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1. Introduction

The geometry of a spacetime, and in particular the causal structure, is naturally

probed by an ideal massless particle. In M theory, the only universal object of this sort is

the supergraviton itself. In matrix theory (or more generally in the dynamics of D-branes),

curved space geometry is the effective description of probe dynamics in the abelianized,

moduli space approximation; bending of the probe’s path is an effect of the spatially

dependent vacuum polarization caused by sources [1,2]. There can be no global horizons

in this description (at least at finite N) since the starting point is nonabelian dynamics

in Minkowskian spacetime. The idea of using D-branes to probe black holes has been

explored in [2-6].

Recently, states in matrix theory [7] bearing the qualitative properties of Schwarzschild

black holes have been constructed [8-13]. One would like to see how to reconstruct the black

hole geometry from these states. The model developed in [11,13] describes Schwarzschild

black holes as a collection of matrix partons (the eigenvalues of the matrices) bound to-

gether by the semiclassical dynamics of the ‘off-diagonal’ (unitary conjugation) degrees of

freedom. The partons are treated as the principal dynamical objects. Combining the un-

certainty principle, the virial theorem, and mean field theory, one finds that a bound state

of N partons has the energy and entropy of a Schwarzschild black hole with longitudinal

momentum P = N/R:

ELC = M2R/N

M ∼ rD−3
0 /GD

S ∼ rD−2
0 /GD ∼ N .

(1.1)

The special point P = S/R puts the system at the transition point between black holes and

black strings; in other words, N = S is the minimum value for which the system approxi-

mates a black hole. To obtain the entropy, the partons must be treated as distinguishable

objects, as was implicit in [11] and discussed in detail in [13]. The justification is as follows:

Energetic arguments [11,13] indicate that soft excitations of the unitary degrees of freedom

are not energetically costly relative to the overall energy of the resonant bound state; the

presence of such a unitary mode background entwines the permutation of the eigenvalues

with the wavefunction of the unitary modes, effectively destroying any statistics symmetry

among the eigenvalues themselves. It is important for the validity of this argument that

the time scale of motion of the unitary modes is at least as long as the crossing time r2
0/R

of the eigenvalues in the resonant bound state; otherwise we could integrate out the uni-
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tary modes and obtain an effective dynamics for the eigenvalues which would treat them

as identical particles. This bound is easily seen to be satisfied if one crudely approximates

the unitary modes as a membrane of size ∼ r0 [13](the membrane is indeed an excitation

of the unitary modes [14,7]). The membrane time scale is Tmemb ∼ rD−3
0 ℓ3

pl/GDR [11],

which exceeds the eigenvalue crossing time if D > 5 (D = 5 appears to be marginal). Also

ELC,memb ∼ r4
0R/N ≪ ELC,bh, so these modes don’t substantially affect the energetics.

When N ∼ S, the black hole radius is close to the longitudinal box size [8,11]; one

expects the statistical properties to suffer from finite size effects (for instance, the modes

identified in [8,9] as responsible for black hole entropy). Our main result is a clearer

picture of the composition of the black hole at N ≫ S as a collection of clusters or

correlated domains of matrix partons,1 as proposed in [11,12].2 In this regime the boost

is sufficiently large that the finite size corrections due to the longitudinal box should

be irrelevant. We will show that this scenario qualitatively reproduces the asymptotic

geometry and thermodynamic properties of both charged and neutral black holes.

In section 2, we argue for this picture of the highly boosted black hole as a collection

of interacting clusters; the picture is essentially a boosted version of the mean field picture

outlined above, with the partons replaced by clusters of partons. One difference will be that

processes where clusters exchange partons will have to be included in the analysis. We show

that the same picture can account for the entropy of charged black holes, by boosting the

parton distribution along an internal circle. Section three derives the asymptotic geometry

that should be seen by a supergraviton probe in the presence of a (charged) black hole,

and shows how the probe effective action is consistent with our picture of the structure

of the black hole. All our considerations are up to factors of order unity, to which our

approximations are insensitive. In section 4 we interpret our results in the context of

previous work on black holes in string/M-theory [15,16,17].

