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2.2.2 Numerical implementation of the perturbation theory

Once we know the boundary conditions both at the horizon and asymptotic infinity, we just have
to change to new variables which are adapted to the numerics. Because we are solving these
equations using a pseudo-spectral collocation methods on a Chebyshev grid, we better guarantee
that no non-analytic terms arise. In order to ensure that, we factor out the non-analytic behavior
of the near horizon expansion (A.1) from the variables that we actually use in the numerics. For
example, instead of using �̃ itself, we work with

q(x, z) = z(1� z3)
i�

P (1) �̃(x, z), (2.26)

with P (1) given in (2.9). Note that at the conformal boundary q(x, z) has a purely Dirichlet
boundary condition q(x, 0) = 0 and at the horizon, because the field equations fix �̃(1)(z) in terms
of the (0) coe�cients, q(x, z) has a Robin-type boundary condition. It turns out that we can always
recast the boundary conditions at the conformal boundary and horizon as homogenous Dirichlet

or homogeneous Robin boundary condition, by multiplying suitable powers of z and (1� z3)
i�

3P (1)

to our original variables. The only exception to this procedure is b̃x, which has an inhomogenous
Dirichlet boundary condition at z = 0. Recall that we need b̃x(x, z) = 1 in order to generate a
boundary electric field.

After discretization, our system of PDEs can be written as a linear map of the form

M · x = xb, (2.27)

where xb includes the nonhomogeneous boundary condition for b̃x. This equation can then be
solved by the LinearSolve in-built function in Mathematica. In Fig. 4 we show the typical output
of our code for q(x, z) defined in Eq. (2.26).

3 Conductivity

Before describing our new results, we first review the conductivity in a translationally invariant
holographic background. For boundary theories with two spatial dimensions, the conductivity is
dimensionless and at the conformal point, with µ = 0, is known to be a independent of ⇤, reflecting
an underlying electron-vortex duality [15].

In the presence of a chemical potential, µ, the optical conductivity shows more structure [1].
Both real and imaginary parts are shown by the dashed, black curves in Fig. 5 for a temperature
T/µ = 0.115. At large frequency, ⇤ ⇥ µ, the conductivity tends towards the constant, real value
observed at the conformal point. Indeed, this is the expected behaviour for any scale invariant
theory in two spatial dimensions. At lower frequencies, ⇤ < µ, a drop in Re⇥ reveals a depletion
in the density of charged states. However, for the purposes of our present discussion, the most
important feature of the conductivity does not show up in numerical plots of Re⇥: it is a delta-
function spike at ⇤ = 0. The presence of this delta-function can be seen in the plot of Im ⇥(⇤)
where, via the Kramers-Kronig relation, it reveals itself as a pole,

Im ⇥(⇤) ⇤ K

⇤
as ⇤ ⇤ 0 (3.1)

for some constant K.
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Figure 3: On the left we show the charge density ⇥̃(x) and on the right the absolute value of the
non-zero coe⇥cients of its Fourier series.

with coe⇥cients ⇥̃k. On the right panel of Fig. 3 we show the resulting Fourier coe⇥cients. Note
that nonzero Fourier modes occur only for k equal to multiples of 2k0 = 4. As mentioned earlier,
this is because the stress tensor is quadratic in the scalar field, so the lattice seen by the metric
and Maxwell field has twice the lattice wavenumber. For Nx grid points along the x-direction,
a Fourier grid can only hope to resolve up to |kmax| ⇥ Nx/2. It is reassuring that for k0 = 2,
and with Nx = 42, the highest multipoles have a magnitude smaller than 10�10, meaning that
our numerical code is capturing the relevant physics. Since higher wavenumbers come from higher
powers of the scalar field in the nonlinear solution, the Fourier series exhibits an exponential decay
with increasing wavenumber, which can be best seen in the logarithmic scale used on the right
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2.2 Perturbing the Lattice

The main purpose of this paper is to explore transport properties in the presence of our lattice.
According to the AdS/CFT dictionary, on the gravity side, this is mapped into the study of
perturbations about the lattice background.

