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Abstract

We present arguments that the structure of the spectrum of the supersymmetric
matrix model with 16 real supercharges in the large N limit is rather nontrivial,
involving besides the natural energy scale ∼ λ1/3 = (g2N)1/3 also a lower scale
∼ λ1/3N−5/9. This allows one to understand a nontrivial behaviour of the mean
internal energy of the system E ∝ T 14/5 predicted by AdS duality arguments.

1 Introduction

The AdS/CFT duality is an efficient method allowing one to obtain nontrivial predictions
for many observables in certain supersymmetric field theories at strong coupling [1]. Most
results were derived for N = 4 4D supersymmetric SU(N) Yang–Mills theory in the ’t
Hooft limit N → ∞ with fixed and large λ = g2N . The wonderful Maldacena conjecture
that the properties of this theory at λ≫ 1 can be derived by studying classical solutions
of 10D supergravity is not proven now. However, it was verified in several nontrivial
cases where exact solution is known. Arguably, the most lucid example is the circular
supersymmetric Wilson loop [2]. For large N , its vacuum average can be perturbatively
evaluated in any order in λ. The sum of the perturbative series is

〈W 〉circle =
2I1(

√
λ)√

λ
. (1.1)

On the other hand, the same quantity can be calculated at large λ on the AdS side. The
result

〈W 〉circle =

√

2

π
e
√

λ 1

λ3/4

[

1 − 3

8
√
λ

+ . . .

]

. (1.2)

coincides exactly with the asymptotics and preasymptotics of (1.1). Another important
example is the so called cusp anomalous dimension [3].

Besides vacuum averages and the scattering amplitudes, one can also calculate ther-
modynamic characteristics. Thus, the mean energy density of N = 4 4D SYM system

∗On leave of absence from ITEP, Moscow, Russia.

1

http://arXiv.org/abs/0812.4753v1


at nonzero temperature was evaluated at strong coupling at leading [4] and subleading [5]
order. The result is

E =
π2N2

2
T 4

[

3

4
+

45

32

ζ(3)

λ3/2
+ . . .

]

(1.3)

(the coefficient in front of T 4 is the coefficient in the Stefan-Boltzmann law). In this case
the exact result for the function f(λ) multiplying the factor π2N2T 4/2 in the expression
for E is not known (though asymptotic expansion (1.3) matches perfectly the known
perturbative expansion of f(λ) at small λ), and it is not thus clear how the nontrivial
coefficient 3/4 in the strong coupling asymptotics is obtained, if staying in the framework
of field theory and not going to the AdS side.

Duality relationships can be established and duality predictions can be made, however,
not only for 4D theory, but also for its low-dimensional “sisters” obtained by dimensional
reduction. In particular, by studying a certain charged black hole solution in 10D su-
pergravity, one can evaluate the average internal energy of the supersymmetric quantum
mechanical system obtained from N = 4 4D SYM by keeping there only zero spatial
field harmonics. The model involves 8 complex or 16 real supercharges. The N = 4 4D
SYM model can in turn be obtained by dimensional reduction from N = 1 10-dimensional
theory. To distinguish it from the models obtained by dimensional reduction from 4D
and 6D N = 1 theories, we will refer to it as “10D SQM model”. Its Hamiltonian is

H =
1

2
Ea

i E
a
i +

g2

4
fabef cdeAa

iA
b
jA

c
iA

d
j +

ig

2
fabcλa

α(Γi)αβλ
b
βA

c
i , (1.4)

where i, j = 1, . . . , 9, a = 1, . . . , N2 −1 , and α, β = 1, . . . , 16. Ea
i are canonical momenta

for the bosonic dynamic variables Aa
i . Now, λa

α are Majorana fermion variables lying in
the 16- plets of SO(9). Γi are 9–dimensional (real and symmetric) Γ-matrices. One can
introduce 8(N2 − 1) holomorphic fermion variables,

µa
1 = λa

1 + iλa
9 , . . . , µa

8 = λa
8 + iλa

16,

µ̄a1 = λa
1 − iλa

9 , . . . , µ̄a8 = λa
8 − iλa

16 , (1.5)

such that the wave functions depend on Aa
i and on µa

1,...,8, while µ̄a|1,...,8 are the fermion
canonical momenta, µ̄ = ∂/∂µ. Only the states Ψ satisfying the Gauss law constraint

ĜaΨ = fabc

(

Ab
iÊ

c
i −

i

2
λb

αλ
c
α

)

Ψ = 0 . (1.6)

should be kept in the spectrum.
In 6D and 4D theories, holomorphic fermion variables are defined more naturally as

Weyl fermions lying in the complex representations of the rotational groups SO(3) and
SO(5) (the spinor representation is real in SO(9) ). For example, in 4D theory, the third
term in the Hamiltonian is

− igfabcAa
i λ̄

bα(σi)
β

α λ
c
β, α, β = 1, 2 (1.7)
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(λaα ≡ ∂/∂λa
α). We see that one can define in this case (and also in the 6D case) the

fermion charge F = λa
αλ̄

aα that commutes with the Hamiltonian. In the 10D case, the
fermion charge µa

αµ̄
aα is not conserved.

