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1. Introduction

In this paper we will present a crude and simple quantum mechanical model of

Schwarzchild black holes in noncompact spacetimes of dimension 11 ≥ D ≥ 6. The model

accounts for many of the gross properties of a black hole: its mass, entropy, radius, as well

as the Newtonian gravitational interaction between two black holes . We hope that future

investigations will provide more evidence that it indeed describes black holes.

The model is based on the recent Matrix Theory [1] proposal for a nonperturbative,

light cone frame formulation of M theory. This proposal is far from complete. In partic-

ular, it has proven extraordinarily difficult to find a general description of Kaluza-Klein

compactification of Matrix Theory. We will try to formulate our model in a way which

uses as few of the detailed properties of Matrix Theory compactification as possible.

The essence of our black hole model is simplicity itself: for the most part, the black

hole consists of a Boltzmann gas of D0 branes[2] 1

interacting via the long range (IMF)-static forces which are associated with graviton

exchange with zero longitudinal momentum. The phrase “for the most part” means that

the bulk (at least a finite fraction) of the entropy and energy of the black hole is accounted

for by the D0 brane gas. Furthermore, the Schwarzchild radius of the hole is determined

by the quantum wave functions of the D0 branes. The other constituents of the hole lie

within its Schwarzchild radius. We will also show that the long range static Newtonian

interaction of two equal mass black holes (the technical reason for considering only equal

masses will be explained below) can be completely understood in terms of the velocity

dependent forces between D0 branes and their velocity distribution inside the black hole.

We have mentioned other constituents of the black hole. The necessity for such fol-

lows from our insistence on a Boltzmann gas of zero branes. D0 branes are bosons (and

fermions). Their statistics symmetry is the residuum of a continuous gauge symmetry

which is restored when they are very close together. We will see that a Bose or Fermi gas

does not have enough entropy to account for the properties of black holes. The Boltzmann

nature of the D0 branes inside a black hole derives from the existence of a classical back-

ground configuration of the matrix model. The requisite D0 branes are a certain class of

matrix fluctuations around this background. The background completely breaks the gauge

invariance of the model, including the would be statistics symmetry of the zero branes. In

1 After submitting this paper, we were informed by I. Volovich of a previous paper in which

black holes are treated as a Boltzmann gas of D0 branes, [3]
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a picturesque language which we will explain below, the zero branes are tethered to the

background in a way which makes them distinguishable.

The background must satisfy a number of properties in order for the model to make

sense. It is in trying to verify the existence of appropriate backgrounds that we must

appeal to our rather imperfect knowledge of the detailed dynamics of the compactified

matrix theory. We have been able to make progress on this problem only when D = 11, or

8 and we have some partial results for D = 7. Furthermore, beginning with D = 5 there

seems to be a serious problem with our ideas, and when D = 4 the logarithmic nature of

the transverse interactions between D0 branes presents us with some unresolved questions.

In order to clearly separate these issues from the central simplicity of our model, we have

decided to present things in the following order. In the next section, after recalling some

facts derived in a previous paper, [4] , we use the Boltzmann gas model to derive some of the

properties of black holes. We then present the general criteria for backgrounds which could

justify the Boltzmann gas model, and present examples of such backgrounds in 11 and 8

dimensions. Finally, we explain the difficulties in D = 4, 5. Our approach throughout is

based on a rule of thumb motivated in [4] which suggests that for the study of Schwarzchild

black holes, the optimal value of N (the value which is large enough to obtain an adequate

description without involving many redundant variables) is of order the entropy, S, of the

black hole. In the appendix we discuss some highly speculative arguments which suggest

that the appropriate Matrix Theory setting for the study of black holes in D = 4, 5 and

perhaps even 6 is the regime where N ≫ S.

2. The Boltzmann Gas Model

We begin by recalling some results of [4] . Our basic strategy is to work in the light

cone frame with a compactified lightlike direction of circumference R and total longitudinal

momentum N/R. As we increase N , the number of degrees of freedom in the model

increases. The optimal choice of N for describing any given system depends on the system.

If we choose N too small we do not describe the system adequately, while if we choose it too

large we include many redundant variables which are frozen into their ground state in the

system under consideration. Our criterion for fixing the optimal value of N for a system

described by a classical spacetime geometry is that the geometrical size of the system, RS,

must , after a longitudinal boost to momentum N/R, fit into the compactification radius.

