
Compressible quantum matter
and

gauge-gravity duality

HARVARD

Gravity, black holes, and condensed matter,
Kavli Royal Society Center, Chicheley Hall

A Royal Society International Seminar, April 23-24, 2012

Subir Sachdev

Talk online at sachdev.physics.harvard.edu

Review: arXiv:1203.4565

http://royalsociety.org/about-us/history/kavli/
http://royalsociety.org/about-us/history/kavli/




anti-de Sitter 
space



r

J. McGreevy, arXiv0909.0518

anti-de Sitter 
space



L. Huijse, S. Sachdev, B. Swingle, Physical Review B 85, 035121 (2012)

Consider the metric which transforms under rescaling as

xi → ζ xi

t → ζz t

ds → ζθ/d ds.

This identifies z as the dynamic critical exponent (z = 1 for
“relativistic” quantum critical points).

θ is the violation of hyperscaling exponent.
The most general choice of such a metric is

ds2 =
1

r2

�
− dt2

r2d(z−1)/(d−θ)
+ r2θ/(d−θ)dr2 + dx2

i

�

We have used reparametrization invariance in r to choose so
that it scales as r → ζ(d−θ)/dr.
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At T > 0, there is a “black-brane” at r = rh.

The Beckenstein-Hawking entropy of the black-brane is the

thermal entropy of the quantum system r = 0.

The entropy density, S, is proportional to the

“area” of the horizon, and so S ∼ r−d
h
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At T > 0, there is a “black-brane” at r = rh.

The Beckenstein-Hawking entropy of the black-brane is the

thermal entropy of the quantum system r = 0.

The entropy density, S, is proportional to the

“area” of the horizon, and so S ∼ r−d
h

Under rescaling r → ζ(d−θ)/dr, and the
temperature T ∼ t−1, and so

S ∼ T (d−θ)/z = T deff/z

where θ = d−deff measures “dimension deficit” in
the phase space of low energy degrees of a freedom.



• The thermal entropy density scales as

S ∼ T (d−θ)/z.

The third law of thermodynamics requires θ < d.

• The entanglement entropy, SE , of an entangling region with
boundary surface ‘area’ Σ scales as

SE ∼






Σ , for θ < d− 1
Σ lnΣ , for θ = d− 1

Σθ/(d−1) , for θ > d− 1

All local quantum field theories obey the “area law” (upto log
violations) and so θ ≤ d− 1.

• The null energy condition implies z ≥ 1 +
θ

d
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A

Entanglement entropy

Measure strength of quantum
entanglement of region A with region B.

ρA = TrBρ = density matrix of region A
Entanglement entropy SEE = −Tr (ρA ln ρA)
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A
Area of 
minimal 

surface equals 
entanglement

entropy

Holographic entanglement entropy

S. Ryu and T.  Takayanagi, Phys. Rev. Lett. 96, 18160 (2006).
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• The thermal entropy density scales as

S ∼ T (d−θ)/z.

The third law of thermodynamics requires θ < d.

• The entanglement entropy, SE , of an entangling region with
boundary surface ‘area’ Σ scales as

SE ∼






Σ , for θ < d− 1
Σ lnΣ , for θ = d− 1

Σθ/(d−1) , for θ > d− 1

All local quantum field theories obey the “area law” (upto log
violations) and so θ ≤ d− 1.

• The null energy condition implies z ≥ 1 +
θ

d
.

AdS2×Rd corresponds to θ = d(1− 1/z) and z → ∞.



• Consider an infinite, continuum,

translationally-invariant quantum system with a glob-

ally conserved U(1) chargeQ (the “electron density”)

in spatial dimension d > 1.

• Describe zero temperature phases where d�Q�/dµ �=
0, where µ (the “chemical potential”) which changes

the Hamiltonian, H, to H − µQ.

• Compressible systems must be gapless.

• Conformal quantum matter is compressible in

d = 1, but not for d > 1.

Compressible quantum matter
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The only compressible phase of traditional 
condensed matter physics which does not 
break the translational or U(1) symmetries 

is the Landau Fermi liquid 

Compressible quantum matter



Compressible quantum matter

Challenge to string theory:

Classify and understand non-Fermi liquid 
phases of compressible quantum matter,

i.e. strange metals
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• Model of a spin liquid (“Bose metal”): couple fermions to a
dynamical gauge field Aµ.