Our first task is to write the equations governing generic perturbations of Eqs. (2.3). We denote
background fields with hats and expand all fields as

gab = �gab + hab, Aa = �Aa + ba, � = ��+ � , (2.16)

where hab, ba and � should be regarded as small compared to �gab, �Aa and ��, respectively. Ex-
panding equations (2.3) to linear order determines how perturbations propagate in the background
{�g, �A, ��}. The resulting system of PDEs takes the following form

1

2

⇥
��hab � 2 �Racbdh

cd + 2 �R c
(a hb)c + 2�⇤(a

�⇤ch̄b)c

⇤
= � 3

L2
hab+4�⇤(a� �⇤b)

��+2V ⇥(��)� �gab+2V (��)hab
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Figure 5: The optical conductivity, both without the lattice (dashed line) and with the lattice
(solid line and data points) for µ = 1.4 and temperature T/µ = 0.115. Note that the lattice
(which has wavenumber k0 = 2 and amplitude A0 = 1.5) only changes the low frequency behavior.
The pole in Im � without the lattice reflects the existence of a ⇥ = 0 delta-function in Re �.

There is nothing mysterious about the presence of this delta-function. It follows solely on the
grounds of momentum conservation in the boundary theory. If we have a translationally invariant
state with nonzero charge density, then one can always boost it to obtain a nonzero current with
zero applied electric field. This results in the infinite DC conductivity.

The introduction of a background spatial lattice, as described in the previous section, resolves
this issue. With no translational invariance, there is no momentum conservation and the ⇥ = 0
delta-function spreads out, revealing its secrets. In this section we describe what was hiding in
that delta-function.

The optical conductivity, �(⇥), in the presence of the lattice is shown by the solid line in Fig. 5.
At high frequencies, ⇥ � µ, the optical conductivity in the lattice background remains unchanged
from the translationally invariant black hole. The interesting physics lies at lower frequencies.
The dissipative part of the conductivity, Re�, now rises at low ⇥. This is the redistribution of the
spectral weight of the delta-function. Moreover, the pole in the responsive part of the conductivity,
Im �, has now disappeared, with Im �(⇥) ⇥ 0, as ⇥ ⇥ 0, confirming that there is no longer a
delta-function at zero frequency3. We now describe the characteristics of the conductivity in more
detail.

3The resolution of a delta-function into a Drude-like peak has been seen in a somewhat di�erent context in
conformal fixed points with vanishing charge density [16]. Here the delta-function is resolved by interactions rather
than breaking of translational symmetry, either in an � expansion [16] or a 1/N expansion [17].
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Figure 6: A blow up of the low frequency optical conductivity with lattice shown in Fig. 5. The
data points in both curves are fit by the simple two-parameter Drude form (3.2).

3.1 The Drude Peak

At low frequency, both the real and imaginary parts of the conductivity can be fit by the two-
parameter Drude form

⇥(⌅) =
K⇤

1� i⌅⇤
(3.2)

with both the scattering time ⇤ and the overall amplitude K constants, independent of ⌅. This is
shown in Fig. 6. It can be checked numerically that the overall amplitude K agrees (to about the
1% level) with the coe�cient of the pole (3.1) in the translationally invariant case. All interesting
physics in this regime is therefore captured by the single parameter, ⇤ . We have varied the
temperature and lattice spacing and found that this Drude form holds in all cases. Given the lack
of well-defined quasi-particles in our holographic system, it seems surprising that the low-frequency
behaviour of our system is governed so well by the exact Drude form.

3.2 DC Resistivity

The resolution of the ⌅ = 0 delta-function leaves behind a well-defined DC resistivity, � = (K⇤)�1.
The Drude amplitude K is essentially independent of temperature T and all temperature de-
pendence in the resistivity �(T ) is inherited from ⇤ . The results depend strongly on the lattice
wavenumber k0 and are shown on the left hand side of Fig. 7.

To make sense of this complicated plot, we review some recent work in the literature. Since
the near horizon geometry of an extremal Reissner-Nordström AdS black hole is AdS2 ⇥ R2, the
dual theory is said to be “locally critical” in the sense that it is invariant under rescalings of time,
with no rescaling of space. Hartnoll and Hofman [12] have recently studied the DC conductivity
in a locally critical theory. They showed that the DC conductivity can be extracted from the two
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Figure 7: The left panel shows the DC resistivity plotted as a function of temperature for various
lattice spacings. On the right hand side we factor out the scaling (3.3, 3.4) and re-plot the same
data on a log scale. The lines denote a fit to the data including polynomial corrections to the
leading low temperature behavior. Both plots arise from a background with µ = 1.4 and the
lattice amplitude A0 = k0/2. The plots remain essentially unchanged for lattices of di⇥erent
amplitudes.

point function of the charge density, evaluated at the lattice wavenumber. They then calculated
this two point function by perturbing the Reissner-Nordström AdS black hole and found

⇥ ⇥ T 2��1 (3.3)

where4

� =
1

2

⇥
5 + 2(k/µ)2 � 4

�
1 + (k/µ)2 (3.4)

The exponent can be viewed as arising from the dimension � = � � 1
2 of the operator dual to the

charge density in the near horizon AdS2 region, evaluated at the lattice wavenumber k.
On the right hand side of Fig. 7 we plot ⇥/T 2��1 for several values of the lattice wavenumber.