This gives the equation
MR

N
RS = R (2.1)
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or

N = MRS (2.2)

where M is the mass of the system. This is the minimal value of N which can give us

an adequate description of the system, and larger values of N give us a description with

many redundant variables. For a generic system there is an as yet unresolved ambiguity

about which geometrical parameter RS to use in this equation, but for Schwarzchild black

holes RS is clearly the Schwarzchild radius, since there is no other length scale in the

Schwarzchild geometry. In this case it is easy to see that N is the entropy of the black

hole (all such statements are meant as order of magnitude estimates, no precise numerical

coefficients are computed in this paper).

The other result of [4] which we wish to recall is the description of Hawking particles in

the light cone frame. In the rest frame, a typical Hawking particle has energy TH ∼ M−

1
D−3

and isotropically distributed momenta of the same order of magnitude. After the boost it

has longitudinal momentum N
MRTH ∼ 1. Its transverse momentum is of order TH and its

light cone energy is of order MR
N TH ∼ N−

2
D−2 . We will see that these are precisely the

kinematic properties of one of our Boltzmann D0 branes.

We are now ready to present our model. For concreteness, we restrict attention to

toroidally compactified matrix models. We believe that our considerations will turn out

to be more general than that, since they rely only on very general properties of the model.

In particular, in all known versions of Matrix Theory, momentum in the noncompact

directions is carried only by DN degrees of freedom X i
a which represent the positions of N

D0 branes in the noncompact dimensions. Due to the gauge invariance of the underlying

model, there is some ambiguity about how these D0 brane positions are extracted from

the full set of degrees of freedom. The role of the background, which we discuss in the

next section, is to resolve this ambiguity. For the moment, we simply assume that the X i
a

can be thought of as the coordinates of distinguishable particles.

When the D0 branes are far apart, one can calculate an effective interaction between

them [5] which has the form (if the D0 brane velocities are slow, which we will verify self

consistently in a moment):

H =
N

∑

a=1

p2
a + AGN

∑

a,b

(pa − pb)
4

|Xa − Xb|D−4
(2.3)

When D = 4 the power law interaction is replaced by a logarithm. GN is the dimensionally

reduced Newton constant, and the coefficient A was calculated in [5] . This is indeed
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the correct interaction between uncompactified gravitons in D spacetime dimensions. In

Matrix Theory it is calculated by integrating out the Super Yang Mills degrees of freedom

other than the D0 brane coordinates.

Now consider a metastable configuration in which all N D0 branes are bound together.

In the spirit of the mean field approximation, each D0 brane should have approximately

the same mean distance RS from the center of mass, and (by the uncertainty principle) the

same mean momentum 1/RS. Equating the kinetic and potential terms in the Hamiltonian

of the bound system (the virial theorem), we obtain

BG−1
N RD−2

S = N (2.4)

The numerical constant B cannot be calculated with our present crude methods. We are

treating the system of D0 branes as a Boltzmann gas. Thus its entropy is of order N . We

have thus derived the Bekenstein-Hawking area law (up to a numerical constant) from the

basic principles of Matrix Theory.23

We can also calculate the energy of the system to the same accuracy. The single

particle energies are of order R−2
S , so the total energy scales like N1−2/(D−2). Using the

standard relation between light cone energy and mass, we find that the mass of the system

scales like

M ∼ G
−1/(D−2)
N N1−1/(D−2) = G

−1/(D−2)
N N (D−3)/(D−2) (2.5)

Again, the dependence on Newton’s constant follows from dimensional analysis and the

fact that the radius, R, of the lightlike circle is only an overall scale in the Hamiltonian.

Thus, the correct relation between mass and Schwarzchild radius also follows from our

model.

Note that the kinematics of the individual D0 branes (transverse momentum of order

R−1
S , longitudinal momentum of order one), is precisely that of boosted Hawking particles.

Thus it is tempting to identify the elementary process of Hawking radiation as the emission

of a single D0 brane from the bound cluster. In order to discuss the rate of this process,

2 There is a subtle loophole in this argument which we will return to when we discuss back-

grounds in the next section .
3 As this paper was in preparation, we received preprints by Horowitz and Martinec [6] and

by Li [7], which also derive the area law in arbitrary dimensions. These authors also claim to

calculate the entropy as order N , but do not make explicit the fact that one must treat the D0

branes as distinguishable.
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we will have to say something about the nature of the backgrounds. Another consequence

of these kinematical relations is the necessity for treating the D0 branes as a Boltzmann

gas. The energy per particle, or effective temperature, is of order R−1
S and goes to zero

with N . In a low temperature Bose or Fermi gas, the entropy per particle vanishes as a

power of the temperature. Thus, we must assume Boltzmann statistics for the zero branes

in order to reproduce the entropy of black holes.

