. Z2) may be related to “mixed” or “global” anomalies!?

TABLE II. Topological insulators (superconductors) with an integer (Z) classification, (a) in the complex symmetry classes, predicted from
the chiral U(1) anomaly, and (b) in the real symmetry classes, predicted from the gravitational anomaly (red), the chiral anomaly in the presence
of background gravity (blue), and the chiral anomaly in the presence of both background gravity and U(1) gauge field (green).

Cartan\d 0 2 3 1 6 7 8 9 10 11
A Z 0 Z 0 Z 0 Z 0 Z 0 Z 0
ATIl 0 Z 0 Z 0 Z 0 Z 0 Z 0 Z
Al Z 0 0 0 27 0 Lo Lo Z 0 0 0
BDI Lo Z 0 0 0 27 0 Zo Lo : 0 0
D Za Za Z 0 0 0 27 0 Za Za Z 0
DIII 0 Zo Zs Z 0 0 0 27 0 Lo Za Z
ATl 27 0 Zs Lo Z 0 0 0 2Z 0 Zo Zo
CII 0 Z 0 Lo Lo 0 0 0 27 0 Lo
C 0 0 27 0 Lo Lo Z 0 0 0 27 0
ClI 0 0 0 27 0 Lo Lo Z 0 0 0 27
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Physical meaning of gravitational response

We can understand the meaning of the gravitational term by defining a rest frame and
applying a small thermal gradient to a solid cylinder of topological superconductor.

“Gravitoelectromagnetism’:
the first non-Newtonian terms can be described
as “‘electric”’ and “magnetic” components.

The electric component includes the usual
Newtonian force, while B includes effects such as
rotational frame-dragging.

A temperature gradient induces a rotational
energy flow, which would cause a gyroscope

placed along the axis of the cylinder to co-rotate.

~0E, - B,

(a) z A

FIG. |. Electric and thermal response of topological insulators,
and thermal response of topological triplet superconductors, in a
cylindrical geometry. (a) Electric (j) or thermal (j7) current driven by
applied electric field (E) or thermal gradient (VT /T ). (b) A response
dual to (a) where an applied magnetic hield in the z direction induces
charge polarization.
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Gravitational anomaly derivation

Luttinger pointed out that thermal conductivity is connected to gravitational response: the
required current can be obtained by variation with respect to the metric.

This variation is not uniquely specified for a lattice model, so we focus on the “Dirac
representative’. Will focus here on class DIl in 3 dimensions (superfluid 3He).
Sign of Dirac mass determines “ordinary” or “topological’.

Slm, §,, €] = / 'z 3L
/)

L = e Hiy® ((% — iwﬂabzab>¢ — mapp,

Chiral symmetry of H: V=Y = ei(b%/Q@D/? ?7“ — ?7DT — lee_w%/Q,

Anomaly from Jacobian: Wz |m, e| # Weg|—m, €]

Difference is integral of Dirac genus: I/Veeff = —InJ
(However, see preprint of Michael Stone

1 1
for possible problems with GR formulation) = 6 — [ /d4$\/§60d€fRabcdeaef]

2 |2 x 38472
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Open questions:
“fractional” topological phases
gapless “topological” phases

Fractional quantum Hall phases in 2+1D can have
Abelian or non-Abelian “anyons” (particles with
statistics neither bosonic nor fermionic).

These are connected to |+ID CFTs in a beautiful way:
quasiparticle braiding is related to CFT fusion rules;
the gapless edge realizes a CFT.

We now have an “integer” topological phase in 3D. Are
there fractional gapped topological phases in 3D? What
are their surfaces like?
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What are the transport signatures of fractionalization?
Experimental evidence for 2D gapless spin liquid
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Fig. 2. The temperature dependence of x,, (I/T (A) and «x,,(7) (B) of dmit-131 (pink) and dmit-221
(green) below 10 K in zero field [, () is the thermal conductivity]. A clear peak in x,/T is observed in
dmit-131 at T, ~ 1 K, which is also seen as a hump in k. Lower temperature plot of k. (7VT as a function
of 7% (C) and T (D) of dmit-131, dmit-221, and x-(BEDT-TTF),Cu,(CN); (black) (18). A clear residual of

K (TVT is resolved in dmit-131 in the zero-temperature limit.

M.Yamashita et al., Science 2009

Spinon Fermi surface?

Tuesday, April 24, 12



Three questions about AdS/CMT for transport

How much “uniqueness of solutions” can we expect!?

Is AdS a very general framework that describes more than the “natural

physical space” of field theories!?
At least in |+1d, that space is pretty tightly constrained.

How are the levels of transport approximations
reflected in AdS/CMT?

At low order in scattering, one gets a cross section -> diffusion.
From resumming crossed diagrams, one gets localization.
Adding a bath restores diffusion.

Adding interactions but no bath gives 7.

How do anyons (simple fractionalization) show up in AdS?
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