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1 Introduction

The AdS-CFT correspondence is a remarkable conjecture that certain con-
formal field theories (CFTs) in d-dimensions are dual to certain gravitational
theories, now in at least (d+1)-dimensions, in the full quantum sense of dual-
ity. By a gravitational theory I mean a theory where spacetime is dynamical,
rather than literally Einstein gravity. This spacetime always has particular
asymptotics, those of Anti de Sitter spacetime.

In the best understood cases these gravitational theories are string theo-
ries, which in certain limits reduce to supergravity. There are other examples
- ’higher spin theories’ - where these theories have dynamic spacetime, but
never a limit that looks like a more conventional Einstein gravity. In all
known cases where the gravitational theory has a limit that appears to be
a usual theory of gravity and matter (for example a supergravity) then the
CFT is strongly coupled and has many degrees of freedom. Note that it is the
many degrees of freedom that allow the higher dimensional ’bulk’ physics to
be packaged into a lower dimensional field theory. In all known cases where
the CFT is weakly coupled (or even free) the dual gravitational theory is
very exotic or strongly coupled. For this reason it seems that the AdS-CFT
conjecture will remain a conjecture in the foreseeable future. However there
is much evidence for it in particular examples (perhaps the best following
from integrability in the CFT side).

The correspondence is very remarkable in two senses. Firstly in principle
it gives a rigorous definition of quantum theories of spacetime, and in certain
limits conventional Einstein gravity theories, albeit living in AdS spacetimes.
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However this definition appears to be in terms of a strongly coupled field
theory so extracting information about quantum gravity remains a challenge,
although a well defined one. Certain very general lessons emerge though. For
example the bulk spacetime is ’emergent’ from the perspective of the CFT
- strictly classical spacetime only emerges as the number of CFT degrees
of freedom becomes very large. The fact that this quantum spacetime is
emergent is probably a very important lesson for quantum gravity. Another
example is that black hole information is not lost - the CFT has a perfectly
unitary evolution. Again an important lesson.

The second remarkable sense follows from thinking in the reverse direc-
tion. Then we learn that in some instances strongly coupled field theories
may be described in terms of simple Einstein gravity theories. This is a
wonderful repackaging of the most relevant degrees of freedom in the field
theory that allows remarkably simple gravity calculation to deduce results
that appear to be impossible to obtain directly using usual QFT methods
(due to the strong coupling). It is this second sense that has spawned many
’applications of AdS-CFT’ to rather diverse areas of physics - for example
AdS-CMT, using it to understand features of strongly coupled CFT relevant
for condensed matter.

The best understood example in AdS/CFT is the case that the CFT is
maximally supersymmetric U(N) Yang-Mills theory in (3 + 1)-dimensions
(so called N = 4 YM) where the dual description is in terms of IIB string
theory in AdS spacetime. The correspondence was discovered by Maldacena
building on previous work on D-branes in string theory. In this case, a large
number of D3-branes have two descriptions. One is in terms of open strings
that end on N D-branes, which yields the U(N) gauge theory. The other is in
terms of closed strings, for who the D-branes act as a source of gravitational
and charge, and may be understood (in the decoupling limit) in terms of
supergravity in AdS spacetime. The equivalence of these two descriptions
was what lead to the conjecture, and is a convincing physical argument for
it even though we lack a mathematical proof.

In this case the CFT has a simple(ish) Lagrangian and has a coupling
gYM that can be made small or large. When the gauge group size N → ∞,
and the so called ’t Hooft coupling, λ = Ng2

YM (which is the relevant cou-
pling for large N perturbation theory) is taken to be large then the dual
description reduces to supergravity. Then simple supergravity computations
allow calculation in the dual strongly coupled gauge theory to be performed.
This has had a huge impact in thinking about the physics of heavy ion colli-
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sions, such as those in RHIC and ALICE (where the gauge theory governing
it, QCD, is strongly coupled and has reasonable N = 3, and is not far in
form from the N = 4 theory). There are also instances where this CFT
can be made to superconduct, and this strongly coupled superconducting
behaviour is understood in terms of gravity. Since strongly coupled CFT
superconductors are thought by many to underly certain high temperature
superconducting materials this has created a huge amount of activity - an ex-
ample of AdS-CMT. Properties such as transport and full non-perturbative
dynamics of the theory is then accessible from simple gravity calculations,
eg, using techniques such as numerical GR.

The correspondence is often known as the gauge/gravity duality since in
the well known cases the CFT is a gauge theory. However more recently CFTs
which are not gauge theories have arisen. It is also known as gauge/string
duality, since really the dual is a string theory in the well known examples
rather than a usual gravity theory. However, as discussed above, not all
correspondences involve string theories (at least in their usual limits). AdS-
CFT is actually a term that I don’t like so much as there are correspondences
that are well understood, but where the QFT is not conformal, and the
gravity theory does not live in AdS - in fact there are cases where the QFT is
just a quantum mechanics, and there has even been numerical work solving
these theories and checking the duality holds. Probably the term ’holography’
is the best general term, as it alludes to the fact that the ’bulk’ gravity theory
lives in more dimensions.

The purpose of these lectures is to give an introduction to the corre-
spondence. While the known examples of AdS-CFT involve string theory or
higher spin theories, it is reasonable to believe that any consistent theory
of quantum gravity living in AdS must have a CFT description (although it
may be a very complicated CFT). This is the thinking behind the ’bottom-
up’ approach to AdS-CFT, where one takes very simple models of gravity
and matter in AdS and posits a dual CFT - for example, surely these are
embeddable somewhere in the string landscape?

I will focus on this simple approach and describe the very basic properties
of AdS-CFT. These properties all hold in the more complicated ’top-down’
settings where actual dualities are known. However the additional physics
in these cases often obscures the basics. There are many excellent reviews
on AdS-CFT. The classic is that of MAGOO (hep-th/9905111), although
it involves a lot of string theory. Maldacena has a nice more accessible re-
view (arXiv:1106.6073). For a review on applications to superconductors
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and condensed matter physics see Hartnoll’s arXiv:0903.3246 and McGreevy
arXiv:0909.0518. For a review on applications to heavy ion physics there is
arXiv:1101.0618. I have a fairly recent review on application to curved space-
time QFT arXiv:1312.0612. For a very recent review, see that of Penedones,
arXiv:1608.04948.