As a final application of our model, we will compute the Newtonian gravitational

potential between a pair of equal mass static black holes4. The restriction to equal mass

is a consequence of our strategy of choosing an optimal value of N to study any system.

Black holes of different masses have very different numbers of excited degrees of freedom.

We cannot give an adequate description of the combined system without “overdescribing”

the black hole of smaller mass. We have yet not understood how to study such a system

in the matrix model.

Another important qualification is that present Matrix Theory technology restricts us

to the study of processes with zero longitudinal momentum transfer. Thus rather than

studying black holes at fixed positions in their common rest frame, we must average the

potential over the longitudinal circle. This introduces an interesting subtlety into the

calculation: the length of the averaging circle in the boosted frame is Lorentz contracted

relative to that in the rest frame. We will do a calculation of the light cone energy of the two

black hole system in the boosted frame. We then use the usual connection between light

cone energy and rest mass to calculate the rest energy, and thus the static potential of the

system. This must be interpreted as the Newtonian potential averaged over a longitudinal

circle whose size is related to that in the boosted frame by a Lorentz contraction factor.

To compute the light cone energy of a pair of black holes, we take into account only

the velocity dependent interactions between their zero brane constituents:

δP− = AGN

∑

a,b

(p1a − p2b)
4

|X1a − X2b|D−4
(2.6)

This should be averaged over the velocity distribution of the two holes. Many terms drop

because of spherical symmetry of the distributions and we are left with

δP− ∼ N2 GN

rD−4
(GNN)

−4
(D−2) (2.7)

4 The idea for this calculation is due to S.H.Shenker, who also collaborated in the actual

computations.

5



where we have used r to denote the distance between the centers of mass of the two black

holes and inserted our result for the average velocity. This is to be compared with

δP− =
(2M + V (r))2

N
− 4

M2

N
= 8

M

N
V (r) (2.8)

We obtain

V (r) ∼ GN
N3

Mr(D−4)
(GNN)

−4
(D−2) (2.9)

Using the Bekenstein-Hawking mass-entropy relation (which we have derived above), we

get:

V (r) ∼ GN
M2

r(D−4)
(GNN)

−

1
(D−2) (2.10)

This is the correct formula for the static Newtonian potential appropriately averaged over

the longitudinal circles. To see this note that the last factor is 1/RS. Indeed, the averaging

should introduce a factor of 1/R, and if we are in the rest frame of the black holes and

work with S ∼ N , then R ∼ RS .

An important question is whether the more complicated multibody forces which occur

at higher orders in the matrix model perturbation expansion can effect the calculations

which we have done. For example, the three body interaction computed by Dine and Ra-

jaraman[8] scales like N3 v6

r14 in eleven dimensions. Note that for values of v ∼ 1
r ∼ N−(1/9)

this has the same order of magnitude as the terms we have included in our analysis5. Thus,

although a quantitative analysis of the black hole will have to take into account all sorts

of complicated multibody interactions, the scaling laws which we have derived will still be

obeyed.

3. Background Information

We now turn to the central question of why it is proper to treat D0 branes as Boltz-

mann particles. The basic intuition is that, in the matrix model, particle statistics is part

of a larger gauge group, which acts on degrees of freedom in the theory which are not

particle like. They do not carry momentum in the spacetime of the matrix model, but

may be viewed as internal excitations of the partons which do carry such momentum. In

5 This observation is due to S.H.Shenker, who informs us that the general term in the pertur-

bation expansion obeys this scaling rule. It is of the form N
k v

2k

r7(k−1) .
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some sense, this is one of the key feature which distinguishes Matrix Theory from quantum

field theory (the other is its holographic nature).

Consider a background configuration , Mcl of Matrix Theory described by some fixed

value of the matrix variables, Mcl. In particular, it will have fixed values Xcl of the

position variables whose zero mode is shifted by a multiple of the unit matrix under spatial

translations. The background must satisfy a number of properties:

1. It must be a metastable, classical configuration of the matrix model, i.e. the center

of a coherent state with long lifetime.

2. It must not be left invariant by any element of the gauge group. As a consequence of

the first postulate, this leads to a situation in which the gauge group is “spontaneously

broken”. Since we are always dealing with a finite quantum system, this means that

the time scales for motions of the collective coordinates which gauge rotate the classical

background are much longer than any of the other time scales in the system.

