
ar
X

iv
:h

ep
-t

h/
98

10
17

0v
1 

 2
2 

O
ct

 1
99

8

NBI–HE–98–27

MPS–RR–1998-25

ITEP–TH–50/98

Thermodynamics of D0-branes in matrix theory a

J. Ambjørn

Niels Bohr Institute

Blegdamsvej 17

Copenhagen, 2100 Denmark

ambjorn@nbi.dk

Y. M. Makeenko

Institute of Theoretical and Experimental Physics

B. Cheremushkinskaya 25

Moscow, 117218 Russian Federation

makeenko@itep.ru

G. W. Semenoff

Department of Physics and Astronomy

University of British Columbia

6224 Agricultural Road

Vancouver, British Columbia V6T 1Z1, Canada

semenoff@physics.ubc.ca

We examine the matrix theory representation of D0-brane dynamics

at finite temperature. In this case, violation of supersymmetry by

temperature leads to a non-trivial static potential between D0-branes

at any finite temperature. We compute the static potential in the 1-

loop approximation and show that it is short-ranged and attractive.

We compare the result with the computations in superstring theory.

We show that thermal states of D0-branes can be reproduced by matrix

theory only when certain care is taken in integration over the moduli

space of classical solutions in compactified time.
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Figure 1: Annulus diagram for D0-brane interactions. The bold lines represent world-lines of the D0-branes,

separated by the distance L, which go along the periodic temporal direction. They bound the string world-

sheet.

1 Introduction

Dirichlet p-branes are p+1-dimensional hypersurfaces on which superstrings can begin and

end (see1,2 for a review). The low energy dynamics of an ensemble of N parallel Dp-branes can

be described by the U(N) supersymmetric gauge theory obtained by dimensional reduction

of ten dimensional supersymmetric Yang-Mills theory to the p+1-dimensional world-volume

of the brane.3 The Yang-Mills theory gives an accurate perturbative representation of the

Dp-brane dynamics when the separations between the branes is large.4,5,6 It represents a

truncation of the full string spectrum to the lowest energy modes. The full string theoretical

interactions between a pair of Dp-branes is computed by considering the annulus diagram

shown in fig. 1. The short distance asymptotics of this diagram are dominated by the open

string sector whose lowest modes are the fields of ten dimensional supersymmetric Yang-Mills

theory. On the other hand, long distance asymptotics are most conveniently described by the

dual description of this diagram as a closed string exchange and the relevant field theoretical

modes are those of ten dimensional supergravity. That these are also represented by the

dimensionally reduced super Yang-Mills theory is a result of supersymmetry and the fact

that, for fixed Dp-brane positions, the ground state is a BPS state. At zero temperature,

because of supersymmetry, the interaction potential between a pair of static D0-branes

vanishes independently of their separation. Their effective action has been computed in an

expansion in their velocities, divided by powers of the separation and is known to be 7,6

Seff(T = 0) =
∫

dt

(

1

2gs

√
α′

2
∑

α=1

(~̇q α)2 − 15

16
(α′)

3 |~̇q 1 − ~̇q 2|4
|~q 1 − ~q 2|7 + . . .

)

(1)

This result agrees with the effective potential for the interaction of D0-branes in ten dimen-

sional supergravity. Note that, for weak string coupling, the D0-brane is very heavy.

In this paper, we shall consider the description of D0-brane interactions in type IIA super-

string theory using matrices. Even at very low temperatures, non-BPS states are important

to the leading temperature dependence. We perform 1-loop computation of the effective in-

teraction between static D0-branes in the matrix theory at finite temperature and compare

with the known superstring computations. We show that the results of the two computa-

2



tions are similar in the low temperature limit but an extra integration over the temporal

component of the gauge field, is present in the matrix theory. At finite temperature, because

the Euclidean time is compact, the temporal gauge field can not be removed by a gauge

transformation. This integration is needed in order to describe correctly thermodynamics of

D0-branes both in the matrix and superstring theories.

The paper is organized as follows. In section 2 we discuss the formulation of the matrix

theory at finite temperature. In section 3 we perform one loop computation of the effective

interaction between static D0-branes at finite temperature and show that it is attractive,

and short-ranged. In section 4 we compare this result with the superstring computations

and discuss the conditions under which the two computations agree. Section 5 is devoted to

the discussion of our results and, in particular, the origin of the divergence of the classical

thermal partition function of D0-branes which is cured by quantum statistics.

