
Cosmology and Particle Physics Toby Wiseman

Example sheet 4

Qu. 1 Assume flat FRW, then in the radiation era a = aeq (t/teq)
1/2 where

teq is the time of matter-radiation equality. Show that assuming an instanta-
neous transition from radiation to matter era at t = teq that in the subsequent
matter era,

a = aeq

(
3t+ teq

4teq

)2/3

Assuming the radiation era extends back to a big bang at t = 0, compute
the particle horizon size at time t in the matter era showing that the proper
size at time t > teq in the matter era is,

dH(t) =
2

H
− a

aeqHeq

Ignore the presence of the dark energy today so that today the scale factor
still evolves as for matter domination. Take teq to be at redshift Z = Zeq ∼
3600 and last scattering to be at Z = Zls ∼ 1100. Then show that the
particle horizon at last scattering subtends an angle θ on the sky which is,

θ ' 360o

2π

1√
Zls

Hence at last scattering the scales that today are less than ∼ 1o on the sky
were in causal contact in the early radiation era, but larger scales were not.

Qu. 2 As in the previous question, neglect dark energy today and assume
instantaneous transitions from matter to radiation, and from radiation to an
inflationary era which you may approximate as de Sitter. Using this, compute
the number of e-folds required to solve the horizon problem if the universe
reheated just above nucleosynthesis temperatures, ∼ 1010K (ie. ∼ 1MeV ),
or at an intermediate scale ∼ 1023 (ie. ∼ 1010GeV ), or at the GUT scale
1029K (ie. ∼ 1016GeV ).
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Qu. 3 The inflaton is a scalar field φ with equation of motion,

∇2φ = V ′(φ)

and stress tensor,

Tµν = ∂µφ∂νφ− gµν
(

1

2
(∇φ)2 + V (φ)

)
Show that assuming homogeneity and isotropy in a flat FRW spacetime,
ds2 = −dt2 + a(t)2dxidxj, so that φ = φ(t), then the scalar field equation
yields,

φ̈+ 3
ȧ

a
φ̇+ V ′(φ) = 0

and the Einstein equations yield,

H2 =
8πG

3

(
1

2
φ̇2 + V (φ)

)
and,

Ḣ = −4πGφ̇2
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Qu. 4 Define the slow roll function;

ε(φ) =
1

16πG

(
V ′(φ)

V (φ)

)2

Over a range of φ the potential supports slow roll inflation, so ε(φ) � 1.
Suppose that V is monotonic over this range so we have φ = φ(V ) and so
can think of the function ε(V ), and further that ε(V ) is well approximated
by,

ε(V ) ' ε(V0) + ε′(V0)(V − V0) +
1

2
ε′′(V0)(V − V0)2

over this range, with φ0 some value of the scalar within the range, and V0
the potential at this point.

Assume that over this scalar range the potential varies so that V/V0 ∼
O(1). Firstly show that the parameter characterizing second derivatives of
the potential at φ0,

η(φ0) =
1

8πG

∣∣∣∣V ′′(φ)

V

∣∣∣∣
φ=φ0

� 1

must be small. Then show that the parameter characterizing third derivatives
is also small, so,

γ(φ0) =
1

(8πG)3/2

∣∣∣∣V ′′′(φ)

V

∣∣∣∣
φ=φ0

� 1 .
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Qu. 5 Linearize the inflaton equation of motion in a fixed flat FRW back-
ground,

∇2φ = V ′(φ)

about a homogeneous isotropic classical solution φcl(t). Show that if we
ignore back reaction on the metric, then perturbations to the inflaton which
are not homogeneous or isotropic, so that φ(t, x) = φcl + δφ(t, x), obey,

δ̈φ+ 3H ˙δφ− 1

a(t)2
δij∂i∂jδφ+ V ′′(φcl)δφ = 0

Show that we may write a solution to this as,

δφ~k(t, x) = δφ~k(t)e
ikix

i

where k = |~k| =
√
δijkikj is the comoving wavenumber and find the ordinary

differential equation that the time dependence given by δφ~k(t) obeys. Show

that for fixed ~k, then for t → −∞ such that a → 0 and k/a � H, then
provided the FRW background obeys the slow roll conditions, we may write
a ”WKB solution” as,

δφ~k(t) =
c~k
a(t)

e
−ik

∫ t
t∗

dt′
a(t′)

(
1 +O

(a
k

))
for some time t∗ such that k/a � H at that time, and c~k is an integration
constant.