We then define a configuration of “zero branes in the classical background Mcl” as

the configuration in which we shift the position coordinates by

Xcl → Xcl +
N

∑

a=1

xaδa, (3.1)

where δa is a collection of N commuting N × N matrices which we will specify more

precisely in a moment.

All compactifications of Matrix Theory whose Hamiltonian is understood contain a

term

−Tr tr [X i, Xj]2 (3.2)

where the X i are related to coordinates in the noncompact space dimensions. They are

N ×N matrices whose matrix elements are operators in another Hilbert space. The small

tr refers to the trace in this internal space, while Tr is the matrix trace. Such a term will

give rise to harmonic potentials for the coordinates xa in the classical background Xcl.

For a given classical background, we will choose the δa in such a way as to minimize the

coefficients of these harmonic potentials. We will give examples of this below in particular

dimensions, and argue that it is always possible to make these terms as small as 1
N

∑

xa2. If

the dimension D > 5 then it is easy to see that, for distances of order RS ∼ (GNN)1/(D−2),
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the harmonic energy is no larger than the energies associated with zero brane interactions6

(in D = 6 the two energy scales are the same).

We will impose two more constraints on the classical background:

3. The total energy of the background configuration should be smaller than or equal to

the total zero brane energy N1− 2
D−2 in dimensionally reduced Planck units.

4. The classical size of the background, should be smaller than or equal to the

Schwarzchild radius. We will comment on this condition further below.

If we can find backgrounds which satisfy all of these conditions then we can remedy the

difficulties of the zero brane model of black holes which we presented in the previous section.

That model actually had two inconsistent features. The first of these was the treatment of

the zero branes as if they were distinguishable particles. This is resolved by the existence

of the background. Mathematically, the configurations described by Equation (3.1) have

no residual SN gauge symmetry which could act as particle statistics. Intuitively, the

interactions with the background distinguish the zero branes from each other. We will see

a particularly vivid physical picture of this in the eleven and eight dimensional examples.

The second unclear feature of the model of the previous section was the assumption

of a bound configuration of zero branes. The matrix Hamiltonian has only one exact

bound state configuration - the supergraviton with longitudinal momentum N . This is

a threshold bound state. Every other state in the theory eventually breaks up into sep-

arated asymptotic supergraviton states (the asymptotic supergravitons with longitudinal

momenta smaller than N are also stable excitations of the model, but they do not cor-

respond to a bound configuration of N zero branes). The background makes explicit the

necessity of finding metastable excitations of the system. Once the metastable background

configuration is present, its zero brane excitations are bound to it by harmonic forces. It is

only via the quantum processes which allow the background to fluctuate that the system

can decay.

The model of metastable classical background plus zero branes predicts the correct

relation between the mass and Schwarzchild radius of a black hole, as well as the grav-

itational interaction between black holes of equal mass. We would like to claim that it

6 Note that in principle we should rederive the two body zero brane interactions in the presence

of the background, by calculating the one loop quantum fluctuations around the configuration

(3.1) . Since the background is supposed to receive only small quantum corrections itself, it seems

obvious that for large x
a the result will be the same as that in the absence of the background,

but this point should be checked.
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also predicts the correct Bekenstein-Hawking mass entropy relation for black holes. In

order to do this we must understand the entropy coming from summing over background

configurations. It should turn out to be less than or equal to the zero brane entropy. We

do not have a general or rigorous understanding of why this is so. A complete answer to

this question would constitute a proof of the Bekenstein bound on entropy in the context

of the matrix model (in [1] it was argued only that the bound was satisfied by the ground

state wave function). We do not have such a proof. In dimensions 11 and 8 we believe that

we understand the entropy of background configurations satisfying the conditions outlined

above. This shows that the configurations which we study do satisfy the entropy relation

for black holes. We do not have an argument that configurations other than the ones we

have studied cannot pack larger entropy into the same area.

Another issue is raised by a discussion of the entropy of backgrounds. Any configu-

ration satisfying the criteria we have outlined will behave like a black hole. But what is a

typical background? In particular, if there are background configurations with entropy of

order that of the zero branes, then they must be understood if we ever wish to compute

the coefficient in the Bekenstein-Hawking formula. We cannot make any more progress on

these questions without turning to particular examples.