Plan:

It seems to me a sensible way to introduce AdS-CFT is to talk about
AdS and CFTs and then show how they are related. Both AdS and CFTs
are interesting in their own right so I hope everyone will find something
interesting.

I will start by introducing some basics of CFTs. This is a huge and
beautiful subject and I will only introduce the concepts I will use later to
establish the correspondence. I will then discuss the notion of AdS spacetime
and asymptotic AdS spacetimes. I will discuss the physics of a scalar field
in AdS. Following from this we will have all the ideas necessary to state the
basic AdS-CFT correspondence. If time permits we’ll close by talking about
simple thermal physics and the canonical example of N = 4 SYM.
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2 What is a CFT?

Consider a Poincare (Translations + Lorentz) invariant QFT on d-dimensional
Minkowski spacetime, ds2 = ηµνdx

µdxν . The action of the translations and
Lorentz symmetry on Minkowski is given by,

xµ → x′µ = xµ − aµ

xµ → x′µ = Λµ
νx

ν (1)

for Λ ∈ SO(1, d− 1) and the algebra is,

[Mαβ,Mµν ] = −iηαµMβν + . . .

[Mµν , Pα] = −i (ηµαPν − ηναPµ) (2)

where Pα is the generator of translations and Mµν is the generator of Lorentz
transformations. The action of these on a function f(x) is,

Pµf(x) = i∂µf

Mµνf(x) = i (xµ∂ν − xν∂µ) f (3)

If we have a local relativistic QFT it is invariant under these transformations,
and built from fields Φ(x) which are representations of the Poincare group
(where we suppress internal indices, such as spin/flavour). These fields have
specific transformation properties,

[Pµ,Φ] = i∂µΦ

[Mµν ,Φ] = [i (xµ∂ν − xν∂µ) + Σµν ] Φ (4)

where Σ generate the instrinsic spin of the field (a finite representation of
Lorentz). The Casimir operator of the Poincare group is the mass operator
m2 = −P µPµ which we use to construct representations. For example we
might consider Φ to be a free massive or massless scalar field.

Now suppose that in addition we assume the theory is invariant under a
scale symmetry,

xµ → λxµ (5)

These transformations are generated by D, the dilation or dilatation or scal-
ing operator, which acts on a function as,

Df(x) = ixµ∂µf (6)
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and hence obeys,

[Mαβ, D] = 0

[Pµ, D] = iPµ (7)

Consider the transformation of a field which forms a representation of Poincare
and dilations. It may be more general than that of a function. In addition
to the change of coordinate, the field itself may also scale, so,

Φ(x)→ Φ′(x) = λ∆Φ(λx) (8)

where ∆ is called the scaling dimension of the field. Then the generator acts
on the field as,

[D,Φ(x)] = i (∆ + xµ∂µ) Φ(x) (9)

which we note preserves the brackets of D with Mµν and Pµ above. Note
that the mass operator m2 = −P µPµ can no longer be a Casimir operator of
Poincare and dilations, as it does not commute with D. Hence a representa-
tion of the symmetry group cannot have a definite mass unless it vanishes.
A consequence of this is that we should not expect there to be ’particles’ in
the usual sense that we can scatter, and hence an S-matrix. The interactions
in a QFT with scale invariance will necessarily have a very long range, and
generically mean such an S-matrix description is problematic.

A simple example of such a theory is a free scalar field in 2-dimensions,

S =

∫
dtdx(∂µΦ)2 (10)

where we see if,

Φ→ λ0Φ (11)

so that ∆ = 0 then the theory is scale invariant. An interacting theory must
have only dimensionless couplings as otherwise the coupling constant will
break scale symmetry. This is analogous to the fact that a field cannot have
a well defined mass (since it may be thought of as a dimenionful coupling).
Examples of classically scale invariant theories are Yang-Mills theory in 4-
dimensions and massless Φ4 theory in 4-dimensions, so,

S =

∫
dtd3x

[
(∂µΦ)2 − αΦ4

]
(12)
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where α is a dimensionless coupling and now we have invariance if,

Φ(x)→ Φ′ = λ1Φ(λx) (13)

so that ∆ = 1. Transformations are always confusing. Let us check this
taking Φ→ Φ′!

S → S ′ =

∫
d4x

[
(∂µΦ′)2 − αΦ′4

]
=

∫
d4x

[
(λ2∂µΦ(λx))2 − αλ4Φ4(λx)

]
=

∫
(λ−4d4x′)

[
(λ4∂′µΦ(x′))2 − αλ4Φ4(x′)

]
(14)

with x′ = λx, noting ∂/∂xµ = λ∂/∂x′µ. Classically we see that the scaling
dimension ∆ is just the naive ‘engineering’ dimension of the field.

An important point is that classical scaling symmetry is generally anoma-
lous and broken in the quantum theory. This is perhaps not surprising think-
ing about the most physical regulator which is an energy cut-off which totally
destroys scaling. For example both these interacting examples are not con-
formal in the quantum theory - although the free 2-dimensional example is
still conformal.

Suppose we do have a theory that is scale invariant quantum mechanically.
The crucial point is that under weak assumptions, scale invariance leads to
the enhancement of symmetry to the conformal symmetry group. For d > 2
in addition to Poincare and dilations one has invariance under an additional
special conformal transformation,

xµ → xµ + aµx2

1 + 2xµaµ + a2x2
(15)

whose generator Kµ has the action on a function,

Kµf(x) = i
(
x2∂µ − 2xµx

ν∂ν
)
f (16)

and forms a closed algebra with Mµν , Pµ, D - the conformal algebra;

[Mαβ, Kµ] = −i (ηαµKβ − ηβµKα)

[Pα, Kβ] = 2iMαβ − 2iηαβD

[D,Kµ] = iKµ (17)

If we take the action of Kµ on the field Φ to be,

[Kµ,Φ(x)] =
[
i
(
x2∂µ − 2xµx

ν∂ν − 2xµ∆
)
− 2xνΣµν

]
Φ(x) (18)
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then one can check this gives a representation of the conformal algebra above.
A conformal field theory is a theory that is invariant under the conformal

group above, generated by Mµν , Pµ, D,Kµ which act on the operators in the
quantum field theory to give a representation of the conformal group. Note
that in d = 2 the conformal group is in fact infinite dimensional and hence
conformal symmetry becomes a very powerful constraint on a QFT - however
here that will not play an important role.