Incidentally, most of what is put forth here and in [11,12,13] has validity independent of

the ultimate fate of matrix theory, since it applies to black holes extremely boosted along

1 We will use interchangeably the phrases ‘cluster’ and ‘correlated domain’ to describe the

objects entering the effective dynamics; our model is at the moment too crude to decide how

the degrees of freedom are ordered, e.g. whether the ordering takes place in position space (as

in a ferromagnet at its Curie point), momentum space (as in a BCS superconductor); or in

matrix space, or (as suggested by Lorentz symmetry) some more exotic combination of all of

these coordinates.
2 The structure of the interactions differs, however, from that deduced in [12].
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x10 – independent of the size R of the longitudinal box, which could be sub-Planckian

in size. On the other hand, our approach may prove useful in exploring macroscopic

black holes in string theory using the matrix string construction of [18]; the unitary mode

background ought to reduce to a matrix string background when a transverse circle is

shrunk to sub-Planckian size. One may in this way make contact with the correspondence

principle of [19].

2. Cluster decomposition of matrix black holes

Suppose the black hole consists of S clusters, each containing approximately N/S

matrix partons. The characteristic property of a cluster is its coherence – interactions that

probe it on size scales larger than the correlation length affect the whole cluster. Thus we

will treat the clusters as the basic participants in the dynamics, rather than the individual

matrix partons. The total longitudinal momentum of the system is p− = N/R. The

cluster ‘mass’ (its longitudinal momentum) is N/SR. If the spread of the wavefunction

of the cluster’s center of mass is r0, the cluster’s transverse velocity is SR/Nr0 by the

uncertainty principle. The virial theorem implies that the kinetic and potential energies

of the clusters are of the same order. The kinetic energy is

Ekin ∼ (#clusters) · mclv
2
cl
∼ S

N

SR

(

SR

Nr0

)2

∼

(

S

r0

)2
R

N
,

(2.1)

the correct scaling since M ∼ rD−3
0 /GD and S ∼ rD−2

0 /GD. The leading term in the

interaction energy is the Newtonian gravitational interaction between the transverse kinetic

energies of the clusters (together with additional terms of the same order, as required by

Galilean invariance). For N ≫ S one must take into account such interactions in which the

clusters exchange longitudinal momentum. These parton exchange processes are essential

for the restoration of locality in the longitudinal direction in the large N limit, but difficult

to calculate in matrix theory. For the purposes of our order-of-magnitude estimate, we

will approximate all such contributions to the interaction as having the same magnitude

and phase as that coming from zero longitudinal momentum exchange. Thus the leading
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interaction is roughly

Epot ∼ GD

N/S
∑

δp
−

=0

S
∑

a,b=1

f(δp−)
(mclv

2
cl
)a(mclv

2
cl
)b

RrD−4
ab

∼ GD
N

S
S2 S2R

N2rD
0

∼ Ekin
GDS

rD−2
0

.

(2.2)

Thus the virial theorem is satisfied given the proper scaling of the entropy.

The matrix theory effective action is expected to contain an infinite series of terms of

the form (Nv2)ℓ+1/rℓ(D−4), as might be expected from the expansion of the Born-Infeld

action for zerobranes [6,20,21] (see below). At the transition point N = S, all terms of this

form are comparable in magnitude due to the uncertainty relation v ∼ R/r0 [12,13]. Since

the system at N ≫ S is, apart from finite size effects, simply a boosting of the system at

N = S, the same should hold true for the ensemble of clusters. For example, consider the

spin-orbit term [22]. It contains a contribution which is the spin-orbit energy of a cluster,

interacting with the kinetic energy of another cluster

Vspin−orb ∼ GD

∑

δp
−

∑

a,b

f(δp−)

(

(r[ipj])Σij

mcl

)

a

(mclv
2
cl
)b

1

RrD−2
ab

. (2.3)

Evaluating this in the same way as (2.2), one finds that these two contributions to the

potential are of the same order. It is trivial to see that the other spin-orbit terms required

by Galilean invariance are comparable. In fact, replacing partons by clusters in the scaling

analysis leads to the conclusion that all terms in the expansion of the Born-Infeld action

are of comparable magnitude in the black hole. In reaching this conclusion, it is important

to realize that all factors of 1/R in the effective action of an individual D0-brane are to

be replaced by cluster longitudinal momenta mcl, except for the one factor of 1/R which

arises from averaging the spatial Green’s function over the longitudinal direction.