4. Schwarzchild Black Holes in Eleven Dimensions

In eleven noncompact dimensions, it is natural to search for the semiclassical back-

grounds of our black hole model among the membrane excitations of the eleven dimen-

sional matrix model. The latter are semiclassical excitations of the model whose quantum

metastability is guaranteed by their closeness to exact BPS configurations [1] [9]. Let us

remind the reader of how these configurations are constructed. The matrices

UkV l (4.1)

where U and V are unitary matrices satisfying UN = 1 = V N , and

UV = e
2πi
N V U, (4.2)

are a complete set of N ×N matrices. For large N we concentrate on those matrices whose

expansion

M =
∑

MklU
kV l (4.3)
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approaches the Fourier expansion of a smooth function on a torus with coordinates p

and q in the interval [0, 2π]. The identification is made via the formal substitution U →
eiq , V → eip. For such matrices commutators approach 2πi

N times the Poisson bracket of

the corresponding functions, and the trace approaches N times the integral over the torus.

The matrix model action transmutes under these formal substitutions into the action of

the light cone supermembrane [10].

A membrane configuration is simply a choice of the X coordinates of the matrix model

to be such smooth functions on the torus7 A generic such choice will break all of the U(N)

gauge symmetry. Furthermore, it is clear from the construction that for a large smooth

membrane these are long lived semiclassical states.

Now consider the matrices defined by the following periodic Gaussian functions

Θpi,qi
=

∑

k,l

e−N [(p−pi−2πk)2+(q−qi−2πl)2]. (4.4)

For large N , the commutator of two of these matrices is well approximated by the Poisson

bracket and is smaller than

e−
1
2 N [(pi−pj)2+(qi−qj)

2] (4.5)

Taking a distribution of points (pi, qi) spaced by distances of order 1/
√

N we can obviously

make this commutator as small as we like. There are o(N) such points and so we can find

o(N) matrices δa of this form.

The δa are normalized to Trδa = 1 They are the “cells in phase space” which make

up individual D0 branes. Note that we have implicitly used the classical membrane con-

figuration to define the δa . We cannot do unitary transformations on δa which leave the

membrane configuration unchanged. Thus, there is no statistics symmetry as there is for

D0 branes in free space. Each zero brane is “tethered” to some particular point in the

membrane volume.

We can now compute the harmonic potential between the zero branes and the mem-

brane by plugging the configuration Xcl +
∑

xaδa into the membrane Hamiltonian. The

7 We choose the torus only for simplicity of exposition. Actually for sufficiently large N we

can find matrices reproducing membranes of any finite genus with any stated accuracy , and in

principle any such background will serve the same purpose. For fixed N , only a finite number of

genera will be well approximated.
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terms bilinear in different δa are of the same order as the commutator between different

D0 branes, and so we drop them. The total harmonic potential is thus

δH ∼
∑

(xa)2N

∫

dpdq [p2 + q2](∇Xcl)
2e−N(p2+q2). (4.6)

The factor N in front of the integral comes from the 1/N in the definition of the energy in

terms of membrane variables, and two factors of N originating in the derivatives of the δa.

For truly smooth membranes, the gradient of Xcl is independent of N as N → ∞. The

harmonic potential then has an overall coefficient 1/N . It will also be useful to consider

configurations Xcl whose gradients scale like some positive power of N . In principle, if

we wanted to use these in the construction of black holes, we would have to investigate

their stability properties, since it is no longer clear that they are close to being BPS

states. In the end, we will discard such configurations for other reasons so we will not

stop to perform this investigation. The harmonic potential for such a configuration is

larger by a factor of k2, where k is its maximum wavenumber, than that for a smooth

membrane. In any event, we must have k <
√

N . For larger values of k the membrane

description of matrices is completely wrong. There are no matrices corresponding to such

short wavelength membrane configurations.

We have now essentially completed the construction of a black hole model in eleven

dimensions. The energy of smooth membrane configurations is of order 1/N and thus

negligible compared to the energy N7/9 (or even to the energy per particle, N−2/9). The

harmonic potential experienced by a single zero brane at the Schwarzchild radius RS ∼
N1/9 is of order N−(7/9), also much less than the energy per particle of the gas of interacting

zero branes. Finally, the entropy of all possible smooth membrane configurations can be

estimated as that of a cutoff 2+1 dimensional quantum field theory, with cutoff independent

of N . The entropy is thus of order 18 and makes a negligible perturbation to the zero brane

entropy N .

We can try to find a larger set of configurations by allowing k to grow with N .