The coupling constant carries dimension here, [g2] = m3. The natural energy scale of
the theory is thus

Echar ∼ (g2N)1/3 ≡ λ1/3 . (1.8)

The duality prediction for the average internal energy is [6, 7] 1

〈

E

N2

〉

T≪λ1/3

≈ 7.41λ1/3

(

T

λ1/3

)14/5
[

1 +O

(

T

λ1/3

)9/5
]

. (1.9)

A question arises whether this rather nontrivial critical behaviour can be understood
in terms of the dynamics of the system (1.4) without going to the supergravity side. Even
though the system (1.4) is complicated, it is just a QM system with large, but finite (for
finite N) number of degrees of freedom. The analysis of its dynamics at strong coupling
is a priori a much more simple task than the analysis of a strongly coupled field theory.
And, indeed, in recent papers [7, 8] (see also [9]) a numerical analysis of the system (1.4)
was performed. The results are in a good agreement with (1.9). Can one understand
it also analytically (staying firmly on the SQM side) ? Our answer to this question is
positive.

However, before giving this answer (it will be presented by the end of the next section),
we are in a position to describe a proper context where the question should be posed and
remind some well-known facts.

2 Thermodynamics and the spectrum

As a warm-up, consider the harmonic oscillator, H = (p2+ω2x2)/2, at finite temperature.
The partition function is

Z =

∞
∑

n=0

exp

{

−βω
(

n +
1

2

)}

=
1

2 sinhβω
2

. (2.1)

At large temperatures T = β−1,

ZT≫ω ≈ T

ω
. (2.2)

The latter result can also be obtained semiclassically

Zhigh T ≈ Zsemicl =

∫

dpdx

2π
exp

{

−β
2

(p2 + ω2x2)

}

=
T

ω
. (2.3)

1We sketch the derivation of the leading asymptotics ∝ T 14/5 in the Appendix.
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The mean energy is

〈E〉T = − ∂

∂β
lnZ =

ω

2 tanhβω
2

. (2.4)

At low temperatures, 〈E〉T ≈ ω/2 +O(e−βω), while at high temperatures,

〈E〉T≫ω ≈ T . (2.5)

The behaviour 〈E〉high T ∝ T is characteristic not only for the oscillator, but for
any reasonable QM system. Basically, it is the analog of the Stefan-Boltzmann law in
zero spatial dimensions. For the oscillator with several (many) degrees of freedom #, this
number multiplies T in the high–temperature estimate for 〈E〉T .

2.1 YM matrix models.

For purely bosonic matrix models with the Hamiltonian being the sum of two first terms in
(1.4), the pattern of the spectrum and the temperature dependence of the average energy
and other thermodynamic functions is clearly understood and is much simpler than that
for supersymmetric models. It does not depend much on whether the model is obtained
by reduction from 4D YM theory (i = 1, 2, 3), 6D theory (i = 1, . . . , 5), or 10D theory
(i = 1, . . . , 9).

Let us first estimate the energy of the ground state. The simplest variational Ansatz
is

Ψ0 ∝ exp
{

−α(Aa
i )

2
}

≡ e−αA2

. (2.6)

The contribution of the kinetic term in the Hamiltonian to Evar is estimated as

Ekin
var ≈ αN2 , (2.7)

where we have kept only the dependence on N ≫ 1, not worrying about the dependence
on D and about numerical coefficients. (Note that 〈A2〉0 ∼ N2/α in this limit.) To
estimate the contribution of the potential part, use

〈AaAb〉 ∼ 〈A2〉0δab

N2
, 〈AaAbAcAd〉 ∼ 〈A4〉0

(

δabδcd + δacδbd + δadδbc
)

N4

(irrelevant spatial indices are suppressed). We obtain

Epot
var ≈ g2〈A4〉0

N
∼ g2N3

α2
. (2.8)

Adding this to (2.7) and minimizing over α, we find

α ∼ λ1/3, E0 ∼ N2λ1/3 . (2.9)

In other words, the estimate for the vacuum energy is obtained by multiplying the natural
energy scale (1.8) by the number of degrees of freedom ∼ N2. The characteristic size of
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the wave function (“ extent of space” in the terminology of Refs. [7,8]) is also determined
by this scale,

extent of space ∼ 〈A2〉0
N2

∼ 1

α
∼ 1

Echar
. (2.10)

The gap between the first excited state and the vacuum state is also of order Echar.
The partition function at high temperatures T ≫ λ1/3 is easily evaluated by semiclas-

sical methods [10]. We have

Zhigh T ≈
∫

∏

ai

dEa
i dA

a
i

2π

∏

a

δ(Ga)e−βH =

∫

∏

ai

dEa
i dA

a
i

2π
e−βH

∏

a

dAa
0

2π
exp{iAa

0f
abcAb

iE
c
i } . (2.11)