This picture of the black hole as composed of (clusters of) partons interacting through

effective forces due to the off-diagonal degrees of freedom of the matrices is not completely

accurate. As mentioned in the introduction, there are ‘membrane’ modes that couple to

the parton clusters whose time and energy scales make them relevant to the dynamics.

Moreover, the virial theorem is a crucial ingredient of the argument; yet it actually says

that the action of the fluctuations of off-diagonal modes (the ‘potential’ term) and the
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diagonal modes (the uncertainty principle saturated ‘kinetic term’) are of the same order.

Thus, the loop expansion which integrates them out is breaking down. Clearly the true

state of affairs lies in a matrix wavefunction for the black hole where much of the matrix is

excited in a rather complicated way. The characterization of the dynamics via interacting

clusters of partons is at best an approximation that captures the rough bulk properties of

the black hole state; it cannot possibly be expected to yield precise numerical coefficients.

The above picture of the microstates of a black hole as a collection of interacting

parton clusters also explains much of the structure of (singly) charged black holes. The

macroscopic properties of such holes are

M ∼ G−1
D rD−3

0 (ch2γ + 1
D−3

)

Q ∼ G−1
D rD−3

0 shγchγ

S ∼ G−1
D rD−2

0 chγ .

(2.4)

As in the uncharged case treated in [11], the matrix Hamiltonian at small N describes

black string states stretched across the longitudinal direction, and at sufficiently large N

describes black holes localized in the longitudinal direction. For fixed values of the mass

and charge, the transition between the two takes place at the value of longitudinal boost

where the entropies are the same [23]. The quantities (2.4) in the boosted frame are of

course unchanged, with ELC ∼ Me−α and P ∼ Meα; on the other hand, the black string

has3

M ∼ G−1
D RrD−4

str
(ch2δch2β + 1

D−3 )

P ∼ G−1
D RrD−4

str
shβchβch2δ

Q ∼ G−1
D RrD−4

str shδchδchβ

S ∼ G−1
D RrD−3

str chδchβ .

(2.5)

In contrast to the uncharged case, the matching of these quantities does not uniquely

specify the parameters of the black string in terms of those of the black hole; further

assumptions are required. Demanding that the metric coefficients match smoothly onto

one another forces the horizon radii r0 = rstr, boost rapidities α = β, and charge parameters

γ = δ all to be equal; the rapidity of the longitudinal boost at the transition is determined

by r0 = Reα, the same as in the uncharged case. Loosely speaking, for this value of the

boost the charged black hole ‘just fits inside the longitudinal box’.

3 We are grateful to H. Awata for collaborating in the calculations that established these

relations.
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It is important to note that the entropy at the transition is related to the longitudinal

boost by P = Schγ/R; in other words N = Schγ ≡ N̂ is greater than the number of

‘bits of information’ stored in the charged black hole. This is entirely reasonable, since as

one increases the charge at fixed mass to move toward extremality, the longitudinal boost

required to maintain the validity of IMF kinematics does not decrease, while the entropy

of the hole does decrease. Thus even at the transition point N = N̂ , the hole is made up

of clusters of partons, with N̂/S > 1 partons per cluster.

The cluster hypothesis is also consistent with the entropy of charged black holes. The

simplest way to obtain a nonextremal charged black hole is by boosting an uncharged black

hole along an internal circle. Let us assume that there are S clusters each containing of

order N/S partons, with transverse velocity vcl ∼ SR/Nr0 in the noncompact dimensions,

and internal velocity wcl ∼ (SR/Nr0)shγ to account for the charge. The cluster ‘mass’

is again mcl ∼ N/SR. The entropy of the ensemble in the transverse rest frame of the

clusters should be that of the uncharged black hole, S ∼ rD−2
0 /GD,rest. However, the circle

along which the partons are moving must have proper size Lchγ in order that its size be L

after boosting along that circle; thus GD,rest = GD/chγ (where GD = ℓ9
pl/Ld is the usual

Newton constant in D dimensions; we take all the compactification radii to be O(L) for

simplicity). Thus the entropy is S ∼ rD−2
0 chγ/GD, c.f. (2.4). The kinetic energy of the

clusters in the noncompact directions is

Ekin ∼ 1
2

∑

cl

mclv
2
cl
∼

S2R

r2
0N

. (2.6)