The condition that the harmonic potential not interfere with the interacting zero brane

dynamics is k2 < N5/9. The membrane entropy is of order k2 (volume of the field theory

in cutoff units), and is still negligible compared to the zero brane entropy. In order to have

entropy of order N from membrane configurations, we would have to consider membranes

8 For each membrane we can sum over all configurations of the D0 branes, so the membrane

and zero brane entropies should be added.
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with a wave number cutoff of order
√

N . This is the edge of validity of the membrane

picture 9. These configurations have energy at least as large as N and do not satisfy the

black hole mass-entropy relation. Their mass is at least N , larger by a factor N1/9 than

that of a black hole of similar entropy. The Schwarzchild radius of a black hole of this

size will not fit into the compactification volume. It is not easy to obtain a first principles

matrix model estimate of the size of these configurations. A normal 2 + 1 dimensional

field theory estimate of the mean square fluctuation of the membrane coordinate gives

< x2 >
1
2∼ N1/4. This is much larger than the Schwarzchild radius of a black hole of

mass N in 11 dimensions. We suspect that, if anything, this is an underestimate of the

fluctuation of the membrane coordinate in this cutoff, nonrenormalizable field theory.

Thus, among membrane configurations of the matrix model, none can be found which

compete with the membrane plus zero brane gas in putting a large amount of entropy into

a small area. If we could demonstrate the same thing for all other states of the matrix

model, we would have proven the Bekenstein bound in eleven dimensions.

5. Eight Dimensional Black Holes in Matrix Theory

We have studied the system with eight noncompact dimensions in [4] . Here we

elaborate the discussion and take a somewhat different point of view. Our general approach

in the current paper suggests that we look for a classical background to distinguish the

zero branes. We can of course study the same type of background which we used in eleven

dimensions - membranes. However, we will find a much more common type of background

in the eight dimensional version of the theory, one which contributes a finite fraction of

the energy and entropy of the black hole. Indeed, the typical background is described by

the configurations we studied in [4] .

In order to have entropy of order N and carry a finite fraction of the energy, the

background must consist of o(N) independent excited degrees of freedom, each carrying

an energy of order the temperature, N−(1/3). This means that most of the degrees of

freedom of the 3 + 1 dimensional SYM theory are irrelevant for these considerations, for

they carry energy of order one. The relevant DOF are those of the uncompactified model,

except that the coordinates in the compactified directions are angle variables, since they

9 It should be clear that such configurations could not be taken as backgrounds in our model.

We are discussing them merely as an example of high entropy configurations which are not con-

tained within the Schwarzchild radius.
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originate as Wilson loops of the 3+1 gauge fields. The first component of the background is

a classical expectation value of these Wilson loops corresponding to a more or less uniform

lattice of D0 brane positions on the three torus, with spacing N−(1/3). This background

breaks the gauge symmetry down to U(1)N , the subgroup preserving the basis in which the

Wilson loop is diagonal. Note in particular that there is no permutation gauge symmetry

among the eigenvalues. Each eigenvalue is labelled uniquely by its position on the three

torus. The energy of this configuration of Wilson loops is of course zero. We will call

off diagonal matrix elements in the basis in which the Wilson loop is diagonal, charged

fields . Those corresponding to gauge field components will be called W bosons, and those

corresponding to noncompact position coordinates will be called charged Higgs fields.

In the presence of the Wilson loop, the charged W boson and Higgs fields (the com-

ponents of off diagonal matrices in and perpendicular to the three torus respectively) have

no zero energy modes. The IJ matrix element10 feels a potential AI − AJ . For points

separated by o(1) links of the lattice, this is of order N−(1/3). Of course this is also the

energy of the lowest lying mode of this variable. Thus, ignoring for the moment the term

in the Hamiltonian quadratic in commutators of the charged fields with each other, we

should be able to excite each of these degrees of freedom to a classical state with energy of

order the temperature. Thus, for each D0 brane we excite o(1) of these degrees of freedom

(its links to a few nearest neighbors). This gives the background an entropy of order N -

there are ecN different backgrounds with the same characteristics.

The zerobrane positions in the noncompact directions are the diagonal matrix elements

ra (with 1 ≤ a ≤ 6) of the Higgs fields. Note that because of the nature of the Wilson

loop there is no residual SN gauge symmetry permuting these variables. The harmonic

potential for these variables has the form

< |WIJ |2 > (ra
I − ra

J)2. (5.1)

where the brackets denote averageing over the ensemble of backgrounds. There are actually

two terms of this form, one coming from the charged Higgs field background and the other

from charged W bosons, but they have the same general nature, so we lump them together.