Confirm that for an exact de Sitter background, so a = eHt with constant
H and V ′′ = 0, that the full solution to the perturbation equation for δφk(t)
is,

δφ~k(t) =
c~k
a(t)

e−
ik

a(t)H

(
1− ia(t)H

k

)
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Qu. 6 As in lectures we quantise the (real) inflaton scalar field φ in flat
FRW as,

φ̂(t, x) = φcl(t) +

∫
d3~kδφ~k(t)e

ikix
i

a~k + δφ~k(t)
?e−ikix

i

a†~k

where δφ~k(t) obeys,

δ̈φ~k + 3H ˙δφ~k +
k2

a2
δφ~k + V ′′(φcl)δφ~k = 0

with appropriate boundary conditions. Show that if we choose the cre-
ation/annhilation operators so that,

[a~k, a~k′ ] = 0 [a~k, a
†
~k′

] = δ(3)(~k − ~k′)

then the field obeys the equal time commutation relations,

[φ̂(t, x), φ̂(t, y)] = 0

and,

[φ̂(t, x), π̂(t, y)] = a3(t)

∫
d3~k

(
δφ~k

˙δφ~k
? − δφ?~k ˙δφ~k

)
eiki(x

i−yi)

where we recall that the conjugate momentum π̂ = a3(t)
˙̂
φ.

For t → −∞ and slow roll inflation (so that a → 0 and H ' constant)
we may use the WKB approximation,

δφ~k(t) '
c~k
a(t)

e
−ik

∫ t
t∗

dt′
a(t′)

Then in order to obtain the conventional equal time flat space commutator
as t→ −∞,

[φ̂(t, x), π̂(t, y)] = iδ(3)(~x− ~y)

show that the modes must be normalised so that,

|c~k| =
1

(2π)3/2
√

2k

(and we conventionally choose c~k to be real).
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Qu. 7 Assume inflation was nearly de Sitter, and that inflation ended in-
stantaneously with the universe reheating at the GUT scale so the radiation
era began at a temperature ∼ 1029K. Show that the number of e-folds, N ,
before the end of inflation when the comoving scale with wavenumber ~k left
the inflationary ‘de Sitter horizon’ (so |~k|/a = H) that today corresponds to
a physical scale Rphys = a0/k is,

eN ' Trad√
TeqT0

H0Rphys '
Rphys

0.2m

Compute the number of e-folds before the end of inflation that the comoving
scales left the inflationary de Sitter horizon that today correspond to the
following physical scales;

1. the largest scales observable today (∼ 10Gpc).

2. ∼ 1o on the sky at last scattering, or (∼ 100Mpc)

3. galaxy cluster scales (∼ 10Mpc)

4. galaxy scales (∼ kpc)

5. solar system scales (∼ 1012m)
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Qu. 8 Show that the 2-point function of the fluctuations in the inflaton
about the classical trajectory obeys,

〈0|δ̂φ(t, x)δ̂φ(t, y)|0〉 =

∫
d3~k|δφ~k(t)|

2eiki(x
i−yi)

Hence the inflaton 2-point function in comoving Fourier space is given by

〈0|φ̂(t)φ̂(t)|0〉(~k) = |δφ~k(t)|
2

Assume that at time t a mode with comoving wavenumber ~k goes from sub
horizon to super horizon. During this period we approximate H as being
constant, so that a ∝ eHt. Let us denote the value of H when a wave mode
~k exits the horizon (so k = aH) as Hk. Then show for t after the time of
horizon exit, we have,

〈0|φ̂(t)φ̂(t)|0〉(~k) ' H2
k

2(2πk)3

Provided H2 � |V ′′(φcl)| and a mode has exited the horizon so that k/a�
H, then the time dependence of the mode is governed by,

δ̈φ~k + 3H ˙δφ~k ' 0

Use this to argue that then even if H does vary in time after a mode exits
the inflationary horizon, the formula above for the 2-point function Fourier
transform remains true.

7



Qu. 9 Consider the quadratic potential,

V (φ) = m2φ2

Show the slow roll conditions imply that slow roll may occur when the field
is sufficiently far from the minimum φ = 0 so that,

1�
√
G|φ| (1)

Assume that the inflaton starts far from the minimum at φ0 and slow roll
inflation occurs and ends when the above slow roll condition is violated, ie.
when 1 ∼

√
Gφ. Compute the number of e-folds of inflation as a function of

φ0.
For this model consider an inflaton fluctuation with comoving wavenum-

ber ~k that exits the inflationary ’horizon’ at time t = tk when the scalar is at
φ(tk) = φk and the Hubble parameter is H = Hk. Recall from lectures that

the temperature fluctuation on the comoving scale ~k is estimated by,

δT

T
' H2

k

|φ̇k|
(2)

Assume the universe reheats at the GUT scale (with temperature T =
1029K). Recall (from Qu 7) that the modes on the largest scales today
left the inflationary horizon around ∼ 60 e-folds before the end of inflation.
If we wish to have δT/T ∼ 10−5 for these longest modes in order to account
for the temperature fluctuations in the CMB on the largest scales, then give
an estimate for the mass m. You should find that the mass is constrained to
be orders of magnitude below the Planck scale (ie.

√
Gm� 1).
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