2.1 Classical Field Theory

a) Classical Dynamics of Particles - Hamiltonian H

$$H = H \left[\frac{\partial}{\partial t} \vec{x}(t), \vec{p}(t) \right] = T.E + P.E$$

For each particle $n=1,2,\ldots,N$ have one position $\vec{x}_n(t)$ and one momentum $\vec{p}_n(t)$ (in d-space dimensions $\in \mathbb{R}^d$)

e.o.m (Equation of Motion)

$$\frac{\partial \vec{p}_n}{\partial t} = -\vec{f}_n, \quad \frac{\partial \vec{x}_n}{\partial t} = \vec{v}_n$$

2(Nd) equations in time

Example: SHO (Simple Harmonic Oscillator) 1D

$$H = \sum_n \left(\frac{\vec{p}_n^2}{2m_n} + \frac{1}{2} m_n \omega^2 \vec{x}_n^2 \right)$$

Density $\tilde{H} = \hat{\rho} \cdot \hat{H}$

E.o.s find $\ddot{x}_n + \omega_n^2 x_n = 0$ as e.o.m

with solution $x_n(t) = A e^{-i\omega_n t} + B e^{i\omega_n t}$

$$= A \cos(\omega_n t) + B \sin(\omega_n t)$$
6) Classical Dynamics of Particles - Lagrangian L

$$L = \sum_{\text{n}} L_{\text{n}} = \sum_{\text{n}} \left[\mathbf{x}(t) \cdot \mathbf{x}(t) \right] = K.E. - P.E.$$

Now use $\mathbf{x}(t)$ and $\dot{x}(t)$ as independent quantities needed to specify solutions

E.O.M. - Lagrange's equations

$$\frac{\partial L}{\partial \mathbf{x}} - \frac{d}{dt} \left(\frac{\partial L}{\partial \dot{\mathbf{x}}} \right) = 0$$

E.P.S. check S.M.O. e.o.m. obtained from

$$L = \sum_{\text{n}} \left(\frac{m}{2} \frac{\dot{x}_n^2}{n^2} - \frac{1}{2} m \omega_n^2 x_n^2 \right)$$

N.B. $H(p,q,t) = \sum_{n} p_n \dot{q}_n - L(q_n, \dot{q}_n, t)$

$\dot{q}_n = \frac{\partial L}{\partial \dot{q}_n}$
LINEARITY

P52 Quadratic H or L \iff Linear e.o.m
O(x^2), O(p^2) \iff O(x) p.d.e.

Linear equation means two solutions of p.d.e.
e.g. \(x_1(t) \) \& \(x_2(t) \)
can be added to give a new solution

\[x_{\text{new}}(t) = a \cdot x_1(t) + b \cdot x_2(t) \]

Interpretation

There is NO interaction between solutions
\(\Rightarrow \) Two waves pass through each other
and continue on exactly the same
as before, no losses, no changes.

Find More?

Non-linear e.o.m. can change this
e.g. period doubling, generation of
new waves of different frequencies.

Later with wave \(\leftrightarrow \) particle duality will
see non-linearity = interacting particles
linear e.o.m. = free or non-interacting
particles.