We will take the individual matrix elements WIJ to be of order one. To understand the

order of magnitude of the harmonic potentials , begin with the special configuration where

10 We use multiindex notation. Capital letters refer to triplets of integers specifying positions

on the zerobrane lattice.
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the matrix elements are equal to one only between nearest neighbor points on the toroidal

lattice of zero branes and zero elsewhere. Then the frequency squared matrix for the

set of coupled oscillators looks like the Laplacian on a three dimensional toroidal lattice

of side N (1/3) . The nonzero eigenvalues of this matrix are thus of order N−(2/3). The

eigenvectors represent displacements of the zero branes away from the center of mass of the

system. When these displacements are of order the Schwarzchild radius , that is o(N1/6),

these harmonic energies are of the same order as the single particle energies of the zero

branes computed in the mean field approximation with their velocity dependent two body

interactions. Thus, a consistent picture emerges, in which both harmonic attraction to

the background and interparticle forces bind the zero branes at a distance of order the

Schwarzchild radius from the center of mass.

Small changes of individual WIJ matrix elements are equivalent to changing the Lapla-

cian on a flat toroidal lattice to that on a curved background . The inclusion of nonzero

matrix elements between nonnearest neighbors (but always a distance of order one away

from each other) adds higher derivative terms to the Laplacian and does not change the

qualitative scaling behavior for large N .

Finally, we must check the terms in the energy coming from the square of the commu-

tator of charged fields. Consider for example matrices whose only nonzero matrix elements

are between nearest neighbors on the toroidal lattice. If all of the nearest neighbor matrix

elements were equal, the matrix would be a sum of commuting shift operators on the torus.

Thus, the commutator of two such local matrices is proportional to differences of nearest

neighbor matrix elements. The Hamiltonian is proportional to the trace of the square of

the commutator. If we take nearest neighbor matrix elements of order one, with differences

between them of order N−(1/6), then the energy will be a sum of N terms, each of order

N−(1/3). Clearly, these estimates generalize to matrices with nonzero matrix elements

for o(1) next to nearest neighbors. Thus, it is possible to find classical configurations of

charged fields whose energy and entropy are of the same order as those of the zero branes.

It is interesting that the background entropy is so low in eleven dimensions but appears

to be a finite fraction of the total black hole entropy in eight. We do not have a clear picture

of the significance of this result, and we do not know how it generalizes to other dimensions.

In seven dimensions, although the compactified theory is poorly understood, we believe

that we have identified background configurations involving tensionless strings, which have

energy per zero brane of order N−(2/5). This suggests that high entropy backgrounds will

be found in all dimensions below nine. However, we do not know how to compute the
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harmonic restoring force in this case and the analysis is too preliminary to be presented

here.

If the background contributes a finite fraction of both the energy and entropy of the

black hole, it is somewhat artificial to separate the system into zero branes plus background.

We suspect that this may be the general case when the noncompact dimension is less than

nine. Nonetheless, we have chosen to present the statistical mechanics of matrix black holes

in terms of the zero brane gas, because this makes it clear that there will be configurations

satisfying the black hole mass–entropy–radius relation for Matrix Theory compactifications

to any dimension greater than five. Even in eight dimensions, we can find backgrounds

with harmonic potentials of order 1/N and build black holes from them. They are simply

much less numerous than the configurations studied in [4] .

It is in four and five uncompactified dimensions that our approach really appears

to run into trouble. We have so far been unable to find configurations which produce a

harmonic potential with coefficient smaller than 1/N . In D dimensions,at the Schwarzchild

radius, this gives an energy of order N
2

D−2−1, which should be compared to the energy per

particle of the D0 brane gas N−

2
D−2 . The ratio of energies is N

6−D

D−2 . Thus, in four and

five dimensions the harmonic potential dominates and our picture breaks down.

Actually, in four dimensions, this discussion is altogether too naive. Indeed it is com-

pletely unclear whether the entire matrix model formalism makes sense in four dimensions.

In the matrix model we are supposed to treat four dimensions by first compactifying to

three and then decompactifying the longitudinal direction by taking N to infinity. But in

three dimensions, Kaluza Klein modes have long range dilaton fields which render their

BPS charges undefined. The energy of a generic collection of BPS Kaluza-Klein modes

appears to be infinite. We suspect that this is a deep property of M theory which implies

that compactifications below four dimensions only make sense in a cosmological context. A

discrete light cone approach could only make sense above four dimensions. This is clearly

not the time or place to discuss such issues.

This leaves us with five dimensional compactifications of the matrix model. We are

unsure whether the difficulty which our model encounters indicates the necessity of finding

special background configurations with small harmonic potentials for zero branes, or a

deeper sickness in the five dimensional theory. In the Appendix we suggest that the

sickness may be avoided in the regime N ≫ S.
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6. Conclusions

We have been led to a remarkably simple picture of Schwarzchild black holes in matrix

theory, which appears to be valid when there are more than five noncompact dimensions.

