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Outline

* Selected experimental data on cuprate
superconductors

— Phase diagram

— Resistivity, tunnelling, Raman scattering, optical
conductivity, superconductivity,

* Phenomenology of a non Fermi liquid
* Remarks
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Resistivity

Martin et al Phys. Rev. B 41:846 (1990 )

Resistivity is very large, linear in T, non-
saturating

Implies strong local (back-)scattering

Mean free path is a lattice constant or less -
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-- is this a meaningful concept?



Optical conductivity

Orenstein et al. PRB 42, 6342 (1990)
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Scattering rate is frequency dependent
1/7 xw, Rox1l/w
Divergent effective mass (Kramers-Kronig)
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Schlesinger et al. PRL 65, 801 (1990)



Inelastic light scattering

Cooper et al PRB 47, 8233 (1993) Slakey et al., PRB 42, 3764 (1991)
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“2-magnon” light scattering peak in insulator evolves to a flat continuum in metal
Lower cutoff of spectrumis kg T 5

Much larger than conventional metal ~ g2 (Galilean invariance) r=_1 Qike‘i(qw)
But with strong local scattering dme

R« wa {(w) ~ CONnst.




Scattering rate drops off below T_
Gap in quasiparticle spectrum

Microwave conductivity below Tc

= mirnple A

Bonn et al PRB47, 11314 (1993)
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Contribution to the low-
frequency conductivity
from thermally excited
guasiparticles in the
superconducting state

120

Dominant scattering mechanism is then quasiparticle-quasiparticle
Not scattering from well-defined collective modes



Recap

Quasiparticle scattering rate /T = alrkeT + Fw) a1
Response functions
— Optical conductivity Im [P(q,w,T)] = (w/TYF(q), Torw<T

— Inelastic light scattering
— Spin fluctuations

F(g) smooth function (at small q);
determined by electronic
bandstructure (large q)

Cutoff w, ~ few tenths of eV

Pauli susceptibility, specific heat
unremarkable, not strongly
renormalised

Spin fluctuation response close to

prediction from bandstructure
(Lindhard)

Fg) TorT < w < w,



Ad hoc phenomenology

tanhw/T

Postulate a scattering spectrum _
Y Pg,w) TF (/)2

Quasiparticle self-energy (Born, one-

loop) ImX (p) = Amax{y,7T)
— Linear scaling T4
T A

&

(2v/m)log ( ) —I—i’ﬂ'T]

— Logarithmic mass renorm > (v, Ty A
— Weak function of momentum

Quasiparticle spectral function is 1/w

on-shell — not a 6-function _q
A(kv) = —Im[w — (g, — ) — ()]

— “Marginal” Fermi liquid
Response functions now calculated
again at the one-loop level

— For g~0 get the expected forms Y

— “
— For large q, see bandstructure effects IMFL(W) = w— 2 (w/2)

(nesting etc.)




Consequences, generalisations

Electron spectral function

Aller) = —Im[y — (s — ) — Z(¥)] 71

Spectral function sharpens to 1/w
peak at k=k;

At low energy, there is a contribution
to the spectral weight from all k-states,
with weight ~ |v|

Tunnelling conductance gives access to spectral weight at low energies
and momenta far from the Fermi surface
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Tunnelling

Tunnelling conductance gives access to spectral weight at low energies
and momenta far from the Fermi surface
“c-axis” tunnelling — quasiparticles are injected at momenta far from k;
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Spin fluctuations
Vignolle et al 2007
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Generalisation to the superconducting state

Utilise the “bubble” diagram as the pairing spectrum?

NB

— low frequency scattering (w < 24A) is pairbreaking
Superconductivity is itself “marginal” 1/7(Te) = T

Superconductivity avoids pair-breaking because gap self-consistently
opens as pairbreaking is suppressed

2A/T_ large (whatever the scale of T_)
Fermi liquid restored in superconducting state
Homes reanalysis of “Uemura plot”

* phase fluctuations are not dominant except at very low doping
e Superconductive transition is “BCS”-like far into the underdoped regime
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Generalisation to the superconducting state

Electron spectral function for k™k;
Superfluid density
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NB. Model with s-wave pairing



Remarks

* No explicit Hamiltonian
— short-range Coulomb implicated

— dangerous to expect that Hubbard or t-J model (with fixed
parameters) can explain both metallic and insulating phases

— phenomena are robust — details should not matter

* Not a self-consistent theory: one loop only.
— in higher order, logarithms exponentiate ...
— but superconductivity emerges first? —a “medium”-energy theory

* Isthis a “critical” theory?  x(gw)=X(q/a@)F(g/wl/*). qr (z — z.)"
— expect scaling nearby

— there are crossovers (“pseudogap”) but very little evidence for
“conventional” QCP

— certainly dominated by quasiparticle fluctuations rather than low
energy collective modes (i.e. pairbreaking not Hertz-Millis)

— small fermi pockets now resolved in very underdoped regime