2 Matrix theory at finite temperature

We shall consider the matrix theory description 8 of the effective dynamics of D0-branes in a

type-IIA superstring theory which is derived by the reduction of ten dimensional supersym-

mertic Yang-Mills theory which has the action

SYM[A, θ] =
1

g2
Y M

∫

dτTR
(

1

4
F 2

µν +
i

2
θγµDµθ

)

(2)

to zero spatial dimension: Aµ = Aµ(τ), θ = θ(τ).

The thermal partition function of this theory is given by

ZYM =
∫

[dA(τ)][dθ(τ)] exp (−SYM[A, θ]) (3)

where SYM is the Euclidean action and the time coordinate is periodic. The bosonic and

fermionic coordinates have periodic and anti-periodic boundary conditions,

Aµ(τ + β) = Aµ(τ), (4)

θ(τ + β) = −θ(τ), (5)

β = 1/kBT, (6)

where T is the temperature and kB is Boltzmann’s constant. Gauge fixing will be necessary

and will involve introducing ghost fields which will have periodic boundary conditions.

The representation (3) of the thermal partition function can be derived in the standard

way starting from the known Hamiltonian of the matrix theory8 and representing the thermal

partition function

ZYM = tr e−βH (7)
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via the path integral. The trace is calculated here over all states obeying Gauss’s law

which is taken care by the integration over A0 in (3). This representation of the matrix

theory at finite temperature have been already discussed 9,10,11, but the temperature induced

interaction between D0-branes described below was never identified.

In matrix theory, the diagonal components of the gauge fields, ~aα ≡ ~Aαα, are interpreted

as the position coordinates of the α-th D0-brane and they should be treated as collective

variables. Static configurations play a special role since they satisfy classical equations of

motion with the periodic boundary conditions and dominate the path integral as g2
YM → 0.

Notice that there are no such static zero modes for fermionic components since they would

not satisfy the antiperiodic boundary conditions. b This is an important difference from

the zero temperature case and a manifestation of the fact that supersymmetry is explicitly

broken at non-zero temperature.

In the following, we will construct an effective action for these coordinates by integrating

the off-diagonal gauge fields, the fermionic variables and the ghosts,

Seff [~aα] ≡ − ln
∫

[daα
0 ]
∏

α6=β

[dAαβ
µ ][dθ][dghost] exp (−SYM − Sgf − Sgh) . (8)

Generally, this integration can only be done in the a simultaneous loop expansion and expan-

sion in the number of derivatives of the coordinates ~aα. Such an expansion is accurate in the

limit where
∣

∣

∣~aα − ~aβ
∣

∣

∣ are large for each pair of D0-branes and where the velocities are small.

Since these variables are periodic in Euclidean time, small velocities are only possible at low

temperatures. The remaining dynamical problem then defines the statistical mechanics of a

gas of D0-branes,

ZYM =
∫

∏

τ,α

[d~aα(τ)] exp (−Seff [~aα]) . (9)

We expect that the zero temperature limit of Seff reduces to (1).

We shall find several subtleties with this formulation. If the effective D0-brane action is

to reproduce the results of a string theoretical computation, the integration over aα
0 must be

performed in both cases.

The effective action is a symmetric functional of the position variables ~aα(τ). Only the

configuration of these coordinates needs to be periodic. Therefore the individual position

should be periodic up to a permutation. The variables in the path integral (9) should

therefore be periodic up to a permutation and the integral should be summed over the

permutations.

bThis is a difference between our computation at finite temperature and computations of the Witten index

for the matrix theory where fermions obey periodic boundary conditions.
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3 One loop computation

We will compute the effective action Seff in a simultaneous expansion in the number of loops

and in powers of time derivatives of the D0-brane positions.

We decompose the gauge field into diagonal and off-diagonal parts,

Aαβ
µ = aα

µδαβ + gYMĀαβ
µ (10)

where Āαα
µ = 0 so that the curvature is

F αβ
µν = δαβfα

µν + gYMDαβ
µ Āαβ

ν − gYMDαβ
ν Āαβ

µ − ig2
YM

[

Āµ, Āν

]αβ
(11)

where

fα
µν = ∂µa

α
ν − ∂νa

α
µ (12)

and

Dαβ
µ = ∂µ − i

(

aα
µ − aβ

µ

)

. (13)

In the Yang-Mills term in the action, we keep all orders of the diagonal parts of the gauge

field and expand up to second order in the off-diagonal components,

1

g2
YM

TR
(

F 2
µν

)

=
∑

α

1

g2
YM

(

fα
µν

)2
+2

∑

αβ

Āβα
µ

(

δµν

←

D
βα

λ
~Dαβ

λ −
←

D
βα

µ
~Dαβ

ν + 2i
(

fα
µν − fβ

µν

)

)

Āαβ
ν +. . .