As discussed earlier, if our scalar field has lattice wavenumber k0, the charge density has lattice
wavenumber 2k0, so we have set k = 2k0 in (3.4). We have fit the data to ⇥0 = T 2��1(a0 + a1T +
a2T 2 + a3T 3) and drawn the curves on the right hand side of Fig. 7. The fact that the curves all
approach nonzero, but finite, constants at low temperature shows that our data confirms the low
temperature scaling (3.3) with exponent (3.4) predicted in [12].

Note that as the temperature goes to zero, the dissipation goes to zero and the DC resistivity
vanishes. Thus the DC conductivity becomes infinite, as expected for a perfect lattice with no
dissipation.

4This is a manifestly scale invariant form of the exponent that was found in [12] and was first derived in a
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charge density in the near horizon AdS2 region, evaluated at the lattice wavenumber k.
On the right hand side of Fig. 7 we plot ⇥/T 2��1 for several values of the lattice wavenumber.

As discussed earlier, if our scalar field has lattice wavenumber k0, the charge density has lattice
wavenumber 2k0, so we have set k = 2k0 in (3.4). We have fit the data to ⇥0 = T 2��1(a0 + a1T +
a2T 2 + a3T 3) and drawn the curves on the right hand side of Fig. 7. The fact that the curves all
approach nonzero, but finite, constants at low temperature shows that our data confirms the low
temperature scaling (3.3) with exponent (3.4) predicted in [12].

Note that as the temperature goes to zero, the dissipation goes to zero and the DC resistivity
vanishes. Thus the DC conductivity becomes infinite, as expected for a perfect lattice with no
dissipation.

4This is a manifestly scale invariant form of the exponent that was found in [12] and was first derived in a
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Figure 8: The modulus |�| and argument arg � of the conductivity. The background for both
plots has wavenumber k0 = 2, amplitude A0 = 1.5, chemical potential µ = 1.4 and temperature
T/µ = 0.115. The line on the right is a fit to the power law (3.5).

3.3 Power-law Optical Conductivity

The fit to the Drude peak works well for ⇤/T ⇥ 1. However, for ⇤/T � 1, the optical conductivity
exhibits a power-law fall-o� in a “mid-infrared” regime, before reverting to the continuum result. It
is convenient to use ⇤⇥ as a dimensionless measure of the frequency in this region. This is because
the power law behavior falls roughly in the range 2 < ⇤⇥ < 8 for all the lattices we have examined,
even those with di�erent temperature, lattice spacing and amplitude. (For the temperature we use
in Fig. 5, ⇥T = 2.22, so ⇤⇥ = 2 corresponds to ⇤/T = 0.9.) In Fig. 8 we have plotted |�| and the
phase angle over this range of frequencies. The data is very well fit by

|�(⇤)| = B

⇤2/3
+ C (3.5)

In contrast, the phase angle of the conductivity, arg � varies only slightly from 65�. The slight
variation in the phase angle is enough so that the real and imaginary parts of the conductivity do
not individually follow simple power laws over the range indicated in Fig. 8.

The exponent of the power law does not depend on the particular choices we have made for the
parameters in our model. To illustrate this, and to make the power law more manifest, in Fig. 9
we show (|�|�C) vs ⇤⇥ on a log-log plot. On the left we show three di�erent choices for the lattice
wavenumber k0. On the right, we show three di�erent temperatures. The fact that the curves all
form parallel straight lines for ⇤⇥ > 2 shows the power law fall-o� with exponent �2/3 is robust.
Since the o�set C depends on k0 and T , in Fig. 9 we have subtracted a di�erent constant for each
curve.

di�erent context in [23].
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Figure9:Themagnitudeoftheopticalconductivitywiththeo�setremoved,onalog-logplot.
Ontheleft,theplothasT/µ=.115,andshowsthreedi�erentwavenumbers:diamondsdenote
k0=3,thesquaresdenotek0=1,andthecirclesdenotek0=2.Ontheright,theplothas
k0=2andshowsthreedi�erenttemperatures:thediamondshaveT/µ=.098,thecircleshave
T/µ=.115andthesquareshaveT/µ=.13.Inbothplots,A0/k0=3/4.Thefactthatthelines
areparallelfor⌅⇤>2showsthatthefittothepowerlaw(3.5)isrobust.

