- I am Tim Evans, Theory Group
- WEB PAGE: Theoretical Physics - PG Study - MSC - Info for Graduates
- Office Hours: 2016 Tue, Fri 10am 14609

- Rapid Feedback: 2016
 - Jonathan Baird
 - Even weeks
 - Hand in level 3 office WEDS
 - Presentation Friday
 - Except Week 2
 - Hand in Mon
 - Presentation Thurs.
 - NOT for assessment, written feedback only
 - I nominate 2 or 3 Qs each week

- Problem Sheets
 - Must do = *
 - Should do (No mark)
 - Optional (log) #(!)

- Exams: Issued at end
 - No changes expected except Fermions
Natural Units

For relativistic examples we will use natural units for length, time, mass

\[c = \hbar = 1\]\ \text{where } \begin{cases} \hbar c & = \text{LT}^{-1} \\ \hbar & = \text{L}^2\text{MT}^{-2} \end{cases} \]

- This means we can measure length, time, mass and hence energy (E=mc²) in terms of **one** unit.
- In particle physics they use eV

Metro. & Spacetime

\[g_{\mu\nu} = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & -1 & 0 & 0 \\ 0 & 0 & -1 & 0 \\ 0 & 0 & 0 & -1 \end{pmatrix} \]

\[x^\mu y_\mu = x^0 y_0 - x^1 y_1 - x^2 y_2 - x^3 y_3 \]

We will usually assume 4+3 dimension space-time

Convention Repeated Indices = Sum

\[a_\mu b^\mu = \sum_i a_i b_i = \vec{a} \cdot \vec{b} \]

\[\text{Vector} \]

\[\text{Also } \begin{pmatrix} a_1 \\ a_2 \\ a_3 \end{pmatrix} = \begin{pmatrix} a_1 \\ a_2 \\ a_3 \end{pmatrix} \]

\[\text{Matrix} \]
WHY Quantum Theory?

- World is NOT classical (Newton, deterministic, ...)
- On smallest scales we see QUANTUM effects
e.g. photoelectric effect, superfluidity/conductivity
- Classical world only appears as long distance &

 long time averages, typically bigger than atomic

 - Compton wave length \(\lambda = \frac{h}{mc} \) sets scale for

 Q \Leftrightarrow \text{CE} \text{ transition}

Why not Quantum Mechanics (QM)?

MANY PARTICLES

QM describes one particle \(\int | \psi|^2 \, dx = 1 \)

or a few particles,

\[\int \psi_{x_i}^* \psi_{x_i} \, dx = 1, \ldots, N \]

where \(x_i, p_i = \text{position, momentum of} \)

\(i \)-th particle

Language of

FIRST QUANTISATION \(\psi, \bar{\psi} \)

WAVES - \(\gamma \)

- QFT is QM for \(\infty \) number of particles

best is a better language notation

SECOND QUANTISATION \(\gamma, \bar{\gamma} \)

Needed because:

- Relativity allows particle production

 if energy \(E \geq \text{mass } m \)

 \(\Rightarrow \) Quantum fluctuations can allow

 states of many (infinite) numbers of

 \(\text{particles AND superpositions with} \)

 \(\text{different numbers} \)

- Condensed matter have "holes & massless"

 modes leading to similar issues
QFT is more than QM

There are subtle mathematical differences between QM for FINITE # particles & QFT = QM for INFINITE # particles

These lead to STRIKING new phenomena in QFT vs QM

In particular SYMMETRY BREAKING - Higgs = CONDENSATES - BEC condensons = SUPERFLUID/SUPERA CONDUCTIVITY
What is a field?

Classified (function)
A field is a quantity defined at every point of space & time

\[\phi_a(x, t) \in \mathbb{R}^4 \text{ (classical)} \]

Labels coming from space-time symmetry
- Typically greek alphabet

"Internal Symmetries"
- Typically Latin alphabet

We will focus on scalar fields
= Spin 0
which don't have such labels

A crude/poor picture is that the more stuff (energy/particles/charge) at some point the larger \(\phi \) is.

\(\phi \) is NOT directly measurable

\[|\phi(x, t)|^2 \neq \text{Probability density} \]

It is a tool

\[\phi \approx \text{particle} \]

(at best)

e.g., we work with \(\phi \) an operator in QFT not a \(\mathbb{R} \) valued function \(\phi \)

Expectation value

e.g., \(A^\mu(x, t) \) is the classical field used to represent photons in QED

\(E(x, t) \) & \(B(x, t) \) are familiar electric magnetic
\[A^\mu(x, \xi) \] is four-vector potential

\(\phi, A \) used as the classical field for photons in QED

N.B. Electrostatic field, NOT potential scalar field!

- \(E(x, \xi) \) is the electric field
- \(B(x, \xi) \) "Magnetic"

\[
E = -\frac{\partial A^0}{\partial \xi} - \frac{1}{2} \frac{\partial A}{\partial x} \quad B = \nabla \times A
\]

\[20/1, 11/10/11\]

\[13, 11/10/15\]

\[6, 16/10/16\]