L = f†
σ

�
∂τ − iAτ − (∇− iA)2

2m
− µ

�
fσ

The Non-Fermi Liquid (NFL)
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Fermi surface of an ordinary metal

A
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Fermions coupled to a gauge field

L = f†
σ

�
∂τ − iAτ − (∇− iA)2
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S.-S. Lee, Phys. Rev. B 80, 165102 (2009)

M. A. Metlitski and S. Sachdev, Phys. Rev. B 82, 075127 (2010)

D. F. Mross, J. McGreevy, H. Liu, and T. Senthil, Phys. Rev. B 82, 045121 (2010)

• There is a sharp Fermi surface defined by the (gauge-dependent)
fermion Green’s function: G−1

f (|k| = kF ,ω = 0) = 0. This
Green’s function is not measurable, and so the Fermi surface
is “hidden”.

• Area enclosed by the Fermi surface A = Q, the fermion density

• Critical continuum of excitations near the Fermi surface with
energy ω ∼ |q|z, where q = |k| − kF is the distance from the
Fermi surface and z is the dynamic critical exponent.

Properties of this strange metal

L = f†
σ

�
∂τ − iAτ − (∇− iA)2

2m
− µ

�
fσ
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Properties of this strange metal
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• Gauge-dependent Green’s functionG−1
f = q1−ηF (ω/qz).

Three-loop computation shows η �= 0 and z = 3/2.

• The phase space density of fermions is effectively one-
dimensional, so the entropy density S ∼ T deff/z with
deff = 1.
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Field theory of this strange metal

• Gauge fluctuation at wavevector �q couples most efficiently to
fermions near ±�k0.

• Expand fermion kinetic energy at wavevectors about �k0.

• In Landau gauge, only need the component of the gauge field,
a, orthogonal to �q.



Field theory of this strange metal

L[ψ±, a] =

ψ†
+

�
∂τ − i∂x − ∂2

y

�
ψ+ + ψ†

−
�
∂τ + i∂x − ∂2

y

�
ψ−

−a
�
ψ†
+ψ+ − ψ†

−ψ−

�
+

1

2g2
(∂ya)

2

M. A. Metlitski and S. Sachdev, Phys. Rev. B 82, 075127 (2010)
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Perturbative computations show that the
ψ†
±∂τψ± terms are irrelevant

X X
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Simple scaling argument for z = 3/2.
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Simple scaling argument for z = 3/2.
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Under the rescaling x → x/s, y → y/s1/2, and τ → τ/sz, we
find invariance provided

a → a s(2z+1)/4

ψ → ψ s(2z+1)/4

g → g s(3−2z)/4

So the action is invariant provided z = 3/2.



Fermions and bosons coupled to a gauge field

L = f†
�
∂τ − iAτ − (∇− iA)2

2m
− µ

�
f

+ b†
�
∂τ + iAτ − (∇+ iA)2

2mb
− µb

�
b+ s|b|2 − g b†f†fb+ . . .
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Another strange metal: the fractionalized Fermi liquid (FL*)

Ac = �Qb�
Af =

�Q−Qb�

T. Senthil, M. Vojta, and S. Sachdev, Physical Review B 69, 035111 (2004)

Bosons can bind with fermions to form a gauge-neutral fermion c ∼ b f .
The result FL* phase has partial confinement and 2 Fermi surfaces: the
gauge-neutral Fermi surface of c, and the gauge-charged Fermi surface of
f . They enclose a combined area equal to �Q�.



Fermions and bosons coupled to a gauge field
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Another strange metal: the fractionalized Fermi liquid (FL*)

Ac = �Qb�
Af =

�Q−Qb�

S. Sachdev, Physical Review Letters 105, 151602 (2010) 

In holography:
the c Fermi surface is that of the “probe” fermion;
the fractionalized f Fermi surface is “hidden” past the horizon.