The integral is saturated by the characteristic values

(Aa
i )char ∼ T 1/4λ−1/4, (Ea

i )char ∼
√
T , (Aa

0)char ∼ (Aa
i )

−1
char(E

a
i )−1

char ∼ λ1/4T−3/4

and is estimated as

Zsemicl ∼
(

T

λ1/3

)
3

4
N2(D−2)

, (2.12)

which gives [11]

〈E〉YM
high T ∼ 3

4
N2(D − 2)T . (2.13)

One can also evaluate corrections to this leading order semiclassical result. To esti-
mate the next-to-leading correction, one should roughly speaking insert the factor ∼
β2∂2V/(∂Aa

i )
2 ∼ β2λ(Aa

i )
2 in the integrand in (2.11) (V is the potential) [10, 12]. This

gives 2

Zhigh T ∼
[

T

λ1/3

(

1 + c
λ1/2

T 3/2

)]

3

4
N2(D−2)

(2.14)

We see that the correction is of order one at T ∼ λ1/3. At temperatures much less
than the characteristic spectral gap Echar ∼ λ1/3, 〈E〉T behaves in the same way as the
oscillator average energy (2.4) coinciding with the vacuum energy up to exponentially
small corrections. This pattern was confirmed by numerical calculations [13].

2The parameter c was evaluated numerically for D = 10 in Ref. [11]. It is negative.
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2.2 Supersymmetric models

One important feature distinguishing all SYM models (10D, 6D, and 4D) from the YM
models is the presence of continuous spectrum associated with flat directions in the poten-
tial [14]. The classical potential V ∼ g2

∑

ij Tr{[Ai, Aj]
2} turns to zero when [Ai, Aj] = 0,

i.e. when all Ai belong to the Cartan subalgebra. In purely bosonic model, this clas-
sical degeneracy is lifted by quantum corrections. It supersymmetric models, this does
not happen. As a result, the states can smear along the flat directions, the motion
becomes infinite, and the continuous branch of the spectrum exists. For low energies,
E ≪ λ1/3, the wave functions of these states can be evaluated in the framework of the
Born–Oppenheimer approximation [14–19]. In the leading order, they can be chosen in
the form

Ψcontinuous ≈ χ(xslow)ψAslow
(xfast) . (2.15)

xslow in this expression stand for Aã
i and their fermionic partners. The Cartan subalgebra

index ã runs from 1 to r = N−1. xfast are the transverse to the valley components of A and
their fermionic partners. The motion across the valley is described by the Hamiltonian of
supersymmetric oscillator with the frequency ∼ g|A|. ψAslow

(xfast) is its ground state. The
function χ(xslow) is the eigenfunction of the effective Born-Oppenheimer Hamiltonian. To
leading order, the latter is just the Laplacian

HBO ∼ −1

2

∂2

(∂Aã
i )

2
+ . . . (2.16)

such that χ ∝ exp{ikã
iA

ã
i }.

In 4D and 6D theories where the conserved fermion charge exists, one can ask what is
its value for the continuum spectrum states (2.15). Consider for simplicity 4D theory. The
fast oscillator Hamiltonian depends on (D−2)N(N−1) = 2N(N−1) real bosonic variables
and 2N(N−1) holomorphic fermion variables [ N(N −1) being the total number of roots
in SU(N)]. When N = 2, the ground state of the fast Hamiltonian has the structure [16]

ψC(xfast) ∼ exp

{

−gC
2

(Aa
m)2

}

{

λbαλb
α + iǫbcλbα(σ3)

β
α λ

c
β

}

, (2.17)

where we have directed the slow variable A3
i along the 3-d spatial axis such that A3

i = Cδ3i.
Here the indices a, b = 1, 2 are transverse color indices and the index m = 1, 2 is the
transverse spatial index; λaα = ǫαβλa

β. The fermion charge of the function (2.17) is 2.
For larger N , the fast ground state wave function involves N(N − 1)/2 such fermion
factors, each factor carrying the charge 2. The total fermion charge of ψAslow

(xfast) is thus
Ffast(N) = N(N − 1). Speaking of χ(xslow), it may carry fermion charges from Fslow = 0
to Fslow = 2(N − 1). All together we have 22(N−1) families of continuum spectrum states
carrying fermion charges from N(N − 1) to (N + 2)(N − 1). Their average charge is
N2 − 1, the half of the maximal fermionic charge Fmax.

The partition function for the system with continuous spectrum is infinite. For exam-
ple, for the Hamiltonian H = p2/2,

Z =

∫

dpdx

2π
e−βp2/2 = L

√

T

2π
, (2.18)
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with L → ∞. However, the average energy 〈E〉T defined as in (2.4) does not depend on
the infinite factor L and is equal to T/2. The Hamiltonian (2.16) involves (D−1)(N −1)
degrees of freedom and we thus obtain

Z ∼
(

L

√

T

2π

)(D−1)(N−1)

∼
(

T

µ

)(D−1)(N−1)/2

(2.19)

(where an infrared regulator µ carrying dimension of energy is introduced) and

〈E〉T ≈ (D − 1)(N − 1)T

2
. (2.20)

This result has nothing to do with the supergravity prediction (1.9) !
The estimate (2.19) for the partition function contradicts, however, path integral es-

timate. The latter is definitely correct (and hence the former is definitely wrong) at high
temperatures, T ≫ λ1/3, when fermions and higher Matsubara modes decouple and the
partition function is given by the semiclassical estimate (2.12), the same as for the pure
YM system [the fermions could only affect the coefficient c in (2.14) ].