The virial theorem requires that the interaction energy of the clusters be of the same order

as this transverse kinetic energy in the noncompact directions. Remarkably, following the

logic of (2.2), one has

Epot ∼ GD

N/N̂
∑

δp
−

=0

S
∑

a,b=1

f(δp−)
(mclv

2
cl
)a(mclv

2
cl
)b

RrD−4
ab

∼ Ekin
S2GD

N̂rD−2
0

;

(2.7)

as argued above, the last factor is of order one. Note that we have assumed that the

maximum longitudinal momentum transfer between clusters is N/N̂ rather than the larger

quantity N/S, since the former is the ratio of the longitudinal box size to the size of the

hole in the highly boosted frame and represents the effective resolution in the longitudinal
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direction. Finally, the total energy is

ELC ∼ Ekin(1 + sh2γ) + Epot

∼
S2R

r2
0N

[ch2γ + a] ,
(2.8)

where a is a number of order unity; we again find qualitative agreement with (2.4).

3. Probe dynamics

The action of a probe zerobrane (supergraviton) in a background gravitational field

may be derived either from the constrained Hamiltonian dynamics of a massless particle,

as in [3]; or via the massless limit of the Routhian, as in [20].4 The latter route is somewhat

simpler in the present context. Let x+ = τ be the probe time coordinate; then the Routhian

is simply S = −p−ẋ−, where ẋ− is determined from the light cone condition ds2 = 0

0 = g−−(ẋ−)2 + 2g+−ẋ− + g++ + gijv
ivj + 2gi−ẋ−vi + 2gi+vi ; (3.1)

here vi is the probe transverse velocity. The probe action is thus (up to a total derivative)

Spr = p−

∫

dτ
1

g−−

[

(g+− + g−iv
i)−

(

(g+− + g−iv
i)2 − g−−(g++ + gijv

ivj +2g+iv
i)

)1/2
]

.

(3.2)

The leading order large distance terms in the metric scale as

gµν ∼ ηµν + aµν

(r0

r

)D−3

. (3.3)

Expanding (3.2) to this order gives

S = p−

∫
[

1
2
v2 + 1

2

(r0

r

)D−3
[

a++ + aijv
ivj + a+iv

i − (a+− + a−iv
i)v2 + 1

4
a−−v4

]

+ . . .

]

.

(3.4)

The relation between the parameter r0 and the ADM mass is

rD−3
0 =

4πGDM

(D − 2)ωD−2

, (3.5)

where ωD−2 is the solid angle in D spacetime dimensions. Also we will need to sum over

images along the periodically identified longitudinal direction. Let us denote

ρ2 = r2 − 1
4
(x+e−α + x−eα)2 (3.6)

4 We concentrate on the bosonic terms only.
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as the distance along the transverse noncompact dimensions. We have included a boost

of the source by a rapidity α in the longitudinal direction in order to facilitate passage to

the infinite momentum frame. At long distances ρ ≫ Reα (where x− has period 2πR), the

leading nontrivial term in the metric is just the smearing of (3.3) across x−, leading to

1

rD−3
−→

e−α

πRρD−4

∫

∞

−∞

dt(1 + t2)(3−D)/2 =
e−α

RρD−4

(D − 3)ωD−2

π(D − 4)ωD−3

. (3.7)

All told, in the presence of a source which has been boosted in the compact longitudinal

direction, one finds the following probe effective action

Spr = p−

∫

dτ

[

1
2v2+

ArD−3
0 e−α

RρD−4

(

a+++aijv
ivj+a+iv

i−(a+−+a−iv
i)v2+ 1

4a−−v4

)

+. . .

]

,

(3.8)

where A = (D−3)ωD−2

2π(D−4)ωD−3
.