Visible
(Schalm) Hidden



Kondo lattice model

Spin liquid of f electrons

Fermi surface of c 
conduction electrons

Another strange metal: the fractionalized Fermi liquid (FL*)

T. Senthil, M. Vojta, and S. Sachdev, Physical Review B 69, 035111 (2004)
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ds2 =
1

r2

�
− dt2

r2d(z−1)/(d−θ)
+ r2θ/(d−θ)dr2 + dx2

i

�

θ = d− 1

Holography of non-Fermi liquids

L. Huijse, S. Sachdev, B. Swingle, Physical Review B 85, 035121 (2012)

• The value of θ is fixed by requiring that the thermal
entropy density S ∼ T 1/z for general d.
Conjecture: this metric then describes a compressible
state with a hidden Fermi surface.

• The null energy condition yields the inequality z ≥
1 + θ/d. For d = 2 and θ = 1 this yields z ≥ 3/2. The
field theory analysis gave z = 3/2 to three loops !
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• The entanglement entropy exhibits logarithmic viola-
tion of the area law only for this value of θ !!

• The logarithmic violation is of the form P lnP , where
P is the perimeter of the entangling region. This form
is independent of the shape of the entangling region,
just as is expected for a (hidden) Fermi surface !!!

ds2 =
1

r2

�
− dt2

r2d(z−1)/(d−θ)
+ r2θ/(d−θ)dr2 + dx2

i

�

θ = d− 1

N. Ogawa, T. Takayanagi, and T. Ugajin, arXiv:1111.1023 

Holography of non-Fermi liquids
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Begin with a CFT

Dirac fermions + gauge field + ......



Holographic representation: AdS4

S =

�
d4x

√
−g

�
1

2κ2

�
R+

6

L2

��

A 2+1 
dimensional 

CFT
at T=0



Apply a chemical potential to the 
“deconfined” CFT
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�Q�
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�
d4x

√
−g

�
1

2κ2

�
R+

6

L2

�
− 1

4e2
FabF

ab

�

The Maxwell-Einstein theory of the applied 
chemical potential yields a AdS4-Reissner-Nordtröm 
black-brane

S. A. Hartnoll, P. K. Kovtun, M. Müller, and S. Sachdev, Physical Review B 76, 144502 (2007)

Er = �Q�
Er = �Q�

r



+

++

+
+

+
Electric flux

�Q�
�= 0

The Maxwell-Einstein theory of the applied 
chemical potential yields a AdS4-Reissner-Nordtröm 
black-brane

At T = 0, we obtain an extremal black-brane, with
a near-horizon (IR) metric of AdS2 ×R2

ds2 =
L2

6

�
−dt2 + dr2

r2

�
+ dx2 + dy2

r

T. Faulkner, H. Liu, 
J. McGreevy, 
and D. Vegh, 
arXiv:0907.2694



Artifacts of AdS2 X R2

T. Faulkner, H. Liu, J. McGreevy, and D. Vegh, arXiv:0907.2694
S. Sachdev, Phys. Rev. Lett. 105, 151602 (2010).

• Corresponds to θ → d and z → ∞. This implies non-
zero entropy density at T = 0, and “volume” law for
entanglement entropy.

• Green’s function of a probe fermion (a mesino) can
have a Fermi surface, but self energies are momentum
independent, and the singular behavior is the same
on and off the Fermi surface

• Deficit of order ∼ N2 in the volume enclosed by the
mesino Fermi surfaces: presumably associated with
“hidden Fermi surfaces” of gauge-charged particles
(the quarks).



Holographic theory of a non-Fermi liquid (NFL)

Add a relevant “dilaton” field

Electric flux

C. Charmousis, B. Gouteraux, B. S. Kim, E. Kiritsis and R. Meyer, JHEP 1011, 151 (2010).

S. S. Gubser and F. D. Rocha, Phys. Rev. D 81, 046001 (2010).

N. Iizuka, N. Kundu, P. Narayan and S. P. Trivedi, arXiv:1105.1162 [hep-th].

Er = �Q�

Er = �Q�

r

S =

�
dd+2x

√
−g

�
1

2κ2

�
R− 2(∇Φ)2 − V (Φ)

L2

�
− Z(Φ)

4e2
FabF

ab

�

with Z(Φ) = Z0eαΦ, V (Φ) = −V0e−βΦ, as Φ → ∞.
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with Z(Φ) = Z0eαΦ, V (Φ) = −V0e−βΦ, as Φ → ∞.