The conformal algebra is in fact the algebra SO(2, d) (leaving the metric
− − + + . . .+ invariant in analogy with Lorentz SO(1, d − 1) which leaves
− + + . . .+ invariant). This is seen by taking generators Jab with a, b =
0, 1, . . . , d+ 1 with,

Jµν = Mµν

Jµd =
1

2
(Kµ − Pµ)

Jµ(d+1) =
1

2
(Kµ + Pµ)

J(d+1)d = D (19)

so that,

[Jab, Jcd] = i (GbcJad −GacJbd −GbJac +GadJbc) (20)

where Gab = diag(−−+ + . . .+).

2.1 Primary fields

From the algebra we see that Pµ and Kµ may be thought of as raising and
lowering operators with respect to D. We can build representations of the
conformal group by considering operators which are eigenfunctions of D and
spin with eigenvalue −i∆ under D, and the usual (l,m, . . .) under spin - we
call these operators with dimension ∆. Then Pµ and Kµ act to increase or
decrease ∆ by one. We are interested in representations which have a lower
bound on ∆ (this is constrained by unitarity). Hence there must be an oper-
ator in the representation which is annhilated by the lowering operator Kµ.
This is called a primary operator. The other operators in the representation
are built by acting with Pµ and the spin raising/lowering operators.

Consider our example of the field Φ(x) above. Then the operator given
by Φ(0), ie. Φ(x) at the origin in Minkowski (about which we defined our
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conformal generators) is a primary operator since [D,Φ(0)] = −i∆Φ(0) and
[K,Φ(0)] = 0. One may then check that acting with Pµ to give the operator
O = Aµ1...µn∂µ1 . . . ∂µnΦ(0) gives a dimension (∆ + n) operator, for some
A which is taken to be a representation of the Lorentz group determining
the spin of O; for example, ηµν∂µ∂νΦ(0) is a scalar operator with dimension
(∆ + 2).

We describe our field Φ(x) as a primary field. Its value at a point gives
a primary operator with some spin with respect to the conformal generators
centered at that point. Terms in the Taylor expansion of the field about
the point gives the other operators in the representation generated by this
primary. In the example of the free 2-dimensional scalar the basic field itself
is a primary scalar field.

A field may have definite scaling dimension but not be primary. For such
a field we will still have the relation in equation (9), but not the action in
equation (18) for Kµ.

For a CFT the vacuum state |0 > is a conformally invariant state. In
particular it is annhilated by the generators of the algebra; eg. Pµ|0 >=
D|0 >= 0, likewise < 0|D = 0 etc...

2.2 Correlators

A crucial point in CFT is that the correlators of fields that have scale dimen-
sion, or are primary, are constrained by conformal invariance of the theory.

A basic property of fields with scaling dimension is that,

〈0|φ1(x1)φ2(x2) . . . |0〉 → λ∆1+∆2+...〈0|φ1(λx1)φ2(λx2) . . . |0〉 (21)

under a dilation.
Perhaps surprisingly the spatial form of the 2 point correlators is com-

pletely fixed. Consider a scalar field φ with scaling dimension ∆ (not neces-
sarily primary). Then,

< φ(x)φ(y) >=
c

(x− y)2∆
(22)

for some constant c. Suppose we have scalar primary fields φ1 and φ2 with
different scaling dimensions. Then the two point function < φ1(0)φ2(x) >= 0
vanishes. Suppose all the scalar primary fields in the theory with the same
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dimension ∆ are labelled φi.Then the two point function of these must take
the form,

< φi(x)φj(y) >=
dij

((x− y)2)∆
(23)

for constant real symmetric matrix dij. Usually we then take linear combi-
nations of fields to diagonalize dij so that, < φi(x)φj(y) >= δij/(x − y)2∆.
Similarly the 3 point function is constrained. Consider now all scalar pri-
maries φa with dimension ∆a, then,

< φa(x1)φb(x2)φc(x3) >=
cabc

|x1 − x2|∆1+∆2−∆3|x1 − x3|∆1+∆3−∆2 |x2 − x3|∆2+∆3−∆1

(24)

for constants cabc. We have similar relations for primary operators with spin
too. 4 point functions are less constrained as with 4 x’s it is possible to write
down two conformally invariant expressions. The correlation function is then
an undetermined function of these. Still, reducing all two and three point
functions of primaries to some constants is pretty powerful.

2.3 Stress tensor

An important operator in all CFTs is the stress tensor Tµν (which is conserved
∂µTµν = 0). There may possibly also be conserved currents jµ associated to
global symmetries (also conserved). These operators have scaling dimension
∆T = d and ∆J = d − 1 which are equal to their engineering dimension.
This implies there is no quantum correction to the dimension. The lack
of quantum correction is due to conservation, and would otherwise not be
expected. Note that while these operators have definite scaling dimension -
they are not primary operators (ie. not annhilated by Kµ).

The stress tensor exists for any CFT. Conformal symmetry implies that it
must be traceless. The stress tensor is defined by the variation of the action
S under a perturbation to the metric δgµν as,

δS =

∫
ddxTµνδg

µν (25)

From this we see it must have scaling dimension ∆ = d, since the action is
scale invariant (as the theory is conformal). Then for the dilation transfor-
mation to Minkowski we have,

xµ → λxµ =⇒ ds2 = ηµνdx
µdxν → λ2ηµνdx

µdxν (26)
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so that,

δgµν = 2εηµν (27)

where we write λ = eε and consider |ε| � 1, so a small dilation. Then we
see,

δS =

∫
ddxT µµ ε (28)

but if dilation is a symmetry we must have δS = 0, hence T µµ = 0. [ Note
more carefully we could have T µµ = ∂µV

µ of a vector operator with dimension
∆V = d − 1, but if V µ has its engineering dimension we would expect it to
be conserved, so ∂µV

µ = 0. ]
Further since the stress tensor has dimension ∆ = d then its two point

function is constrained to be;

< Tµν(0)Tσρ(x) >=
C

(x2)d
Iµν,σρ (29)

where Iµ... is a tensor determined as,

Iµν,σρ =
1

2
(AµσAνρ + AµρAνσ)− 1

d
ηµνησρ

Aµν = ηµν −
2

x2
xµxν (30)

The constant C can roughly be thought of as characterizing the number of
physical degrees of freedom in the theory. For example in a CFT built from
N free fields then C ∝ N . It is referred to as the effective central charge (in
2d it is the central charge).