The paradox is resolved by noting that the spectrum of our system involves besides
the continuous spectrum also the discrete spectrum with normalized states. Consider first
4D theory. In this case, the normalized discrete spectrum states of pure bosonic theory
represent also eigenstates of the full Hamiltonian: the fermion term (1.7) gives zero when
acting on the states of zero fermion charge. These normalized eigenstates have the energy
∼ N2λ1/3 as in (2.9). The characteristic gap between the lowest and excited normalized
states in the sector F = 0 is of order λ1/3. Acting on these states by supercharges Qα, we
can obtain normalized eigenstates of the full Hamiltonian in the sectors F = 1 and F = 2.
By the same token, one can construct the states in the sectors F = Fmax = 2(N2 − 1),
F = Fmax − 1 and F = Fmax − 2. Little is known about the structure of normalized
eigenstates in the sectors with other values of F . It is natural to suggest, however, that
they also exist and that some of these states (probably, in the sectors with F ∼ Fmax/2
) may have energy as low as λ1/3 (without the N2 factor).

If the continuum states did not exist, the partition function at high temperatures
would be given by the estimate (2.12) (with D = 4) and 〈E〉T by the estimate (2.13).
One can observe now that the latter is much larger than (2.20) at large N . Heuristically,
this means that at large N the average energy is determined by the discrete spectrum
states, while the continuum states are irrelevant.

Thinking a little bit more in this direction, one could judge that this heuristic impres-
sion is wrong because one cannot just add the estimates (2.13) and (2.20) and observe
that (2.13) dominates. One should add the contributions to the partition function rather
than to the energy. The continuum spectrum contribution to the partition function (2.19)
involves an infinite factor µ−(D−1)(N−1)/2 and always dominates.

Thinking still more, one finds, however, that the limits µ → 0 and N → ∞ do not
commute.

• At finite N and small enough µ, the continuum contribution (2.19) to the partition
function dominates and one can forget about discrete spectrum.
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• At finite µ and large enough N , the discrete spectrum contribution (2.12) to the
partition function dominates and one can forget about continuum. For large enough
temperatures, T ≫ λ1/3, one can also forget about continuum at small N down to
N = 2.

Thus, introducing the infrared regulator and playing with this parameter, one can
get rid of the contribution (2.20). If N is large enough, one should be able to do it for
any temperature and not necessary for high temperatures T > λ1/3 where the estimate
(2.13) is derived. In numerical calculations [7, 8], no infrared regulator was introduced,
but the algorithm was chosen such that the continuum spectrum effects were effectively
suppressed. The functional integral for Z was done by Metropolis algorithm with initial
values of all components Aa

i chosen to be of the same order and not very large. It was
then observed that, for small N , this configuration is unstable such that the field variables
tend to smear along the flat directions. However, for larger N , the system penetrates the
valley only after a considerable number of iterations. The larger is N and/or T , the more
stable is the system. An effective barrier is erected. For large N , one can thus evaluate the
averages before the system penetrates through this barrier and escapes along the valley.

Unfortunately, no numerical calculations for the 6D system have been done yet, while
existing calculations for the 4D systems [20] are not good enough to conclude about the
behaviour of 〈E〉T at low T and large N . The authors of [7, 8] concentrated on studying
the 10D system, where they were able to compare their results with the supergravity
predictions. It seems to us very important to perform the measurements with large enough
N and good enough statistics also for 4D and 6D systems and compare the results with
those obtained in the 10D case.

What predictions can be made for the behaviour of 〈E〉T in the 4D and 6D cases ?
Let us assume 3 the pattern of discrete spectrum states spelled out above: the lowest such
state has the energy ∼ λ1/3 and higher excited states behave roughly in the same way as
in the purely bosonic matrix models up to an overall shift

EYM
vac ∼ N2λ1/3 −→ ESYM

vac ∼ 0 . (2.21)

It follows then that, in the limit N → ∞, with the continuum spectrum effects filtered
out as explained above, 〈E〉T behaves in the same way as for purely bosonic models, i.e.
is given by the estimate (2.13) at T > λ1/3 and approaches zero exponentially fast at
T → 0. When N is large, but finite, this behaviour is valid down to T⋆ ∼ λ1/3/ lnN
such that 〈E〉T⋆ ∼ NT⋆ and coincides with the continuum estimate (2.20). At still lower
temperatures, the system is not contained in the region around A ∼ 0, but penetrates
the barrier and is smeared along the valley. The estimate (2.20) for 〈E〉T is valid in this
region.