(14)

We will fix the gauge

Dαβ
µ Āαβ

µ = 0. (15)

This entails adding the Fadeev-Popov ghost term to the action

Sgh =
∫

∑

αβ

{

c̄αβ
(

−Dαβ
µ

)2
cβα + igYMc̄βαDαβ

µ

[

Āµ, c
]

}

(16)

There is a residual gauge invariance under the abelian transformation,

Āαβ
µ → Āαβ

µ ei(χα−χβ),

aα
µ → aα

µ + ∂µχ
α. (17)

We shall use this gauge freedom to set the additional condition

∂0a
α
0 = 0 (18)

and to fix the constantc

− π/β < aα
0 ≤ π/β. (19)

cThese constants are related to the eigenvalues of the holonomy

P exp

(

i

∫ β

0

dτA0(τ)

)

= Ω† diag
(

eiβa1

0 , . . . , eiβaN

0

)

Ω

known as the Polyakov loop winding along the compact Euclidean time. It can not be made trivial by the

gauge transformation if T 6= 0.
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The ghost for this gauge fixing condition decouples.

Keeping terms up to quadratic order in Ā, c, c̄, θ, the action is

S =
∫







1

4g2
YM

∑

α

(

fα
µν

)2
+

1

2

∑

αβ

Āβα
µ

(

−δµνD
βα
λ Dαβ

λ + Dβα
µ Dαβ

ν + 2i
(

fα
µν − fβ

µν

))

Āαβ
ν

+
∑

αβ

c̄βα(Dαβ
µ )2cαβ +

i

2
θβαγµD

αβ
µ θαβ







. (20)

The effective action obtained by integrating over Ā, c̄, c, θ is

Seff =
∫

∑

α

1

4g2
YM

(fα
µν)

2 +
∑

α6=β

{

1

2
TR ln

(

−δµν(D
αβ
µ )2 + 2i(fα

µν − fβ
µν)
)

−TR ln
(

−(Dαβ
µ )2

)

− 1

2
TR ln

(

iγµD
αβ
µ

)

}

. (21)

3.1 Leading order in time derivatives

We will evaluate the determinants on the right-hand-side of (21) in an expansion in powers

of the derivatives of ~a(τ). The leading order term can be found by setting ~a = const.. In

this case, fα
µν = 0 and (here we retain the tree-level term with time derivatives)

Seff = 8
∑

α<β

{

TRB ln
(

−(Dαβ
µ )2

)

− TRF ln
(

−(Dαβ
µ )2

)}

(22)

where the subscript B denotes contributions from the gauge fields and ghosts, whereas

F denotes those from the adjoint fermions. The determinants should be evaluated with

periodic boundary conditions for bosons and anti-periodic boundary conditions for fermions.

(Note that, because of supersymmetry, if both bosons and fermions had identical boundary

conditions the determinants would cancel. This would give the well-known result that the

lowest energy state is a BPS state whose energy does not depend on the relative separation of

the D0-branes.) The boundary conditions are taken into account by introducing Matsubara

frequencies, so that

e−Seff = e−S0βN
∫

daα
0

2π

∏

α<β

∞
∏

n=−∞







(

2πn
β

+ π
β

+ aα
0 − aβ

0

)2
+ |~aα − ~aβ|2

(

2πn
β

+ aα
0 − aβ

0

)2
+ |~aα − ~aβ|2







8

(23)

Using the formula
∞
∏

n=−∞

(

2πn

β
+ ω

)

= sin

(

βω

2

)

(24)

we obtain the result

e−Seff = e−S0βN
∫

daα
0

2π

∏

α<β





cosh β|~aα − ~aβ | + cos β
(

aα
0 − aβ

0

)

cosh β|~aα − ~aβ| − cos β
(

aα
0 − aβ

0

)





8

(25)
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In order to find the effective action for ~aα, it is now necessary to integrate the temporal

gauge fields aα
0 over the domain (−π/β, π/β]. This integration implements the projection

onto the gauge invariant eigenstates of the matrix theory Hamiltonian.