2.4 Sources

One way to think about getting interesting behaviour from a QFT is to put
it into a state which is not the vacuum. However another way to think about
it is to take it in its vacuum, but deform the Lagrangian of the theory by
sources for local operators. Consider the path integral for a theory with a
field Φ(x), so,

Z =

∫
DΦ ei

∫
ddxL[Φ] (31)

11



(setting ~ = 1). Recall that for an operator O we compute the vev in vacuum
by taking,

〈O〉 =

∫
DΦOei

∫
ddxL[Φ]

Z
(32)

We may deform the theory by a source J(x) for the field Φ as,

Z[J ] =

∫
DΦ ei

∫
ddx(L[Φ]+JΦ) (33)

Now Z is a functional of the source called the generating function. We may
now use this source to generate correlation functions, by differentiating and
setting the source to zero,

−i
Z

∂

∂J(x1)
Z

∣∣∣∣
J=0

=

∫
DΦφ(x1)ei

∫
ddx(L[Φ])∫

DΦ ei
∫
ddx(L[Φ])

= 〈φ(x1)〉 (34)

Continuing to differentiate again gives the two point function;

1

Z

(
−i ∂

∂J(x1)

)(
−i ∂

∂J(x2)

)
Z

∣∣∣∣
J=0

= 〈φ(x1)φ(x2)〉 (35)

and so on. More generally we may think of the source as a physical ’external
field’ as we are familiar with in condensed matter. For example the external
magnetic field is a source for the spins in a ferromagnet. In a gauge theory
the gauge field Aµ couples to a current jµ (which is conserved due to gauge
invariance). We can think of this current as a source for the gauge field - in
Maxwell’s equations it literally gives the source term ∇µFµν = jν .

We may deform a CFT by sources in exactly the same manner. In fact this
is a rather natural way to think about a CFT since there are not generally
asymptotically free particles to scatter. In this case we may add a source
term J for an operator O with dimension ∆, so that,

ZCFT [J ] =

∫
DX ei

∫
ddx(LCFT+JO) (36)

where DX is the measure integrating over the fields entering the Lagrangian.
Since the Lagrangian must have scaling dimension d so that the action is
invariant, then the source J must scale with dimension (d−∆).
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3 What is AdS spacetime?

A nice way to think of (d+1)-dimensional AdS spacetime is as a hypersurface
- a hyperboloid radius `,

U2 + V 2 −X iX i = `2 (37)

with i = 1, . . . d embedded in (d+ 2)-dimensional Minkowski spacetime,

ds2 = −dU2 − dV 2 + dX idX i (38)

This surface has closed time like curves - the circles at X i =const are timelike.
However if we unwrap these circles, one obtains the ’universal cover’ which
is AdS spacetime.

Taking,

U = ` cosh ρ cos τ

V = ` cosh ρ sin τ

Xi = ` sinh ρΩi (39)

where Ωi parameterize a (d− 1)-sphere,
∑

i Ω
2
i = 1, then one can check,

ds2 = `2
(
− cosh2 ρdτ 2 + dρ2 + sinh2 ρdΩ2

(d−1)

)
(40)

Then τ is the time coordinate, and in the universal cover τ ∈ R rather than
being an angle. This is known as ’global AdS’. We often write this as,

ds2 = −fdt2 +
1

f
dr2 + r2dΩ2

(d−1) , f =
r2

`2
+ 1 (41)

using r = ` sinh ρ and t = `τ .
The isometries of the spacetime are easily seen in the embedding to be

SO(2, d), although in the actual (d + 1)-coordinates it is less obvious, with
only the (maximal compact) subgroup SO(2)× SO(d) being manifest.

From the first form we see that as ρ →∞ there is an asymptotic region
where,

ds2 → `2
(
e2ρ
(
−dτ 2 + dΩ2

)
+ dρ2

)
(42)

so time and the sphere ’blow up’. In fact a space which can be written as,

ds2 =
1

Z2(x)
gµν(x)dxµdxν (43)
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where gµν is a regular metric and Z is called the ’defining function’ and
goes to zero ’linearly’ on some hypersurface so that dZ 6= 0 there is called
conformally compact. It has an asymptotic region that we call the conformal
boundary. Its geometry is conformal to the induced geometry of the slice of
gµν where Z = 0. By taking eρ = 1

z
we see our metric is of this form;

ds2 → `2

z2

(
−dτ 2 + dΩ2 + dz2

)
(44)

where Z = 1
`
z and so the metric has a conformal boundary at the hyper-

surface Z = z = 0. The conformal boundary has a geometry given by (the
conformal class of) the metric gµν |Z=0 at the boundary. Note that this con-
formal boundary is only defined up to a conformal factors - ie. up to the
choice of Z which may be any linearly vanishing function. So we see here
that AdS has a conformal boundary that is (conformal to),

ds2
b → −dτ 2 + dΩ2 (45)

so R× Sd−1, time cross a unit sphere (the Einstein static universe).
An important point about a conformal boundary is that a spacelike curve

that extends to the boundary must have infinite distance. However, a null
geodesic reaches the boundary at finite time τ . This is because null geodesics
are not affected by a conformal transformation of the metric - for them they
see the space gµν which we can think of as having a ’real’ boundary at Z = 0.

We will focus here on a chart of AdS which does not cover the whole
space. This is called the Poincare patch or Poincare-AdS and is found from
taking,

U =
z

2

(
1 +

1

z2

(
`2 + (xa)2 − t2

))
V =

`

z
t

Xa =
`

z
xa

Xd =
z

2

(
1− 1

z2

(
`2 − (xa)2 + t2

))
(46)

for a = 1, . . . , d − 1. Then this covers half the hyperboloid and induces the
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metric,

ds2 = gABdx
AdxB =

`2

z2

(
−dt2 + dxadxa + dz2

)
=
`2

z2

(
ηµνdx

µdxν + dz2
)
(47)

writing xµ = (t, xa), xA = (xµ, z). We can immediately read off that the
conformal boundary is d-dimensional Minkowski, identifying Z = z/` again,
with the boundary at z = 0.

In fact Poincare-AdS can be ’derived’ from global AdS by zooming in on
a portion of global AdS near the boundary. Then one looses sight of the fact
the boundary is spatially a sphere, and it looks flat. So z = 0 is a conformal
boundary - what about z → ∞ - what happens there? We’ll return to that
in a minute.