We are prepared now to go over to 10D theory and make finally an original remark that
is raison d’être for this paper. 10D theory has one important feature that is lacking in 4D
and 6D theories: on top of continuum low-energy states and excited discrete spectrum
states, it involves a normalized vacuum state with zero energy. Its existence was first

3We will rediscuss this assumption in Sect. 3.
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discovered in [21] from calculations of integrals for Witten index, but a clearer way to
see it consists in deforming theory by endowing the scalar fields (in the reduced SQM
model, they correspond to the components of A4,...,9 with) with mass M [22]. For nonzero
mass, the classical potential has isolated zero energy minima at large values of the fields.
Generically, there are several (many) such minima [18], but for the SU(N) groups, there
is only one classical vacuum. If mass is large, the walls of the potential well around this
classical vacuum are steep and the wave function of the corresponding quantum vacuum
is a localized oscillator wave function. By continuity, a localized wave function exists
also for small values of mass. It is a natural hypothesis that the vacuum state remains
normalizable also in the limit M → 0.

Another argument comes from Born-Oppenheimer analysis of the vacuum wave func-
tion in the valley. If the normalized state with zero energy exists, its wave function in
the valley should be represented in the form (2.15) with χ(xslow) representing the eigen-
function of the effective Hamiltonian (2.16) with zero eigenvalue. The full wave function
should be annihilated by supercharges Qα and that means that χ(xslow) should be annihi-
lated by effective supercharge acting in Hilbert space of slow variables. One can show that
normalized solutions to the equation Qeff

α χ(xslow) = 0, supplemented by the requirement
of Weyl invariance of χ(xslow) following from gauge invariance of the full wave function, do
not exist in 4D and 6D theories, but the solution exists in the 10D case. It was explicitly
constructed for SU(2) [23] (see also [18] for pedagogical explanations) and for SU(3) [24].
In the simplest N = 2 case, the asymptotic vacuum wave function has the form

χvac(Ai, µ1,...,8) ∝ (44ferm)ij∂i∂j
1

|A|7 , (2.22)

where A ≡ A3 and (44ferm)ij is a fermionic structure representing the 44-plet of SO(9).
The result (2.22) is obtained in the leading Born–Oppenheimer order. The corrections

to this result are small when the corrections to the effective Hamiltonian are small. First
subleading corrections to the effective Hamiltonian are known. Supersymmetry prevents
the generation of the potential on the valley. In 10D theory, there are also no corrections
to the metric, i.e. to the term ∝ E2 in the Hamiltonian. 4 However, there are corrections
∝ E4. The exact form of these corrections in the N = 2 case is [27]

Heff =
E2

2
+

15

16

|E|4
g3|A|7 + . . .+ terms with fermions. (2.23)

The correction is small iff g|A|3 ≫ 1 (we used E2 ∼ 1/A2). This is also the region
where the expression (2.22) for the asymptotic vacuum wave function is valid. On the
other hand, when g|A|3 . 1, the separation of slow and fast variables does not work,
and the wave function depends on all components of Aa

i in a complicated way. Thus, the
characteristic size of the vacuum wave function is of order A2

char ∼ g−2/3, which is the
same as (2.10), if disregarding N–dependence there.

For N > 3, the asymptotic wave function has not been constructed explicitly. We can
estimate, however, its characteristic size as such Achar that the corrections ∼ E4/A7 in

4This result obtained first in [25] has much in common with 4D nonrenormalization theorems [26].
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the effective Hamiltonian are of the same order as the leading term. To this order, the
effective Hamiltonian is known for any N [28],

Heff(N) =

N
∑

n=1

|En|2 +
15

16

N
∑

n>m

|En −Em|4
g3|An − Am|7 + . . . , (2.24)

where we assumed Â = diag(A1, . . . ,AN) and Ê = diag(E1, . . . ,EN) with
∑

n An =
∑

n En = 0. The second term in (2.24) represents the sum over all positive roots of
SU(N) (a generalization to an arbitrary group is thus trivial). For large N , it involves
of order N2 terms, while the first term has N terms. The estimate for Achar is obtained
from the condition

N

A2
char

∼ N2

g3A11
char

.

We have

A2
char ∼ N2/9

g2/3
∼ N5/9λ−1/3 . (2.25)

In Ref. [28], also two-loop corrections to the effective Hamiltonian were evaluated. They
are estimated as ∼ N3E6/(g6A14) and are of the same order as the leading term at the
scale (2.25). This is probably as well true for higher loop corrections, which should be of
order

Hn loop ∼ E2(n+1)Nn+1

g3nA7n
.