In the case where there is a single pair of D0-branes, N=2, the integration over aα
0 in

(25) can be done explicitly to obtain the effective action

Seff =
∫ β

0
dτ

{

2
∑

1

(~̇aα)2

2g2
YM

− 1

β
ln

(

P (z)

(1 − z2)15

)}

(26)

where

P (z) = 1 + 241z2 + 12649z4 + 254009z6 + 2434901z8 + 12456773z10 + 36119181z12

+61178589z14 + 6191459z16 + 36109171z18 + 12462779z20 + 2432171z22

+254919z24 + 12439z26 + 271z28 − z30, (27)

z = exp(−β|~a1−~a2|) and we have included the tree level term, which gives the non-relativistic

kinetic energies of the D0-branes.

The effective action has the low temperature expansion

Seff =
∫ β

0
dτ

(

1

2g2
YM

∑

α

(

~̇a
α)2 − 1

β

(

256e−2β|~a1−~a2| − 16384e−4β|~a1−a2|

+
5614336

3
e−6β|~a1−~a2| + . . .

))

(28)

We shall compare in the following section this result with the superstring computation of

the effective interaction between D0-branes.

4 String theoretical interactions

The effective interactions of D0-branes in superstring theory is given by computing the

annulus diagram shown in fig. 1. This was done in ref. 12 (and in 13 for Dp-branes). The

result of summing over physical (GSO projected) superstring states gives the free energy

F [L, β, ν] =
8√
πα′

∫ ∞

0

dl

l3/2
e−L2l/4π2α′

Θ2

(

ν

∣

∣

∣

∣

∣

iβ2

πα′l

)

∞
∏

n=1

(

1 + e−nl

1 − e−nl

)8

(29)

where

Θ2 (ν |iz ) =
∞
∑

q=−∞

e−πz(2q+1)2/4+iπ(2q+1)ν , (30)

L is the brane separation and ν is a parameter which weights the winding numbers of strings

around the periodic time direction. An extra factor of 2 accounting for the exchange of the

two ends of the superstring 1 ending on each of the two D0-branes is inserted in (29).
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The product in the integrand represents the sum over string states, with requisite degen-

eracies,

8
∞
∏

n=1

(

1 + e−nl

1 − e−nl

)8

=
∞
∑

N=0

dNe−Nl (31)

where dN is the degeneracy of the either superstring state at level N . For the lowest few

levels, d0 = 8 and E0 = L/2πα′.

Inserting (31) in (29) and integrating over l, the free energy has the form

F (β, L, ν) =
2

β

∞
∑

N=0

dN ln

∣

∣

∣

∣

∣

1 − e−βEN+iπν

1 + e−βEN+iπν

∣

∣

∣

∣

∣

(32)

where the string energies are given by the formula

EN =
L

2πα′

√

1 +
4π2α′N

L2
. (33)

This results in the partition function

Zstr(β, L, ν) ≡ e−βF =
∞
∏

N=0

∣

∣

∣

∣

∣

1 + e−βEN+iπν

1 − e−βEN+iπν

∣

∣

∣

∣

∣

2dN

. (34)

The physical meaning of the last formula is obvious: the partition function equals the ratio

of the Fermi and Bose distributions with the power being twice the degeneracy of states and

iν playing the role of a chemical potential. The factor of 2 in the exponent 2dN in (34) is

due to the interchange of the superstring ends as is already mentioned. It will provide the

agreement with the matrix theory computation.

In order to compare with the Yang-Mills computation, we should first re-scale the coor-

dinates so that the mass of the D0-brane appears in the kinetic term as in (1). The mass is

given by the formula

M =
1

gs

√
α′

(35)

and the Yang-Mills coupling gYM is related to the string coupling gs by the equation

g2
YM =

gs

4π2(α′)3/2
. (36)

The physical coordinate of the α-th D0-brane is identified with

~qα = 2πα′~aα. (37)

Taking N=2 in (25) and identifying L = 2πα′|~a1 − ~a2|, we see that the integrand in (25)

coincides with (34) truncated to the massless modes (N = 0) provided ν = β(a1
0 − a2

0).

