An Overview of AdS/CFT

David Tong

Imperial, January 2011

The AdS/CFT Correspondence

Strongly interacting QFT in d-dimensions

General relativity in (at least) (d+1)-dimensions

[G,R]=0

- The extra direction, r, should be thought of as *energy scale*.
- Objects occuring on different scales live in different *r*-slices of bulk
- AdS/CFT is the geometrization of Wilsonian RG flow.

What is AdS?

Properties of AdS

$$ds^{2} = \frac{L^{2}}{r^{2}} (dr^{2} + \eta_{\mu\nu} dx^{\mu} dx^{\nu})$$

- Solution of Einstein's equations with *negative* cosmological constant.
- Isometry group is translations + SO(d,2)
- Geodesics

lightlike geodesics hit the boundary

timelike geodesics don't

The Basics of AdS/CFT

Generating Function

$$Z_{\text{QFT}}[\phi_0] = \int \mathcal{D}A \exp\left(\frac{i}{\hbar}S_{\text{QFT}}[A] + \phi_0\mathcal{O}(A)\right)$$

source operator

Idea: Make the Sources Come Alive

$\phi(\vec{x},r) \to \phi_0(\vec{x})$

How to Calculate: GKPW Formula

(Gubser, Klebanov, Polyakov; Witten)

AdS/CFT Will Not Solve Your Favourite Theory

Tricky Part: Find the map

$$S_{\rm QFT} :\rightarrow S_{\rm gravity}$$

- We have several classes of well explored examples, but no proof.
 - e.g. Maximally supersymmetry Yang-Mills = IIB string theory on $AdS_5 \times S^5$
- Simpler method: take your favourite gravity theory to *define* the QFT on the boundary
- Classical gravity means large N
 - Matrix large N, not vector large N

Building the Dictionary

The Dictionary

<u>Bulk</u>

Fields, $\phi(ec{x},r)$ Mass, mSpin, Charge

Boundary

Operators, $\mathcal{O}(ec{x})$ Dimension, $\Delta(\Delta-d)=m^2L^2$ Spin, Charge

The Dictionary

<u>Bulk</u>

Fields, $\phi(ec{x},r)$ Mass, mSpin, Charge

<u>Boundary</u>

Operators, $\mathcal{O}(ec{x})$ Dimension, $\Delta(\Delta-d)=m^2L^2$ Spin, Charge

Some special fields

Metric, $g_{\mu
u}$ Gauge Fields, A_{μ}

Stress Tensor, $\,T_{\mu
u}$ Conserved Current, J_{μ}

A Scalar Field

The Lagrangian for a scalar field in AdS is

$$S_{\text{scalar}} = -\frac{1}{2} \int d^{d+1}x \sqrt{-g} \left(g^{AB} \partial_A \phi \partial_B \phi + m^2 \phi^2 \right)$$

Special property of AdS: stability requires

$$m^2 \ge -\frac{d^2}{4L^2}$$

(Breitenlohner-Freedman bound)

- Relevant boundary operator: $m^2 < 0$
- Marginal boundary operator: $m^2 = 0$
- Irrelevant boundary operator: $m^2 > 0$

Solution near the Boundary

Solve the equation of motion near *r*=0

$$\phi(\vec{x},r) \to \left(\frac{r}{L}\right)^{\Delta_{-}} \left[\phi_{0}(\vec{x}) + \ldots\right] + \left(\frac{r}{L}\right)^{\Delta_{+}} \left[\phi_{1}(\vec{x}) + \ldots\right]$$
$$\Delta_{\pm} = \frac{d}{2} \pm \sqrt{\left(\frac{d}{2}\right)^{2} + m^{2}L^{2}}$$

- $\phi_0(ec{x})$ is source. (I lied before!)
- What is interpretation of $\phi_1(ec{x})$

Can use GKPW formula to show that

$$\phi_1(\vec{x}) = \langle \mathcal{O}(\vec{x}) \rangle$$

 $\hfill\square$ i.e. response in presence of source $\phi_0(\vec{x})$

Every Single "Holographic" Calculation Ever...

- Fix the source $\phi_0(ec{x})$
- Fix another boundary condition in the interior of space
 - regularity
 - ingoing boundary condition at horizon
- Compute the response $\phi_1(ec{x})$

What AdS/CFT is Good For

Finite Temperature

Boundary theory at Hawking temperature, *T*

Euclidean and Lorentzian signatures

Finite Density

Temperature, TChemical Potential, μ

Transport

Kovtun, Policastro, Son, Starinets

e.g. shear viscosity

Many Other Phenomena

- Superconductivity
- Non-Fermi Liquids
- Quantum Oscillations
- Quantum Hall Transitions
- Dynamical Lattice Formation
- Band Structure
- • •