We see that the estimated size of the vacuum wave function turns out to be essentially
larger than the characteristic size (2.10) of bosonic eigenstates. The large characteristic
size (2.25) suggests the existence of the energy scale

Enew
char ∼ N−5/9λ1/3 , (2.26)

which is considerably smaller than the principal energy scale (1.8). It is natural then to
assume that the characteristic gap in the spectrum of excited states in 10D SYM quantum
mechanics is not ∼ λ1/3 as it was in purely bosonic theory, but smaller, being given by
the estimate (2.26). The presence of a large number of discrete spectrum states with the
energies lying in the interval λ1/3N−5/9 < E < λ1/3 modifies essentially the behaviour of
the partition function. It need not now be exponentially small at T ≪ λ1/3, but can well
display a power behaviour. Assume that

〈E〉T ∼ N2λ1/3

(

T

λ1/3

)γ

and determine γ from the condition 〈E〉T ∼ 〈Econt〉T ∼ NT at T ∼ λ1/3N−5/9. We obtain
then γ = 14/5 in a remarkable agreement with the duality prediction (1.9)!

The law (1.9) implies the behaviour

Z(T ) ∼ exp

{

N2

(

T

λ1/3

)9/5

−N

}

(2.27)
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for the partition function. The normalization (which does not affect 〈E〉T ) was chosen such
that Z(T ∼ Enew

char) ∼ 1. The latter must be true for the discrete spectrum contribution,
and the continuum spectrum contribution can match it at the scale T ∼ Enew

char if choosing
µ of the same order. When T > Enew

char, the discrete spectrum contribution dominates.
Expressing Z(T ) into the density of states ρ(E),

Z(T ) =

∫

ρ(E)e−E/TdE , (2.28)

we see that the behaviour (2.27) implies

ρ(E) ∝ exp

{

N2

(

E

λ1/3

)9/5
}

. (2.29)

The critical behaviour (1.9), (2.27), (2.29) should be characteristic in the intermediate
region

λ1/3N−5/9 < T,E < λ1/3 . (2.30)

At larger temperatures, the laws (2.12), (2.13) should take over.

3 Discussion

Let us summarize our arguments. First, we remark that 10D theory involves besides
continuum spectrum that is characteristic also for 4D and 6D theories, a normalized
vacuum state. We estimate a characteristic size of this state by requiring that the loop
corrections to the effective Hamiltonian at this scale are of the same order as the leading
term. This gives us a new energy scale (2.26), which is lower than the principal energy
scale (1.8). Then we conjecture that, on top of the vacuum state, a large family of excited
states associated with this scale exists. This explains the critical behaviour (1.9).

The existence of new scale should also show up in other quantities. For example,
it suggests that the “extent of space” (2.10) in 10D supersymmetric theory should be
essentially larger than for purely bosonic system. In particular, the avegage (2.10) should
grow with N . The existent measurements of 〈(Aa

i )
2/N2〉T in this theory [8] give the

value that is somewhat larger than in the purely bosonic case, but no growth with N
was observed. We do not understand it in the framework of our conjecture and can only
express a wish that more measurements of this quantity at larger values of N and/or lower
temperatures were done. Another issue that is not clear now is the range of temperatures
where the law (1.9) should hold. We have detected only one new scale (2.26) and no
other scales. This implies that the law (1.9) should be valid between these scales, i.e. in
the range (2.30). On the other hand, considering this problem on the supergravity side,
one obtains that subleading in N corrections due to string degrees of freedom become
essential at T ∼ λ1/3N−10/21 [7], which is somewhat larger than Enew

char. It is difficult to
explain the appearance of this extra scale staying on the matrix model side.
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Let us go back now to the 4D and 6D models. These models do not involve a nor-
malised vacuum state and we conjectured [see the discussion around Eq. (2.21)] that the
pattern of excited normalized states is roughly the same there as in purely bosonic theory.
On the other hand, there are some indications of the presence of a new energy scale also
for D = 4, 6. When D < 10, the corrections to the moduli space metric do not vanish.
For an arbitrary gauge group, they have the form [19]

Heff ∼ 1

cV

∑

j

|E(j)|2
[

1 +
aDcV
g|A(j)|3 + . . .

]

+ terms with fermions , (3.1)

where a4 = 3/4, a6 = 1/2 (and a10 = 0),
∑

j is the sum over all positive roots, A(j) =

αj(A
Cartan), E(j) = αj(E

Cartan) 5, and cV is the adjoint Casimir eigenvalue. For SU(N)
with large N , the corrections are of order 1 at gA3

char ∼ N , which gives

D = 4, 6 : A2
char ∼

N2/3

g2/3
∼ Nλ−1/3 . (3.2)

This might be associated with the energy scale ∼ λ1/3/N . If assuming that a family of
normalised excited states with a characteristic gap ∼ λ1/3/N is present there, one could
deduce that the average energy behaves as

〈E〉4D,6D
T ∝ T 2 (3.3)

in the range λ1/3/N < T < λ1/3.
We would rather lay our own bets not on (3.3), but on the scenario spelled out above

- no low-energy discrete spectrum states and 〈E〉T approaching zero exponentially fast at
λ1/3/(lnN) < T < λ1/3, with continuum spectrum dependence 〈E〉T ∼ NT taking over
at still lower temperatures. But theoretical arguments are heuristic and uncertain here
and only (numerical) experiment can tell us what is true.