How does the AdS symmetry look in these coordinates? One can show
that its action on the Minkowski boundary precisely reproduces the conformal
symmetry group action we saw earlier. This provides a precise link between
AdS spaces and conformal symmetry. Importantly for us, we easily see an
isometry,

z → λz , xµ → λxµ (48)

which clearly leaves the Poincare-AdS metric invariant. Restricted to the
boundary this has the action xµ → λxµ which is precisely the dilaton opera-
tion on Minkowski.

The AdS space is an Einstein space meaning that writing,

ds2 = gµνdx
µdxν (49)

it solves the equation,

Rµν = Λgµν = −d− 1

`2
gµν (50)

so the Ricci tensor is proportional to the metric. We may think of this as
the Einstein equation where the matter is a negative cosmological constant,
Λ ∼ − 1

`2
. Hence the ‘Anti’ in AdS. In fact the AdS spacetime is so symmetric

that its Riemann tensor is simply given in terms of the metric;

Rµναβ ∼ Λgµαgνβ + . . . (51)

so that its Weyl tensor vanishes.
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3.1 Asymptotically AdS spacetimes; a bottom-up view

More generally we say an asymptotically AdS space is one that has a con-
formal boundary and near that it shares the same geometry as AdS. More
precisely we say it is a spacetime that has a conformal boundary and locally
approaches an Einstein space with vanishing Weyl tensor near that boundary.

This spacetime will be governed by dual gravitational theory and gen-
erally in AdS-CFT would really be quantum (whatever that means). In
bottom-up approaches to AdS-CFT we usually imagine a setting where the
CFT is described by a dual gravity theory comprising semiclassical Einstein
gravity, perhaps coupled to some matter fields.

Something that is generally true is that in any realization of AdS-CFT
where the bulk theory is described by some conventional gravity theory (eg
supergravity in dimensions greater than (d + 1)) we may always turn off
matter fields and truncate to simple pure gravity with a negative cosmological
constant in (d+ 1)-dimensions, so,

Rµν = −d− 1

`2
gµν (52)

Let us discuss an important example of an asymptotically AdS spacetime
that solves these equations, in the knowledge that it will embed into more
complicated theories.

The AdS-Schwarzschild spacetime is a simple generalization of AdS in
global coordinates which solves these Einstein equations,

f =
r2

`2
+ 1− α

rd−2
(53)

Then writing α =
(
r2
0

`2
+ 1
)
rd−2

0 we see there is a horizon at r = r0 which is

much like the usual Schwarzschild horizon and in particular its spatial section
is a (d-1)-sphere. For large r this spacetime just looks like global AdS, and
hence is asymptotically AdS.

In our case of interest, Poincare-AdS, the black hole metric solving the
Einstein equation above is simply,

ds2 =
`2

z2

(
−fdt2 + dxadxa +

1

f
dz2

)
, f = 1−

(
z

z0

)d
(54)

and there is a horizon at z = z0. Now unlike usual Schwarzschild we see the
spatial geometry of the horizon is simply flat space Rd−1 which is perhaps
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surprising. A standard calculation (ie. computing the surface gravity) shows
the Hawking temperature of the horizon (defined with respect to ∂/∂t) is,

THawking =
d

4πz0

(55)

This temperature is the temperature the space has as observed by someone
at the conformal boundary - the asymptotic region - whose time translation
is generated by ∂/∂t. For large z we see the same behaviour as for Poincare
AdS, and hence this is an example of a spacetime which is asymptotic to
AdS, but not AdS. We can also compute the Bekenstein-Hawking entropy,
given in terms of the area A of the horizon,

SBH =
A

4G
(56)

This is divergent since horizon is planar - but the entropy density is finite.
Let us return to what z →∞ is for Poincare AdS. Taking the black hole

above to zero temperature z0 → ∞ we recover Poincare-AdS. We also see
that z →∞ is a zero temperature horizon - more precisely what is known as
an extremal horizon. This is a null hypersurface with zero surface gravity.

Geometrically the gtt component of the metric is very important. It de-
termines the relative redshift for an observer at constant spatial position in
the bulk. We see that since gtt →∞ near the boundary, an observer sitting
near the boundary sees events further away in the bulk as being redshifted.
So in this spacetime we might say physics happening near the boundary has
high energy, physics far from the boundary is nearer to the extremal horizon,
and has low energy. Both z → 0 and z → ∞ are an infinite distance away
from any point in the interior for a spatial curve.

Another important point is that to sit at constant spatial position you
must accelerate - it is not geodesic. A particle initially at rest will follow a
geodesic that ’falls’ to increasing z - ’to lower energy’.

3.2 A bulk scalar field

Let us consider the behaviour of a massive scalar field φ(xµ, z) in Poincare-
AdS. We will take a bottom-up perspective imagining the theory governing
the bulk is semiclassical Einstein coupled to the scalar. We will consider
its fluctuations, taking them small so we can ignore backreaction. Then we
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simply have to solve the equation,

∇2φ = m2φ (57)

which derives from the bulk action,

S = −1

2

∫
√
g
(
gAB∂Aφ∂Bφ+m2φ2

)
(58)

for gAB the Poincare AdS metric before. Let us proceed by Fourier decom-
posing in the xµ = (t, xa) directions, so we consider a mode,

φ(xA) = eikµx
µ

f(z) (59)

This reduces to the ode,

f ′′(z)− d− 1

z
f ′(z)−

(
k2 +

m2`2

z2

)
f = 0 (60)

and then k =
√
k2 and writing f(z) = z

d
2h(kz) and defining µ = kz this

reduces to the modified Bessel equation,

µ2h′′(µ) + µh′(µ)−
(
µ2 + ν2

)
h = 0 , ν2 = m2 +

d2

4
(61)

with general solution,

h(µ) = aKν(µ) + bIν(µ) (62)

Recall that,

Iν(µ) =
∞∑
n=0

1

n!Γ(n+ ν + 1)

(µ
2

)2n+ν

, Kν(µ) =
π

2

I−ν(µ)− Iν(µ)

sin(νπ)
(63)

Hence for generic ν then Iν ∼ µν and Kν ∼ µ−ν + µ+ν as µ → 0. Recall
also that Iν ∼ 1√

µ
eµ and Kν ∼ 1√

µ
e−µ as |µ| → ∞. Thus we see near the

boundary, z ∼ 0, the two solutions for f have expansions,

f(z) = az
d
2
−
√
`2m2+ d2

4 (1 + . . .) + c(a, b)z
d
2

+

√
`2m2+ d2

4 (1 + . . .) (64)

where the . . . are a power series expansion in z2 and the constant c(a, b) is a
particular linear combination of a and b. We write these as,

f(z) = azd−∆ (1 + . . .) + cz∆ (1 + . . .) (65)
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where ∆ = d
2

+
√
`2m2 + d2

4
is the (greater) root of the quadratic equation;

∆ (∆− d) = `2m2 (66)

Note that we have called this ∆ but at the moment have not linked it to our
earlier CFT discussion of scaling dimension.