Consider a metric of the asymptotic form

ds2 = dx · dx +
(r0

r

)D−3 ∑

µ

cµ(dxµ)2 . (3.9)

Boosting first by a rapidity γ along the x9 direction, then by a large rapidity α along the

x10 direction to pass to the infinite momentum frame, one finds

ds2 = dx+dx− + dx2
i +

(r0

r

)D−3 [

1
4

[

(c0 + c10) + (c0 + c9)sh
2γ

]

(e−2α(dx+)2 + e2α(dx−)2)

+ 1
2

[

(c0 − c10) + (c0 + c9)sh
2γ

]

dx+dx−

+
[

c9 + (c0 + c9)sh
2γ

]

dx2
9 + cidx2

i

+ (c0 + c9)shγchγ dx9(e
−αdx+ + eαdx−)

]

.

(3.10)

This is the asymptotic IMF metric of a charged black hole. Suppose the probe velocity

in the x9 direction is wpr, and ~vpr in the noncompact directions. Then the probe effective

action (3.8) is (after suitably averaging over the longitudinal direction)

Spr = 1
2p−

∫

dτ

[

v2
pr + w2

pr +
(ρ0

ρ

)D−4
(

1
4 [(c0 + c10) + (c0 + c9)sh

2γ]e−2α

+ 1
2 [(c0 + c9)shγchγe−α]wpr

+ [(c9 + 1
2c0 −

1
2c10) + 3

2 (c0 + c9)sh
2γ]w2

pr

+ [(ci + 1
2
c0 −

1
2
c10) + 1

2
(c0 + c9)sh

2γ]v2
pr,i

− 1
2 [(c0 + c9)shγchγeα]wpr(v

2
pr + w2

pr)

+ 1
16 [(c0 + c10) + (c0 + c9)sh

2γ]e2α(v2
pr + w2

pr)
2

)

+ . . .

]

,

(3.11)
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with ρD−4
0 ∼ rD−3

0 e−α/R due to (3.7).

To proceed further, we must choose a coordinate system; for illustrative purposes, let

us work in Schwarzschild coordinates, where the unboosted metric is

ds2 = −fdt2 + f−1dr2 + r2dΩ2
D−2 +

9
∑

i=D

dx2
i , (3.12)

with f = 1 − (r0/r)D−3; in the asymptotic metric (3.9), c0 = cr = 1, while c9 = cΩ = 0.

We would like to compare this expectation for the probe dynamics with the effective

action of matrix theory

Seff ∼
∑

a

v2
a

R
+

ℓ9
pl

Ld

∑

a,b

(va − vb)
4

R3rD−4
(3.13)

with N partons comprising the black hole and one set apart as the probe. The effective

action, and therefore the effective metric, seen by the probe in matrix theory involves an

average over the distribution of parton positions and velocities inside the black hole. Of

course, a more precise treatment would keep the full matrix dynamics of the source, as in

[24]; however, the abelianized approximation will suffice for our considerations.

The parton positions relative to the black hole center will only affect the subleading

terms in the metric; on the other hand, due to the direction dependence of the velocity

coupling in (3.13), the velocity distribution directly affects the leading term. For ex-

ample, if the transverse velocity distribution of the partons in the black hole is isotropic,
〈

vivj
〉

= 1
D−2δij

〈

v2
〉

, then the leading term in the long distance metric (3.3) is in isotropic

coordinates aij ∝ δij ; on the other hand, if the partons are all in an S-wave spatial wave-

function, then the angular component of their velocity vanishes at lowest order and one is

in Schwarzschild-type coordinates arr 6= 0, aΩΩ = 0.

Let us assume that all the black hole parton clusters are in S-wave states in the

noncompact directions, so that cΩ = 0; and that they have the average velocity wbh along

x9. Consider the term linear in the probe internal velocity wpr; it is

rD−3
0

RρD−4
shγchγ e−2α(p−,prwpr) ∼

GDMe−α

RρD−4

(

e−α shγ

chγ

)

(p−,prwpr) (3.14)

up to coefficients of order one. On the other hand, the effective interaction between the

probe internal velocity and the matrix black hole constituent clusters is

GD
mcl(v

2
bh + w2

bh)wbh

RρD−4

(Npr

R
wpr

)

. (3.15)

9



Since mcl(v
2
bh + w2

bh) ∼ E(bh)
LC ∼ Me−α, comparing with (3.14) shows that

wbh ∼
shγ

chγ
e−α . (3.16)

This is precisely the relation between boost velocity and rapidity, with the factor of exp[−α]

arising from the further time dilation due to the orthogonal boost involved in passing to

the infinite momentum frame. Note also that

vbh ∼
( SR

Nr0

)

∼
( M

chγP

)

∼
e−α

chγ
, (3.17)

so that the total cluster kinetic energy is

(#clusters) · mcl(v
2
bh

+ w2
bh

) ∼ S ·
N

SR
·
1 + sh2γ

chγ2
e−2α ∼

M2

P
, (3.18)

comparable to the total IMF energy of the black hole (whereas the interaction energy is

only of order the kinetic energy of noncompact motion; see above).