As was mentioned, a nontrivial power behaviour of 〈E〉T is associated with the presence
of low-energy discrete spectrum states. In principle, one can find these states by solving
Schrödinger equation numerically. This calculation is, however, much more difficult than
the calculation of the Euclidean path integral that determines the partition function of
the system. Up to now, only the simplest 4D system with N = 2 was studied [29]. It
would be very interesting to do it also for higher N and find out whether a lower energy
scale ∼ λ1/3/N shows up there.

A “natural” behaviour of 〈E〉T in quantum mechanics is 〈E〉T ∝ #d.o.f.T . In our case,
the power of T is different, which may be associated with the fact, that in the infinite N
limit, we are dealing actually not with quantum mechanics, but with field theory. Indeed,
it is known since [30] that the Hamiltonian of the supersymmetric matrix model coincides
in the infinite N limit with the supermembrane mass operator

lim
N→∞

HSQM Y M = M2
supermembrane =

∫

d2σ

[

(P ′
i )

2 +
1

2
{Xi, Xj}2 + fermionic term

]

,(3.4)

5For example, for SU(N), αnm(ACartan) = A
n − A

m.
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where P ′
i involves only nonzero modes contribution and {Xi, Xj} = ǫrs∂rXi∂sXj . The

Hamiltonian (3.4) is invariant with respect to area-preserving diffeomorphisms (this is
where gauge symmetry is transformed to in the limit N → ∞). Supermembrane theory
is a (2+1)-dimensional field theory. For the latter, a “natural” law for the area energy
density is ∝ T 3. For sure, this law is derived for a conventional SO(2, 1) invariant field
theory where, in the limit when interactions are switched off, the spectrum represents a
tower of oscillators. The model (3.4) does not have these features. Still, one can notice
that 14/5 is numerically close to 3. 6.

We would like to conclude with a general remark. There is a fruitful strategy: when-
ever you do not understand something in field theory, look at a proper QM system where
the same phenomenon occurs, analyze it, and you will get chances to improve your under-
standing. We think that this strategy applies to Maldacena’s duality conjecture as well.
The QM system (1.4) is complicated. Still, it is less complicated than 4D SYM theory at
strong coupling. If understanding why and how duality works in the former, we will get
chances to eventually understand it (prove it ) in field theories.

4 Acknowledgements

I am indebted to E. Akhmedov, E. Ivanov, and M. Konyushikhin for illuminating discus-
sions. Special thanks are due to M. Hanada for very useful correspondence concerning
the results and numerical procedure in Refs. [7, 8, 13].

Appendix. Supergravity derivation of the law (1.9).

To make the paper more self-consistent, we sketch here the derivation of (1.9) on the
supergravity side. A reader is addressed to the original papers [6] and to the review [32]
for more details.

The duality conjecture is that quantum dynamics of different dimensionally reduced
descendants of 10D SU(N) SYM theory in the large N limit can be accessed by study-
ing proper classical solutions of 10D IIA or IIB supergravity. The bosonic part of the
supergravity action is

S ∝
∫

d10x
√−g

{

e−2φ
[

R + 4(∇φ)2
]

−
∑

p

cpF
2
p+2

}

, (A.1)

where φ is the dilaton field, Fp+2 are field strengths of various fundamental (p+ 1)-forms
(Ramond-Ramond forms) that are present in the model, and cp are irrelevant numerical

6A further numerological observation is that 5 and 14 are the fourth and the fifth term in the sequence
of Catalan numbers [31]
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coefficients. The action (A.1) admits black brane solutions,

ds2 = f−1/2
p

[

−dt2
(

1 − r7−p
0

r7−p

)

+

p
∑

n=1

dy2
n

]

+ f 1/2
p

[

dr2

1 − r7−p
0

r7−p

+ r2dΩ2
8−p

]

,

e−2φ ∝ f (p−3)/2
p ,

Ap+1 = irrelevant , (A.2)

where fp is a harmonic function in transverse directions (xp+1, . . . , x9). The simplest
choice is 7

fp =
R7−p

r7−p
. (A.3)

(r2 =
∑9

m=p+1 x
2
m and R is a constant). dΩ2

8−p is the metric on S8−p. For example, if
p = 3 and r0 = 0, the metric is reduced to

ds2 =

[

r2

R2
(−dt2 + dy2

1 + dy2
2 + dy3

3) +
R2dr2

r2

]

+R2dΩ2
5 , (A.4)

which is the metric on AdS5 × S5.
The solutions with p = 3 are relevant when discussing physics of (p + 1) = (3 + 1) –

dimensional SYM theories. We are interested in the dynamics of (0 + 1) theories and in
the black hole solution with p = 0,

ds2
BH =

r7/2

R7/2

[

−dt2
(

1 − r7
0

r7

)]

+
R7/2

r7/2

[

dr2

1 − r7

0

r7

+ r2dΩ2
8

]

. (A.5)

Let us assume that the black hole size is much less than the characteristic curvature
radius of the Universe where it sits. This means r0 ≪ R. The black hole (A.5) has
a characteristic Hawking temperature and the Bekenstein-Hawking enthropy coinciding
with the volume of its horizon in Planck units.