3.4ComparisontotheCuprates

Ourresultsfortheopticalconductivitybearastrikingresemblancetothebehaviourseeninthe
cuprateswhereamid-infraredpower-lawcontributionhaslongbeenobserved[18,11,19].Atlow
frequencies,⌅/T⇥1.5,theopticalconductivitytakestheDrudeform(3.2)ifonealsoallowsfor⇤
toscalelinearlywithbothTand⌅[19].Butfor⌅/T�1.5,across-overtopower-lawbehaviour
takesplace,inwhich|⇥|⇥⌅��

with�⇤0.65andthephaseisroughlyconstantaround60⇥[11].
ThisisshowninFig.10.

Therearedi�erencesbetweenourbehaviourandthatofthecuprates.Mostnotably,theDC
resistivitythatweobtainisnothingliketherobustlinearbehaviorcharacteristicofthestrange
metalregime;insteadwefindpower-lawbehaviourwithanexponentthatdependsonthelattice
wavenumber.Moreover,inthemid-infraredregimeouropticalconductivityrequiresaconstant
o�-setCin(3.5).Nosucho�-setisseenin[11].

Insomesense,thisdiscrepancymakestheagreementofthephaseanglesomewhatmoresur-
prising.Forstrictlypower-lawconductivity(i.e.withC=0asseeninthecuprates),causality
andtime-reversalinvarianceintheform⇥(⌅)=⇥

⇥
(�⌅)relatetheexponentofthepowerlawto

thephase[11].However,withC⌅=0,thereisnoreasonforthephaseandexponenttoberelated.
Therehavebeenprevioustheoreticalobservationsofpower-lawfall-o�intheopticalconduc-

tivity.Itisseeninmodelsofchargesmovinginaperiodicpotentialsubjecttodissipation[20],but
theexponenttypicallydependsonthedetailsofthemodelofdissipation.Inthecontextofthe
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Figure9:Themagnitudeoftheopticalconductivitywiththeo�setremoved,onalog-logplot.
Ontheleft,theplothasT/µ=.115,andshowsthreedi�erentwavenumbers:diamondsdenote
k0=3,thesquaresdenotek0=1,andthecirclesdenotek0=2.Ontheright,theplothas
k0=2andshowsthreedi�erenttemperatures:thediamondshaveT/µ=.098,thecircleshave
T/µ=.115andthesquareshaveT/µ=.13.Inbothplots,A0/k0=3/4.Thefactthatthelines
areparallelfor⌅⇤>2showsthatthefittothepowerlaw(3.5)isrobust.
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Figure 10: The optical conductivity of optimally doped Bi2Sr2Ca0.92Y0.08Cu2O8+⇥. This plot is
taken from [11].

cuprates, Anderson suggested a power-law fall-o� ⇥(⇤) ⇥ ⇤�� on the basis of a Luttinger liquid
model, with � = 2/3 arising from a coupling to a gauge field [21].

Perhaps more pertinent for the present discussion, the universal power law observed in the
optical conductivity, together with a ⇤/T scaling, was associated to an underlying quantum critical
point in [11]. Of course the starting point of our holographic model is a strongly interacting critical
point, albeit with a scale introduced by the finite density. Moreover, for small temperatures, T ⌅ µ,
our model exhibits an emergent locally critical point, reflected by the near horizon AdS2 � R2

regime.
However, a second explanation was put forward in [22] where it was argued that the ⇥ ⇥ ⇤��

behavior with � ⇤ 0.65 was a generic prediction of electrons interacting with a broad spectrum of
bosons. Our holographic model is certainly not short of such bosonic modes and it is possible that
these are responsible for our observed behavior.

Finally, within the holographic framework, a ⇥(⇤) ⇥ ⇤�2/3 power-law was shown to arise from
probe charged matter interacting with a strongly coupled soup with dynamical exponent z = 3
[10].

4 Future Directions

The introduction of a gravitational lattice in the simplest holographic model of a conductor has
allowed us to explore the low-frequency optical conductivity in these models. At very low frequen-
cies, ⇥(⇤) follows a simple Drude form. However, for intermediate frequencies, |⇥(⇤)| has a power
law fall o� (with constant o�set) and its phase is approximately constant. Remarkably, both the
exponent of the power law and the phase are consistent with data taken on some cuprates and
are robust against changing all parameters of our model. We do not have a deep understanding
of why this is happening and it would clearly be of interest to find an analytic derivation of this
result.

To get more insight into this result, there are a few generalizations that should be investigated.
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