Next consider the v2
pr

and w2
pr

terms in the probe effective action. In the one-loop

effective action of matrix theory, these will again come from the relevant terms in the

v4/ρD−4 interaction by averaging over the internal motions of the black hole; we find

〈

[(vpr − vbh)
2 + (wpr − wbh)

2]2
〉

∼ . . . + 2w2
pr

〈

v2
bh

+ 3w2
bh

〉

+ 2v2
pr

〈

w2
bh

+ 3v2
bh

〉

+ . . . (3.19)

The form of the v2
pr

term depends more sensitively on assumptions about the motion of

the clusters in the noncompact directions (in (3.19), we have assumed there is only radial

motion in the noncompact directions). The corresponding terms in the matrix effective

action to this order are

(#clusters)
GD

RρD−4

[

mcl

〈

v2
bh + 3w2

bh

〉

mprw
2
pr + mcl

〈

w2
bh + 3v2

bh

〉

mprv
2
ρ,pr

]

∼ S
GD

RρD−4

( N

SR

)e−2α

ch2γ

[

mprw
2
pr

(

1 + 3sh2γ
)

+ mprv
2
ρ,pr

(

3 + sh2γ
)

]

∼
rD−3
0 e−α

RρD−4

[

mprw
2
pr

(

1 + 3sh2γ
)

+ mprv
2
ρ,pr

(

3 + sh2γ
)

]

.

(3.20)

Here we have used the approximation rD−3
0 ∼ GDM/ch2γ, valid up to coefficients of order

one. We wish to compare to (3.11), with cΩ = c9 = c10 = 0 to lowest order, and c0 = cρ = 1

in the chosen coordinate system. The relevant terms in (3.11) are

1
4

rD−3
0 e−α

RρD−4

[

(

1 + 3sh2γ
)

p−,prw
2
pr

+
(

3 + sh2γ
)

p−,prv
2
ρ,pr

]

; (3.21)
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thus the cluster hypothesis reproduces the velocity-squared terms in the probe effective

action up to coefficients of order one. In a similar fashion, one finds the remaining terms

as well.

The leading terms in the probe effective action are admittedly a rather weak test of

the composition of the black hole; any collection of objects of the same total mass and

charge contained in a finite region will have roughly the same properties. It is the fact

that the cluster picture reproduces the long-distance geometry, while at the same time

explaining the entropy of both neutral and charged black holes, that gives us confidence

in its validity.

An effect we have neglected in our analysis of the probe dynamics are the three-body

and higher interactions among the matrix constituents; these have been discussed in [25].

In the present context, these interactions are responsible for the response of the probe

to the gravitational binding energy of the source parton clusters. Since these terms are

of comparable magnitude to the probe’s response to the cluster kinetic energies, they are

expected to make at most a correction of order one to the coefficients in the effective action

(3.11).

4. Discussion

The picture of the black hole in matrix theory as a resonant bound state of clusters,

many of whose properties resemble those of threshold bound states, fits rather well with

the overall view of black hole thermodynamics in string theory [15]. Near-extremal black

holes in string theory can often be regarded as a gas of massless excitations [16,26,27]. For

instance, in the case of near-extremal three- and four-charge black holes in five and four

dimensions, respectively, precise numerical understanding has been achieved by represent-

ing the black hole microstates in terms of waves along the mutual intersection locus of a

collection of branes [15,26,30]. The massless gas is the representation of the near-horizon

physics as seen by an asymptotic observer who probes the black hole at long wavelengths.