To find the latter, we should simply multiply the factor

√−g(r = r0) ∝

√

√

√

√

(

r2
0

r
7/2
0

)8

=
1

r6
0

by the factor e−2φ(r0) ∝ r
21/2
0 . We obtain

S ∝ r
9/2
0 . (A.6)

The Hawking temperature is proportional to the so called surface gravity, i.e. gravitational
acceleration at the horizon (recall the Unruh effect),

THawking ∝ ahorizon ∼ dg00

dr

∣

∣

∣

∣

r=r0

∝ r
5/2
0 . (A.7)

Combining (A.6) and (A.7), we obtain S ∝ T 9/5 and hence 〈E〉T ∝ T 14/5.

7Then the metric (A.2) is not asymptotically flat and describes a black brane or, which is more
relevant in the context of etablishing the duality correspondence, a stack of N coinciding black branes in

the throat. By adding a constant to (A.3), one could obtain an asymptotically flat black brane solution.

14



References

[1] J.M. Maldacena, Adv. Theor. Math. Phys. 2 (1998) 231 [arXiv:hep-th/9711200];
S.S. Gubser, I.R. Klebanov, and A.M. Polyakov, Phys. Lett. B 428 (1998) 105
[arXiv:hep-th/9802109].

[2] for a review, see G.W. Semenoff and K. Zarembo, Nucl. Phys. Proc. Suppl. 108
(2002) 106 [arXiv:hep-th/0202156].

[3] see e.g. N. Beisert, B. Eden, and M. Staudacher, J. Stat. Mech. 0701 (2007) P021
[arXiv:hep-th/0610251]; B. Basso, G.P. Korchemsky, and J. Kotanski, Phys. Rev.
Lett. 100:091601 (2008) [arXiv:0708.3933 (hep-th)].

[4] S.S. Gubser, I.R. Klebanov, and A.W. Peet, Phys. Rev. D54 (1996) 3915
[arXiv:hep-th/9602135].

[5] S.S. Gubser, I.R. Klebanov, and Tseytlin, Nucl. Phys. B534 (1998)
202.[arXiv:hep-th/9805156].

[6] N. Itzhaki, J.M. Maldacena, J. Sonnenschein, and S. Yankielowicz, Phys. Rev.
D58:046004 (1998) [arXiv:hep-th/9802042]; D. Kabat and G. Lifschytz, Nucl. Phys.
B571 (2000) 419 [arXiv:hep-th/9910001].

[7] M.Hanada, Y. Hyakutake, J. Nishimura, and S. Takeuchi, arXiv:0811.3102[hep-th].

[8] K.N. Anagnostopoulos, M. Hanada, J. Nishimura, and S. Takeuchi, Phys. Rev. Lett.
100: 021601 (2008) [arXiv:0707.4454(hep-th)].

[9] S. Catterall and T. Wiseman, Phys. Rev. D78:041502 (2008) [arXiv:0803.4273 (hep-
th)].

[10] see e.g. A. Smilga, Comm. Math. Phys. 230 (2002) 245 [arXiv:hep-th/0110105].

[11] N. Kawahara, J. Nishimura, and S. Takeuchi, JHEP 0712:103 (2007)
[arXiv:0710.2188(hep-th)].

[12] R.P. Feynman, A.R.Hibbs, Quantum mechanics and path integrals , McGraw-Hill,
NY, 1965.

[13] N. Kawahara, J. Nishimura, and S. Takeuchi, JHEP 0710:097 (2007)
[arXiv:0706.3517(hep-th)]

[14] E. Witten, Nucl. Phys. B202 (1982) 253.

[15] A.V. Smilga, Nucl. Phys. B291 (1987) 241; B.Yu. Blok and A.V.Smilga, Nucl. Phys.
B287 (1987) 589.

[16] A.V. Smilga, in: [Proceedings of the Workshop on supermembranes and 2+1 dimen-

sional physics, Trieste, Jul. 16-23, 1989, M. Duff, C.N. Pope, E. Sezgin - eds, World
Scinetific, 1990 ] p182.

15

http://arXiv.org/abs/hep-th/9711200
http://arXiv.org/abs/hep-th/9802109
http://arXiv.org/abs/hep-th/0202156
http://arXiv.org/abs/hep-th/0610251
http://arXiv.org/abs/0708.3933
http://arXiv.org/abs/hep-th/9602135
http://arXiv.org/abs/hep-th/9805156
http://arXiv.org/abs/hep-th/9802042
http://arXiv.org/abs/hep-th/9910001
http://arXiv.org/abs/0811.3102
http://arXiv.org/abs/0707.4454
http://arXiv.org/abs/0803.4273
http://arXiv.org/abs/hep-th/0110105
http://arXiv.org/abs/0710.2188
http://arXiv.org/abs/0706.3517
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