A careful analysis of this system shows that to have good dynamics we
require ∆ to be real (to avoid terribly oscillatory behaviour near z = 0, and
in fact also ∆ ≥ d−2

2
(cf unitarity!). Drawing a graph of m2 against ∆ we see

that in fact m2 may be negative, with m2 > −d2

4
(this is the ’BF’ bound).

It seems odd that mass squared can become negative. In fact this is because
in many respects AdS behaves like a box, whose size is ∼ `. The box acts
to cut off long wavelength behaviour. A tachyonic field may become stable
if it is placed in a small enough box - thus AdS allows a range of tachyonic
masses to give stable behaviour.

Now we need some boundary conditions to fix up the constants of inte-
gration. We may think of the two constants as being data for the Fourier
mode associated to there being two important asymptotic regions. Firstly
the conformal boundary at z = 0, and secondly the past (extremal) horizon
of Poincare AdS, at z →∞ and t→ −∞.

The fact that the conformal boundary requires boundary conditions is
associated to the fact that null rays can reach it in finite affine parameter.
Likewise high energy modes of the scalar field will get near the boundary in
a finite time, and we have to say how the scalar behaves there. Again it is a
bit like for a scalar field in the box, we must fix the value of the scalar field
on the walls of the box.

Let us for simplicity assume that ∆ > d/2 (this includes negative m2).
One can handle more negative ∆ but it is a little more subtle. Then the term
zd−∆ dominates that going as z∆ as z → 0. We then want to fix this leading
behaviour of the scalar field near the boundary z = 0.

In real space we see,

φ(x, z) = φ0(x)zd−∆ + φ2(x)zd+2−∆ + . . .+ φd(x)z∆ + . . . (67)

with the . . . being ascending powers of z (as we assumed ∆ > d/2), and so
we wish to fix the function φ0(x) over the boundary spacetime. For ∆ = d
this is simply the value of the scalar at z = 0, but for other ∆ it is just the
leading behaviour (and can even diverge for ∆ > d!). Note that all the φn
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for n < d are determined by φ0. Then φd isn’t, being the other data, and
after that all higher terms are determined by the pair φ0,d.

Having fixed φ0 we then may solve the wave equation to see the response
of the scalar field, which is characterized by φd, the coefficient of z∆. So it
is a little different to a scalar in flat space which is thought of only in terms
of initial data. Here we have boundary data to fix too. We also have initial
data as we discuss shortly associated to the past horizon.

Before we proceed it is interesting to note that under the bulk isometry
z → λz, xµ → λxµ which leaves the metric invariant the scalar field must
just transform as,

φ(x, z)→ φ(λx, λz) (68)

We may think of the functions φ0(x), φd(x) as living on the boundary space-
time where this bulk isometry acts as a dilation. How do the terms φ0(x)
and φd(x) change if we read them off from a solution after performing such a
bulk isometry? We see that under this dilation in fact a, b do not transform
as functions but have a scaling dimension,

φ0(x)→ λd−∆φ0(λx) , φd(x)→ λ∆φd(λx) (69)

Fixing φ0 we think of as a boundary condition, and then we see φd as the
response to it. Given our discussion above it might be natural to think of
φd(x) as a scalar field on the boundary with dimension ∆, and then φ0(x)
can be interpreted as its source field, with dimension (d−∆), which pushes
it to have some dynamics.

Now we must fix the initial condition for the field on the past extremal
horizon at z →∞, t→ −∞. We have seen that as z →∞,

φ ∼ az
d
2

√
kz
eik

µxµ−kz (1 + . . .) +
cz

d
2

√
kz
eik

µxµ+kz (1 + . . .) (70)

where k =
√
kµkµ. For wavenumbers kµ which are spacelike, so k is real in

the source we expect the field to be regular, and hence exponentially decay
near the horizon rather than blow up. For kµ timelike, so k =

√
k2 is pure

imaginary we want the perturbation to be ingoing at the future horizon, with
no outgoing past horizon component. Both these require that b = 0. Hence
physical initial data and regularity requires us to take the solution,

f(z) = az
d
2Kν(kz) (71)
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for a constant a. Expanded in a power series in z,

f(z) = a0z
d−∆ + . . .+ a1z

∆ + . . . (72)

and the constants a0 and a1 are just functions of a and k which may be read
off. Again . . . represent ascending power of z. In fact,

a1 =
Γ
(
−2∆−d

2

)
Γ
(
+2∆−d

2

) (k
2

)2∆−d

a0 (73)

The k dependence is important as now returning to our real space form, it
implies that,

φd(x) ∝
∫
ddy

1

|x− y|2∆
φ0(y) (74)

[Why?: if

φ0(x) =

∫
ddkake

ik·x (75)

then, ∫
ddy

φ0(y)

|x− y|2∆
=

∫
ddk

∫
ddy

1

|x− y|2∆
ake

ik·y

=

∫
ddkake

ik·x
∫
ddy

1

|x− y|2∆
eik·(y−x)

=

∫
ddkake

ik·x
∫
ddz

1

|z|2∆
eik·z (76)

but on general grounds we expect
∫
ddz 1

|z|2∆ e
ik·z ∝ |k|2∆−d up to a k inde-

pendent constant so,∫
ddy

φ0(y)

|x− y|2∆
∝
∫
ddk akk

2∆−deik·x ∼ φd (77)

as claimed. End of aside.]
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3.3 The scalar action

Consider the action for the scalar evaluated on this solution (the ’on-shell’
action). If we integrate by parts, the action becomes,

S =
1

2

∫
M
ddxdz

√
gφ
(
∇2φ−m2φ

)
− 1

2

∫
∂M

dSAφ∂Aφ

(78)

but for a solution the bulk integral vanishes. Hence the ’on-shell’ action is
simply given by the boundary term