The description is confined to physics outside the horizon. At no point does the infalling

matter appear to lose contact with the asymptotic observer, nor is there a point in the

description of a probe’s evolution that might conceivably represent it hitting a singularity

of the background spacetime. In string theory limits, the corresponding D-brane/string

gas describes the degrees of freedom on a ‘stretched horizon’ where infalling string matter

is thermalized and reradiated as Hawking quanta. Semiclassical D-brane calculations are
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performed in a background Minkowskian geometry, so that temporal and spatial intervals

are those that would be measured by an asymptotic observer. The effects of spacetime

geometry are the residue of fluctuations of the D-brane and string degrees of freedom

[1,2,30]. Thus, the temperature of the D-brane gas is approximately the Hawking tem-

perature rather than some blue-shifted ‘local temperature’ that might be experienced by

stationary observers very near the horizon (including the gas quanta themselves).

The collection of zerobrane clusters in the above description of highly boosted black

holes is rather similar. The black hole thermodynamics is described by a fluid, whose

properties are neither wholly zerobrane nor wholly membrane, but rather some of each.

The temperature of the transverse virial motion of the correlation domains is approxi-

mately the (longitudinally boosted) Hawking temperature. The size of the system is the

thermal wavelength (the horizon radius), which is the thickness of the stretched horizon

redshifted to infinity. Hawking radiation is, roughly speaking, the ‘solar wind’ of this ze-

robrane/membrane (i.e. matrix) ‘star’. One might expect that, as an escaping Hawking

quantum climbs out of the gravitational well, it experiences some redshift in its wavelength.

This cannot be more than order one if our picture is to be self-consistent. Thus the zer-

obrane cluster fluid would appear to be a description of the horizon physics as measured

by clocks and meter sticks at infinity. Infalling matter would not appear to fall behind a

horizon or encounter a singularity. One difference is that the description would not appear

to be limited to low energies, as may be the case in the D-brane gas [30].

Another major distinction between our picture of the matrix black hole and the D-

brane gas picture of near-extremal black holes, is that the latter has a macroscopically

‘rigid’ backbone of branes (those bound together to form the extremal configurations); the

nonextremal excitations are then draped on this scaffolding. This allows one to find ‘dilute

gas’ regimes where the density of nonextremal excitations is small, and their interactions

weak. In the generic, highly nonextremal situation, there is no dilute gas limit; the kinetic

and interaction energies of the constituents are of the same order.

The following picture of the state space of matrix theory at fixed, large N emerges from

our study. The ground state is the threshold bound state graviton of momentum P = N/R,

with 256 polarization states and vanishing light cone energy ELC = 0. To achieve this,

the spin and orbital wavefunctions of the constituent partons must be highly correlated;

the spins must behave antiferromagnetically, and the zero-point motions of bosonic and

fermionic degrees of freedom must delicately balance to zero. In the language we have
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been using to describe the black hole, we would say that the ground state consists of a

single correlated domain or cluster of partons. According to the relation between entropy

and area, a low-energy observer would assign Planckian dimensions to the ground state

supergraviton (for any N).5 As we pump energy into the system, it becomes increasingly

disordered. Instead of being correlated across its entire volume, there will be separate

domains which are individually ordered much as in the ground state, with little correlation

between domains. As with a liquid, there is no permutation symmetry among correlation

domains, since each lives in a different environment (of off-diagonal modes). Ascribing

a finite number of states to each domain (as in the case of the single domain of the

ground state), the number of domains should be of order the entropy. The size of these

resonant bound states is governed by the ability of the constituent domains to resolve one

another via their interactions: r0 in the transverse directions due to uncertainty principle;

and RS/N ∼ e−αr0 in longitudinal direction, again due to the Fourier resolution of the

clusters.

One might wonder, what distinguishes this picture from a collection of interacting

wavepackets of gravitons in general relativity? For instance, S ∼ rD−2
0 /GD gravitons

of wavelength ∼ r0 would have roughly the right kinetic energy, and would satisfy the

virial theorem if the static gravitational interaction were used. The difference is that

the graviton gas in general relativity is at its Schwarzschild radius, where it is unstable

to collapse toward shorter wavelengths (as viewed from infinity); on the other hand, in

matrix theory the clusters are stable at the scale r0 because gravitational forces turn off

at that scale – gravity comes from integrating out ‘membrane’ degrees of freedom, an

approximation which breaks down at this point. Including these degrees of freedom in

the dynamics stabilizes the system. A second crucial distinction is that the new degrees of

freedom ‘distinguish’ the clusters, whereas gravitons always have a permutation symmetry;

this allows the system to have an enormous entropy.