They are collections of zero branes, interacting with themselves and with a classical back-

ground. In eleven dimensions the background appears to be necessary only to “Boltzm-

annize” the zero branes, that is to break their statistical gauge symmetry. It does not

contribute appreciably to the energy or entropy of the black hole. In eight dimensions, the

background does make substantial contributions to the entropy, and we expect that this

may be the general case with eight or fewer compact dimensions.

One obvious calculation which we have not done is the Hawking evaporation rate.

Given the parallel between the kinematics of Hawking particles and our D0 branes, a

natural guess for the Hawking evaporation mechanism is a quantum fluctuation which

erases the part of the classical background which interacts with a given D0 brane. In our 8

dimensional model for example, this consisted of o(1) strings. We have not yet been able to

estimate the probability for these strings to disappear and we are not able to understand

why it should decrease like a power of N (let alone compute the power). If indeed this

probability falls like an appropriate power of N then we could understand the Hawking

evaporation formula from the microscopic mechanics of our model. This is an interesting

topic for further study.

Apart from the obvious call to solve the mysteries of low dimensional compactification,

our approach should be extended in various directions. One should obtain a clear picture

of the relevant background configurations for all D > 5. One should also extend our

considerations to charged and rotating black holes. Perhaps most interesting of all would

be to model the experience of an “observer” falling into our matrix black hole, and to

extract the spacetime metric which he feels.

Finally, we remark that recent work on scattering in Matrix Theory[8] [11] has made

it clear that the correct gravitational physics cannot be extracted from the matrix model

at small values of N , unless it is protected by SUSY. Although our analysis depended

mostly on large N scaling laws, we do not know the extent to which our considerations

will be affected by these results. In particular, our estimate of the value of N necessary

to reproduce black hole physics, takes no account of the transverse separation of the black

holes. It may be that the correct physics can only be obtained in a regime in which

the black hole wave functions overlap substantially. In this case our derivation of the
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Newtonian interaction between black holes will appear accidental. We hope that this is

not the case, since the Boltzmann gas model is appealing in its simplicity. The best way

to attack these questions is to see what other properties of black holes can be derived from

the model.
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Appendix: The Well Resolved Black Holes

In section 5 we showed that our approach runs into trouble for black holes in D < 6.

Note that in another approach [12] the search for black holes in matrix theory compactified

to five dimensions has led to the prediction that the system has negative specific heat. This

is not unexpected because D = 5 is, of course, the dimension where the effective theory of

the matrix model (at least for toroidal compactifications) seems to contain gravitational

degrees of freedom [13]. Let us note, however, that the pathologies with black holes have

appeared in the regime N ∼ S where there are barely enough degrees of freedom to describe

them qualitatively. In this section we suggest that they may be avoided for N ≫ S where

the black holes are well resolved and we may hope for a quantitative description.

Let us see what form of the light-cone equation of state is necessary to reproduce the

mass-entropy relation for Schwarzschild black holes. Using E = M2R/N , we arrive at

S ∼ G
1

D−3

N

(

NE

R

)

D−2
2(D−3)

. (6.1)
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The specific heat implied by this is positive for D > 4.

D = 4 is a special case where the specific heat is infinite,

S ∼ NGN

R
E .

This behavior is characteristic of a gas of strings whose tension scales as 1/N2. Strings

of this kind have been conjectured to exist in M-theory compactified on T 7 [14], but their

relevance to this equation of state is unclear.

For D = 5 (6.1) gives S ∼ E3/4, which is characteristic of a 3+1 dimensional massless

field theory. In Matrix theory compactified on T 6 there are 3 transverse directions. In

[15] it was suggested that the 0-branes become smeared in these directions, so that an

appropriate description is 3 + 1 dimensional. Our comparison with Schwarzschild black

holes seems to give an independent reason to believe that Matrix theory compactified on

T 6 is described at very low energies by such a field theory.

For D = 6, (6.1) gives S ∼ E2/3, which is characteristic of a 2+1 dimensional massless

field theory. For D > 6 there are no cases where we find a field theoretic scaling, S ∼ E
p

p+1 .

It is interesting that, only in cases where the specific heat is infinite or negative for

N ∼ S, do we find recognizable scalings for N ≫ S. Based on this we speculate that the

appropriate setting for black holes in D = 4 and 5 (and perhaps even in D = 6) is to work

with N ≫ S.
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