Son−shell = −1

2

∫
∂M

dSAφ∂Aφ

(79)

where dSµ is the outward directed area element of the boundary.
We have two potential surfaces that may give contributions - z = 0 and

z → ∞. Let us evaluate the boundary term on our solution for a boundary
∂M that is at a fixed z. Then given the Poincare-AdS metric,

I(z) ≡
∫
∂M

dSAJA =

∫
ddx

(
`

z

)d
nAJA = −

∫
ddx

(
`

z

)d−1

Jz (80)

where nµ is the unit outer (for the z = 0 boundary) normal, nµ = 0, nz = − z
`

so that n2 = 1, and
(
`
z

)d
is the volume element

√
g|z on the metric induced

on a constant z surface. For our solution we have Jz = φ∂zφ so find,

I = −
∫
ddx

(
`

z

)d−1

(φ∂zφ) (81)

From our discussion of the z behaviour of solutions as z → ∞ we see there
will be no contribution there as at worst φ→ z

d−1
2 . However there may be a

contribution at z = 0 where the field behaves as in (67). Then,

φ∂zφ =
(
φ0(x)zd−∆ + . . .+ φd(x)z∆ + . . .

) (
(d−∆)φ0(x)zd−∆−1 + . . .+ ∆φd(x)z∆−1 + . . .

)
= (d−∆)φ0(x)2z2d−2∆−1 + . . .+ dφ0(x)φd(x)zd−1 + . . . (82)

with the . . . being ascending power of z. Putting this into the surface term
we find,

I(z) = −
∫
ddx `d−1

(
(d−∆)φ0(x)2zd−2∆ + . . .+ dφ0(x)φd(x)z0 + . . .

)
(83)
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The on-shell action is then given by,

Sos = −1

2
lim
z→0

I(z)→∞ (84)

But this is simply distastrous?! For ∆ > d/2 then all the leading terms up to
z0 are horribly divergent! Only this term is finite near z = 0. So we conclude
the action evaluated on our solution is divergent, due to the boundary.

Is this surprising? Not really, since the space near the conformal boundary
has infinite volume. If fields do not fall off quickly enough they will naturally
give rise to an infinite action.

However it turns out that all the divergences can be cured by adding
additional local surface terms to the action. Since these are surface terms, or
total divergences from the bulk point of view they don’t change the equation
of motion or our solution. Consider instead the new action,

Sreg =
1

2

∫
M
ddxdz

√
gφ
(
∇2φ−m2φ

)
− 1

2

∫
∂M

dSAφ∂Aφ+

∫
∂M

dS
(
kφ2 + . . .

)
(85)

for constant k, and the . . . represent terms involving derivatives of φ, and dS
is the volume element of the surface. So on-shell it is,

Sreg,os = −1

2

∫
∂M

dSAφ∂Aφ+

∫
∂M

dS
(
kφ2 + . . .

)
(86)

We’ll ignore the . . . terms and focus on the leading new term on a constant
z surface,

Ict(z) =

∫
ddx

(
`

z

)d−1 (
φ2
)

(87)

so that,

Sreg,os = lim
z→0

(
−1

2
I(z) + Ict(z)

)
(88)

Using our expansion near z = 0 gives,

Ict =

∫
∂M

dSkφ2 = −
∫
ddx `d−1

(
φ0(x)2zd−2∆ + . . .+ 2φ0(x)φd(x)z0 + . . .

)
(89)

23



Using this and I we see the on-shell action is,

Sreg,os = lim
z→0

[
1

2

∫
ddx `d−1

(
(d−∆)φ0(x)2zd−2∆ + . . .+ dφ0(x)φd(x)z0 + . . .

)
+k

∫
ddx `d−1

(
φ0(x)2zd−2∆ + . . .+ 2φ0(x)φd(x)z0 + . . .

)
+ . . .

]
(90)

Now we see that if we choose k = −d−∆
2

the (leading) divergence cancels
leaving the term z0 which taking the limit gives,

Sreg,os =
2∆− d

2

∫
ddx `d−1φ0(x)φd(x) (91)

Note that this extra surface term that removes the divergence does contribute
to the coefficient of the finite term - so its form is important.

Actually we have been a bit naughty and dropped the other possible
divergences. One can show that a finite number of counter terms are required
to cancel these divergences and these don’t affect the finite term near z = 0.

Let us return to our solution. Then we see,

Sreg,os = c

∫
ddx

∫
ddy

1

|x− y|2∆
φ0(x)φ0(y) (92)

for a constant c depending only on ` and dimension. This sort of thing looks
familiar!
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4 The AdS-CFT correspondence

Certain d-dimensional CFTs (non-gravitational) are thought to be physically
equivalent to theories of gravity coupled to matter in (d+1)-dimensions that
are asymptotic to AdS. The CFT is said to live at the ’boundary’ of the
asymptotic AdS space. The gravity theory must have matter that supports
this AdS behaviour, and is the ’bulk’. This is thought to be a fully quantum
duality.

The correspondence states that each for every bulk matter field - the
scalars, vectors etc... - there is a dual primary operator that corresponds
to it. The metric itself corresponds to the CFT stress tensor (which is a
scaling operator, but not a primary). For simplicity here let us focus on a
massive bulk scalar φ which is dual to a scalar operator O in the CFT with
scaling dimension ∆. Then we may deform the CFT by a source J(x), so its
generating function is,

ZCFT [J ] =

∫
DXei

∫
ddxLCFT+JO (93)

In the bulk we have seen the scalar field in asymptotic AdS requires
boundary conditions - fixing φ0(x) as discussed above. Then the path integral
of this (quantum) gravity theory in the bulk will depend implicitly on these
boundary conditions, and we have,

Zgrav[J ] =

∫
D[g . . .]ei

∫
ddxdz R

16πG
+(∂φ)2−m2φ2...

∣∣∣∣
φ0(x)=J(x)

(94)

so the path integral is taken over configurations with the imposed boundary
conditions. It is easy to write this, but the quantum path integral for gravity
is totally ill posed. Ignoring this important point the AdS-CFT correspon-
dence then states that,

ZCFT [J ] = Zgrav[J ] (95)

There are two ways to think about this. Firstly if this is true it provides
a rigorous definitely of the quantum gravity path integral in terms of a well
defined QFT one. This is remarkable.