8



It is clear that the integral over aα
0 is responsible for the “mismatch” of the effective

actions between the string theory computation and matrix theory computation of the free

energy. In the string theory done in the spirit of ref. 12, the parameter ν appears in the same

place as β(a1
0 − a2

0)/π but is not integrated. It is associated with the interaction of the ends

of the open string with an Abelian gauge field background Aµ(τ, ~x):

Sint =
∫

dxµAµ. (38)

If the ends are separated by the distance L, e.g. along the first spatial axis, then

ν =
∫ β

0
dτ (A0(τ, 0, . . .) − A0(τ, L, . . .)) (39)

since ẋµ(τ) = (1,~0) on the boundaries. The matrix theory automatically takes into account

the integration over the background field while in the string theory calculation of ref. 12 the

background field is fixed. This is just a reflection of the fact that matrix theory is an effective

low-energy theory of D-branes, while the older string theory did not treat the boundaries as

dynamical objects. However, it is interesting to notice how close some of the earlier string

papers came to such a description simply by the requirement of consistency 14. Further, in

the context of matrix theory it is natural to take the exponential of the free energy (32) as

in eq. (34), and only integrete over ν afterwards, a procedure not entirely obvious in a string

theory where the boundaries are not dynamical objects. This will be discussed further in

the next section.

An exact coincidence between the matrix theory and superstring results is possible only

when the higher stringy modes are suppressed. Usually, the truncation of the string spectrum

to get Yang-Mills theory is valid for small α′, that is when we are interested in temperatures

which are much smaller than 1/
√

α′. In fact, the condition in our case is a little different than

this once the length L appears as a parameter in the spectrum (33). Then, the spectrum

can be truncated at the first level only when

1

β
≡ kBT ≪

√

(

L

2πα′

)2

+
1

α′
− L

2πα′
(40)

which is the energy gap between the first two levels. If the temperature is small, this condition

is always satisfied unless the length L is not too large. In other words the truncation of the

spectrum to the lightest modes is valid for β ≫ L (or TL ≪ 1).

It is also interesting to discuss what happens in the opposite limit L ≫ β where the

interaction between D0-branes is mediated by the lightest closed string modes. The super-

string free energy can be evaluated in this limit by the standard modular transformation

which relates the annulus diagram for an open string with a cylinder diagram for a closed

9



string. Introducing the new integration variable s = 2π2/l, we rewrite (29) as 12

F [L, β, ν] =
8π4

√
2πα′

∫ ∞

0

ds

s9/2
es e−L2/2sα′

Θ2

(

ν

∣

∣

∣

∣

∣

iβ2s

2π3α′

)

∞
∏

n=1

(

1 − e−(2n+1)s

1 − e−2ns

)8

. (41)

In the limit where the brane separation is large the integration over s is concentrated in the

region of large s ∼ L2. Substituting the large-z asymptotics

Θ2 (ν |iz ) → 2 cos (πν)e−πz/4 (42)

and evaluating the saddle-point integral, we get

F [L, β, ν] ∝ cos (πν)
(β2 − 8π2α′)

3/2

L4
e−L

√
β2−8π2α′/2πα′

. (43)

Exponentiating and integrating over ν, we have

∫ 1

−1
dνZstr(β, L, ν) ∝ β2 (β2 − 8π2α′)

3

L8
e−L

√
β2−8π2α′/πα′

. (44)

Taking into account (37) the exponent at the low temperatures is the same as in (28) but

the pre-exponential differs. The dependence of the pre-exponential on L in the superstring

case emerges because the splitting between energy states in (33) is of order 1/L and the

truncation condition (40) is no longer satisfied when L is large. Higher stringy modes are

then not separated by a gap and the continuum spectrum results in the L-dependence of the

preexponential. As usual, the limits of L → ∞ and T → 0 are not interchangeable in the

superstring theory.

5 Discussion

Our main results concern D0-brane dynamics at finite temperatures. We have computed

the 1-loop effective action for the interaction of static D0-branes in the matrix theory at

finite temperature and compared it with the analogous superstring computation. We have

seen that an extra integration over the eigenvalues of the holonomy along the compactified

Euclidean time is present in the matrix theory. The two computations agrees in the low

temperature limit provided the superstring thermal partition function is integrated over the

Abelian gauge fields a0’s living on D0-branes.

The integration over a0’s is of course natural in the context of the Yang-Mills theory,

where it expresses that only gauge-invariant states should contribute to TR e−βH . But it

is also natural from the point of view of the D0-brane physics. It can be seen as follows.

Suppose we make a T-duality transformation, which interchanges the Neumann and Dirichlet

boundary conditions, along the compactified Euclidean time direction. Then a0’s become the

10



coordinates of D-instantons on the dual circle. The integration over a0’s becomes now the

integration over the positions of D-instantons. The partition function should involve such

an integration over the collective coordinates and since they are collective coordinates the

integration appears in front of the exponential of the effective action, not in the action itself.