This is a “bosonization” of the Fermi surface



Holographic theory of a non-Fermi liquid (NFL)
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Add a relevant “dilaton” field
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Leads to metric ds2 = L2

�
−f(r)dt2 + g(r)dr2 +

dx2 + dy2

r2

�

with f(r) ∼ r−γ , g(r) ∼ rδ, Φ(r) ∼ ln(r) as r → ∞.



Holographic theory of a non-Fermi liquid (NFL)

ds2 =
1

r2

�
− dt2

r2d(z−1)/(d−θ)
+ r2θ/(d−θ)dr2 + dx2

i

�

The r → ∞ metric has the above form with

θ =
d2β

α+ (d− 1)β

z = 1 +
θ

d
+

8(d(d− θ) + θ)2

d2(d− θ)α2
.

Note z ≥ 1 + θ/d.



Holographic theory of a non-Fermi liquid (NFL)

ds2 =
1

r2

�
− dt2

r2d(z−1)/(d−θ)
+ r2θ/(d−θ)dr2 + dx2

i

�

The solution also specifies the missing numerical prefactors in

the metric. In general, these depend upon the details on the

UV boundary condition as r → 0. However, the coefficient of

dx2
i /r

2
turns out to be independent of the UV boundary condi-

tions, and proportional to Q2θ/(d(d−θ))
.

The square-root of this coefficient is the prefactor of the log

divergence in the entanglement entropy for θ = d− 1.
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Holography of non-Fermi liquids

L. Huijse, S. Sachdev, B. Swingle, Physical Review B 85, 035121 (2012)

• The entanglement entropy has log-violation of the area
law

SE = ΞQ(d−1)/dΣ ln

�
Q(d−1)/dΣ

�
.

where Σ is surface area of the entangling region, and Ξ is
a dimensionless constant which is independent of all UV
details, of Q, and of any property of the entangling region.
Note Q(d−1)/d ∼ kd−1

F via the Luttinger relation, and then
SE is just as expected for a Fermi surface !!!!
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Holographic theory of a fractionalized-Fermi liquid (FL*)

S. Sachdev, Physical Review Letters 105, 151602 (2010)
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• Now the entanglement entropy implies that the Fermi momentum
of the hidden Fermi surface is given by kdF ∼ Q − Qmesino, just as
expected by the extended Luttinger relation. Also the probe fermion
quasiparticles are sharp for θ = d− 1, as expected for a FL* state.

Holographic theory of a fractionalized-Fermi liquid (FL*)

L. Huijse, S. Sachdev, 
B. Swingle, 

Physical Review B 
85, 035121 (2012)

Hidden 
Fermi 

surfaces
of “quarks”

Visible Fermi 
surfaces

of “mesinos”



• Confining geometry leads to a state which has all the properties
of a Landau Fermi liquid.

Holographic theory of a Fermi liquid (FL)

S. Sachdev, Physical Review D 84, 066009 (2011)
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Conclusions

Compressible quantum matter

 Evidence for hidden Fermi surfaces in compressible states 
obtained for a class of holographic Einstein-Maxwell-dilaton 
theories. These theories describe a non-Fermi liquid (NFL) state 
of gauge theories at non-zero density.

 Fermi liquid (FL) state described by a confining holographic 
geometry

 Hidden Fermi surfaces can co-exist with Fermi surfaces of 
mesinos, leading to a state with partial confinement: the 
fractionalized Fermi liquid (FL*)
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Metal with “large” 
Fermi surface

Metal with electron 
and hole pockets

Increasing SDW order
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Fractionalized Fermi 
liquid (FL*) phase
with no symmetry 
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Fermi surface

��ϕ� = 0

Proposed phase diagram for the hole-
doped cuprates

Electron and/or hole 
Fermi pockets form in 
“local” SDW order, but 
quantum fluctuations 
destroy long-range

SDW order

M. Punk and S. Sachdev, arXiv:1202.4023
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