However the second way to think about this is when the gravity bulk
solution looks classical. Then the path integral is dominated one or more
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classical saddle points. Typically one of these will dominate the others, so,

ZCFT [J ] = Zgrav[J ] ∼ eiSreg,os[φ0]
∣∣
φ0(x)=J(x)

= eiSreg,os[J ] (96)

where we are writing the action of the (dominant) classical solution with
boundary conditions given by φ0 as Sreg,os[φ0] and note that in order for this
to make sense it must be regulated as above.

Why the regulation? We require surface terms associated to the conformal
boundary. But this is thought of as the high energy part of the space time.
Thus we are subtracting divergences associated to UV behaviour, which is
exactly what is requires in the CFT. It was implicit in our discussion that
ZCFT has been renormalized, and we see there is a mirror procedure in the
bulk.

We obtain two point functions by differentiating twice with respect to J ,
as we know in the CFT,

〈O(x)O(y)〉 = − 1

ZCFT

∂2

∂J(x)∂J(y)
ZCFT [J ]

∣∣∣∣
J=0

=
1

|x− y|2∆
(97)

from before. However, since we have computed,

Sreg,os[φ0] = c

∫
ddx

∫
ddy

1

|x− y|2∆
φ0(x)φ0(y) (98)

then we get precisely the same result in the bulk,

− 1

Zgrav

∂2

∂J(x)∂J(y)
Zgrav[J ]

∣∣∣∣
J=0

= e−iSreg,os
∂2

∂J(x)∂J(y)
eiSreg,os

∣∣∣∣
J=0

= e−iSreg,os
∂2

∂J(x)∂J(y)
e
c
∫
ddx

∫
ddy 1

|x−y|2∆ J(x)J(y)

∣∣∣∣
J=0

=
1

|x− y|2∆
(99)

We can compute higher point correlators with additional functional differen-
tiation of the on-shell gravity action. In our scalar example, we will have to
include the interaction of the scalar with the bulk graviton going beyond the
two point function - this leads to ’Witten’ diagrams.

Without a source one point functions must vanish. However with a source
they will not. Then,

〈O(x)〉J = i
∂

∂J(x)
lnZCFT (100)
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so then we can compute using the gravity,

〈O(x)〉J = i
∂

∂J(x)
lnZgrav ' −

∂

∂J(x)
Sreg,os[J ] (101)

A careful gravity analysis shows that,

δSreg,os = (2∆− d)

∫
ddx `d−1δφ0(x)φd(x) (102)

and so taking J = φ0 we find,

〈O(x)〉J = (2∆− d)`d−1φd(x) (103)

So for our scalar we interpret the leading fall off φ0(x) as a boundary condition
corresponding to a source in the CFT. And the subleading fall off φd is the
response of the field and determines the one-point function.

4.1 Stress tensor

Every CFT has a stress tensor and this is understood to be dual to the bulk
metric itself. The bulk metric for an asymptotically AdS spacetime has an
expansion near z = 0 and one can find coordinates (Feffermann-Graham)
where,

ds2 =
`2

z2

(
dz2 + hµν(z, x)dxµdxν

)
(104)

and,

hµν(z, x) = h(0)
µν (x) + . . .+ zdh(d)

µν (x) + . . . (105)

The term h(0) is interpreted as the source for the stress tensor which is simply
the boundary spacetime - ie. the spacetime the CFT lives on. By deforming
this away from Minkowski we can get interesting dynamics. We think of this
leading term as going as zd−∆ where ∆ = d for the stress tensor operator.
The term h(d) then determines the one point function of the stress tensor.
This term going as zd we think of as z∆.

There is a sublety in odd bulk dimensions, but in even dimensions the
CFT stress tensor is related to h(d) as,

〈Tµν〉 =
d`d−1

16πG
h(d)
µν (106)
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where the CFT lives on the metric h
(0)
µν . In odd dimensions there is an extra

term, although it only involves h(0). One can compute the two point function
of the stress tensor by considering gravity perturbations, analogous to scalar
example. There is a well defined way to regulate the gravity action. One
finds,

〈Tµν(x)Tαβ(y)〉 =
`d−1

16πG

1

|x− y|2d
Iµν,αβ (107)

This allows us to identity the CFT constant,

C =
`d−1

16πG
(108)

Thus the ratio of ` to the Planck length determines the effective number of
degrees of freedom in the CFT. In order to have classical gravity we therefore
require C � 1, so the CFT must have many degrees of freedom.

For example in the case of N = 4, one finds,

C =
N2

8π2
(109)

showing one requires N � 1.

4.2 Finite temperature

Consider the CFT on Minkowski where we compactify the space into a torus,
so the CFT lives on Rt × T d−1. Now put the CFT at finite temperature T .
Semi-classical gravity then tells us this should be described by a black hole,
with Hawking temperature T (wrt ∂/∂t). The metric will be the planar-AdS
Schwarschild given earlier, although we compactify the coordinates xa ∼
xa + L to give a torus volume V = Ld−1. Now recall,

THawking =
d

4πz0

(110)

The black hole entropy is dual to the entropy of the CFT at this finite
temperature. Therefore the black hole is describing the thermal physics of
the CFT! A calculation then predicts that,

SCFT =
dCV

T

(
4πT

d

)d
(111)
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This is universal for any CFT with a gravity dual. Note the entropy is
proportional to C the effective number of degrees of freedom, and to volume
as it should be.

It is an incredibly tricky calculation in strongly coupled field theory to
compute entropy from first principles. The fact we can do so here highlights
the remarkable types of computation that holography allows. In particular
for N = 4 at large ’t Hooft coupling it predicts,

SCFT =
π2

2
N2V T 3 (112)

4.3 Top down

In top down approaches the dual gravity theory typically is D-dimensional
with D > d + 1 and involves an additional compact space. So the vacuum
geometry is,

g(D) = AdS(d+1) ×X (113)

for a compact (D−d−1)-dimensional X. Since X has constant size, it shrinks
relative to the AdS factor near the boundary and hence does not change
the structure of the conformal boundary which remains (d+ 1)-dimensional.
We may always Kaluza-Klein reduce these theories on X to obtain (d + 1)-
dimensional theories with infinite towers of modes. Note that in this case,
the effective central charge is given in terms of the volume of X and the
higher dimensional Newton constant,

C =
`d−1

16πGD

Vol(X) (114)

In the canonical N = 4 example the vacuum is AdS5× S5. Isometries of the
space X then give rise to additional global symmetries in the boundary. For
example N = 4 has an SO(6) R-symmetry associated to the sphere.
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