Viewed in terms of D0-branes and open strings, we have a gas of D0-branes with open strings

between them. The individual strings might have a winding number q (more precisely 2q +1

in the case of superstrings), describing the winding around the finite-temperature space-time

cylinder. The energy of such states are ∝ βq/2πα′. However, the q’s satisfy
∑

q = 0 as a

result of the integration over a0. Physically this constraint is most easily understood by

going to the closed string channel where we have closed string boundary state on the dual

circle with radius β̃ = 4π2α′/β localized at the point (νβ̃, ~q). Passing to the momentum

representation, we write

∣

∣

∣B, ~q, ν
〉

=
∞
∑

q=−∞

e−2iπνq
∣

∣

∣B, ~q, p0 = 2πq/β̃
〉

. (45)

Here the temporal momentum is quantized as p0 = 2πq/β̃ = qβ/2πα′, which lead to the

same energy as the above mentioned open string states. In this representation
∑

q = 0

simply expresses momentum conservation in the thermal direction.

The effective static potential between two D0-branes emerges because supersymmetry is

broken by finite temperature. This effect of breaking supersymmetry is somewhat analogous

to the velocity effects at zero temperature where the matrix theory and superstring compu-

tations agree to the leading order of the velocity expansion 6. We have thus shown that the

leading term in a low temperature expansion is correctly reproduced by the matrix theory.

The discrepancy between the matrix theory and superstring computations, which we have

observed in the limit of large distances LT ≫ 1, does not contradict this statement since

temperature the limits of large distances and small temperatures are not interchangeable.

An interesting feature of the effective static potential between D0-branes is that it is

logarithmic and attractive at short distances. In the matrix theory, the singularity of the

computed 1-loop potential occurs when the distance between the D0-branes vanishes and

the SU(N) symmetry which is broken by finite distances is restored. The integration over

the off-diagonal components can no longer be treated in the 1-loop approximation! In the

superstring theory, the singularity is exactly the same as in the matrix theory since it is

determined only by the massless bosonic modes (the NS sector in the superstring theory).

Its origin is not due to the presence of massless photon states in the spectrum. Putting

ν1 = ν2 in the above D-instanton picture on the dual temporal circle, we see that the mass

of the lowest states, associated with the winding numbers 2q + 1 = ±1 is β̃/2πα′. The

divergence at L = 0 emerges, in this picture, after summing over all the open string states
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since no single state has such a divergence. It shows up only at finite temperature where the

winding number q exists.

It is important to notice that the computed partition functions take into account only

thermal fluctuations of superstring stretched between D0-branes but not the fluctuations of

D0-branes themselves. To calculate the thermal partition function of D0-branes, a further

path integration over their periodic trajectories ~a(τ) is to be performed as in (9). One might

think that classical statistics is applicable to this problem since the D0-branes are very heavy

as g2
YM → 0 so that one could restrict himself by the static approximation. This is however

not the case due to the singularity of the effective static potential at small distances. The

integral over the D0-brane positions ~a’s is divergent when the two positions coincide.

However, this singularity is only in the classical partition function. The path integral over

the periodic trajectories ~a(τ) that we actually have to do can not diverge since the 2-body

quantum mechanical problem has a well-defined spectrum. The path integral can then be

evaluated as
∑

n exp(−βEn) where En are in the spectrum of the operator H = P 2/M +Veff .

There certainly should not be the bound state energy eigenvalue at negative infinity for this

quantum mechanical problem which implies the convergence of the path integral. These

issues which are related to thermodynamics of D0-branes will be considered in a separate

publication.

Let us finally discuss when the 1-loop appoximation that we have done is applicable. The

loop expansion in Yang-Mills theory computation is valid only in the limit where

g2
YM/|~a|3 ∼ gs

(√
α′

L

)3

is small. This is due to the fact that the distance L plays the role of a Higgs mass which

cuts off the infrared divergences of the loop expansion in the 0+1 -dimensional gauge theory.

Thus, the perturbative Yang-Mills theory computation is good when

g1/3
s

√
α′ ≪ L. (46)

This can be satisfied if either the string coupling is small or if the D0-brane separation is large

compared with the string length scale. In the latter case, the truncation of the spectrum to

the lightest modes is still valid when

kBT ≪ 1

L
≪ 1

g
1/3
s

√
α′

(47)

Note that the first inequality which is independent of both the string scale and the string

coupling is the one already discussed in the previous section. In this case, the temperature

must be less than the inverse distance between D0-branes. In the case where the string

12



coupling gs is small, the criterion for validity of truncation of the spectrum becomes

kBT < 1/
√

α′ (48)

that is the usual one.
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