We have been describing the matrix black hole as a collection of gravitons in a diffuse,

membrane-like background. Reversing the background and the foreground, one might also

5 It is not clear what physical significance to assign to the growth in the size of the parton

cloud in a graviton with N due to zero-point motions; it is their average position that matters,

as in the membrane example given in section 4 of [11], and in the mean field analysis above. It

has not been necessary in our analysis to utilize any sort of ‘holographic spreading’ of an object

with boost [28]. The system seems more governed by standard quantum mechanics, and by the

duality between membranes and gravitons, than by some sort of ‘holographic principle’.
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visualize the state as a ‘Hagedorn phase’ of the membrane, as was proposed in the second of

[3] in the context of six-dimensional matrix black strings. This connects the matrix black

hole to the weak-coupling Hagedorn strings which arise through the string/black hole

correspondence principle [19]. The Hagedorn string has zero effective tension, so there

is no communication between different regions of the string, just as there is effectively

no communication between domains of the Hagedorn membrane that could establish a

permutation symmetry among the domains. In the correspondence principle, the Hagedorn

string arises when the spacetime curvature expected from general relativity is of order the

string scale. The surprising feature of the Hagedorn membrane is that it does not need a

curvature of order the Planck scale to make its appearance; the fingering instability allows

the membrane to extend its tendrils to the weak-curvature region at the Schwarzschild

radius at little cost in energy.

In order to complete the picture of black hole dynamics in M-theory, it is important

to recover the description of the evolution experienced by freely falling observers passing

through the classical event horizon. The horizon degrees of freedom implicitly contain

this information, spread throughout the full matrix wavefunction of the matrix black hole

in subtle correlations. Along the lines discussed in [3], one would like to carry out the

matrix transformation that isolates the probe dynamics from the geometrical background

by carrying out the sequence of boosts that keeps it in its proper rest frame. A coherent

macroscopic object such as the spinning membrane [11,29] is a good candidate for a probe

– its classical rotation acting as a proper clock, its radius a proper measuring rod.

Since the boost between the proper rest frame of the infalling probe and that of

asymptotic observers becomes infinite at the horizon, it is not entirely obvious that the

finite N matrix theory will allow an accurate description of classical infall. However, in

the classical limit, the probe is kept at a fixed size relative to the black hole, while the

Planck length is taken to zero. This limit forces N, R → ∞. The asymptotic observer sees

the clock’s motion freeze as it approaches the classical horizon. The proper motion has the

clock execute several more ticks before its obliteration on the ‘singularity’. It would be very

interesting if one could extract this classical clock variable from the diffusion of the probe

across the full matrix wavefunction of the resulting black hole, and thereby reconstruct the

interior geometry from the degrees of freedom already present in the matrix description. As

we have argued before [3], this may be the ultimate meaning of black hole complementarity:

Degrees of freedom that describe supergravity outside the black hole do not commute with
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the membrane-like degrees of freedom into which the probe wavefunction diffuses as it

penetrates the black hole wavefunction. In this regard, it is interesting that at the black

hole scale r0, the off-diagonal matrix elements appear to be new degrees of freedom not

present in the low-energy description of supergravity (where low-energy is as measured by

asymptotic observers). It is these new degrees of freedom that transform our notion of

causality in a theory of extended objects [31,32]. The effective notion of causal structure is

induced from the behavior of massless probes. Signals propagate differently in the matrix

black hole; zerobranes interact strongly with membrane-like degrees of freedom, and there

may be no localized operational definition of causal structure.6 There is no separation of

ingoing and outgoing null rays, as one might have expected in weakly perturbed general

relativity.

Acknowledgments: We are grateful to H. Awata, J. Harvey, and G. Horowitz for dis-

cussions. This work was supported by DOE grant DE-FG02-90ER-40560 and NSF grant

PHY 91-23780.

6 Alternatively, one may say that in matrix theory the underlying causal structure is that of

Minkowski space. There is an apparent causal structure induced by matter fluctuations which

can cause complicated effects in signal propagation (c.f. [33], section 7.11), but no acausality.
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