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Abstract

We derive a series of relations between the six retarded and advanced three-
point functions and the eight time-ordered three-point functions of real time finite-
temperature field theory, valid for all types of field. We then show how to construct
the spectral function for three-point functions at non-zero temperature by analogy
with the well known spectral function for propagators.

In real time formulations of finite temperature field theory, the degrees of freedom
are doubled leading to a two by two matrix structure [1]. This means that the spectral
representation of the propagator is also a two by two matrix. It has relatively simple
and well known matrix structure however, a consequence of the equilibrium nature of the
problem [1]. Specifying this structure for the two-point function is equivalent to enforcing
the KMS condition and vice versa. This form has been of the utmost use in studying real
time finite temperature field theory e.g. in the cancellation of intermediate singularities
[1].

In moving to higher order functions, it seems that one may be able to simplify the
function if the matrix structure is again merely reflecting the thermal aspects of the
problem. This would be of great interest for instance for the three-point functions of
QCD at non-zero temperature [2]. In this note we will derive the structure of the three-
point spectral function. We look first at the spectral representation of the two-point
function and note how it is constructed in terms of the retarded functions. We then show
how the three-point spectral function can be constructed in analogy with the propagator.
In doing so we shall generalise to any order in any theory some results recently obtained
by Kobes [3] for the simplest three-point 1PI diagram for a scalar field with a cubic
self-interaction.
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We start from the generating functional in the path ordered approach to real time
finite temperature field theory [1],

Z[j] = ⟨⟨TCexp{ı
∫
C
dτj†ϕ+ ϕ†.j}⟩⟩ (1)

where the fields ϕ(τ),ϕ†(τ) are Heisenberg fields with sources j†(τ), j(τ) , analytically
continued to take values in the complex time plane. It is convenient to run the curve
C = C1 ⊕ C2 ⊕ C3 ⊕ C4 from −∞ to +∞ (C1), +∞ to +∞ − ıᾱβ (C2), +∞ − ıᾱβ
to −∞ − ıᾱβ (C3), and −∞ − ıᾱβ to +∞ − ıβ (C4). In this note α = 1 − ᾱ is an
arbitrary parameter reflecting some of the freedom of choice in the path C and physical
results should not depend on it. The ⟨⟨...⟩⟩ indicate that the thermal expectation value is
taken. Further,we will always suppress any spin or other indices on the fields as they do
not effect our arguments which are based purely on thermal considerations. We will also
write explicitly only the time and energy variables.

We then define

ϕµ(t) =

{
ϕ(t), t ∈ C1 if µ = 1
ϕ(t− ıᾱβ), t− ıᾱβ ∈ C2 if µ = 2

(2)

and likewise for ϕ†, where µ = 1, 2 is the thermal index. To account for the sign discussed
in [4], we define

j†(t) =

{
j†(t), t ∈ C1 if µ = 1
−j†(t− ıᾱβ), t− ıᾱβ ∈ C2 if µ = 2

(3)

and likewise for j(τ). These definitions, after the usual path integral manipulations [1],
lead to the same scalar propagator and Feynman rules as used in [3]. Thus the vertices,
which have a single thermal label, merely take an additional minus sign when they have
thermal label two, c.f. [4]. The Green functions are then

Γµ1µ2...µN
T :=

(
N∏
a=1

−ı∂

∂j†a(ta)µa

)
Z |j=0 = ⟨⟨TCϕ

µ1
1 (t1)ϕ

µ2
2 (t2)...ϕ

µN
N (tN)⟩⟩. (4)

When fermionic fields are present, the ∂/∂j are defined to act in an order so as to ensure
the second definition is compatible. Here TC indicates that the fields are path ordered
with respect to their time argument, fields with arguments furthest along path C to the
left.

From these definitions, it is straightforward derive the propagator for the a-th field

Πµν
a (t1 − t2) := ⟨⟨TCϕa(t1)

µϕ†
a(t2)

ν⟩⟩

=
∫

dk e−ı(t1−t2)Πµν
a (k) (5)

by just using the KMS condition [1]. This is then found to be

Πa(k) = Ua(k).Π̄a(k).Ū
−1
a (k) (6)

Π̄a(k) =

(
ΠR

a (k) 0
0 −ΠA

a (k)

)
(7)
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where

Ua(k) :=

(
(1 + σana(k))

1/2/bRa(k)bLa σa(na(k))
1/2bLa/bRa(k)

(na(k))
1/2bRa(k)/bLa (1 + σana(k))

1/2.bRa(k)bLa

)
(8)

Ūa = τ3.Ua.τ3 (9)

τ3 =

(
1 0
0 −1

)
(10)

na(k) = (eβk − σa)
−1 (11)

b2Ra(k) = (eβk)α−1/2 (12)

We set σa = +1(−1) if the a-th field is bosonic (fermionic). The form of the propagator
does not depend on the real parameter bL, though it is sometimes chosen to be bLa =
nα−1/2
a .bRa(k). Note that most equilibrium work is done with α = 1/2 and with an

equivalent form for the propagator that involves na(k) = (exp{β|k|} − σa)
−1 [1]. The

ΠR,ΠA functions are the retarded and advanced propagators,

ΠR
a (k) =

∫
dt eıkt ΠR

a (t) (13)

and likewise for ΠA
a , with

ΠR
a (t1 − t2) := θ(t1 − t2)[Γ12(t1 − t2)− Γ21(t1 − t2)], (14)

ΠA
a (t1 − t2) := −θ(t2 − t1)[Γ12(t1 − t2)− Γ21(t1 − t2)]. (15)

Here

Γ12(t1 − t2) = ⟨⟨ϕa(t1)ϕ
†
a(t2)⟩⟩,

Γ21(t1 − t2) = ±⟨⟨ϕ†
a(t2)ϕa(t1)⟩⟩, (16)

and we take the + (−) sign if we have a bosonic (fermionic) propagator.
The key points to note are that there is a Bogoliubov transformation matrix for each

leg of the function, and a core matrix which we denote with a bar (Π̄ here). Two elements
of this core matrix are zero corresponding to two algebraic identities. These identities
are most naturally seen in the approach of Kobes and Semenoff [5, 3] and correspond to
their ‘largest time equation’ and its complex conjugate, the ‘smallest time equation’. The
remaining entries of the core matrix are then each proportional to one of the retarded
or advanced two point functions and represent the well known relation between retarded
propagators and the elements of the real time matrix two-point function.

These are the elements that we shall try to use in generalising to the case of three-
point functions. First we need to find all the relations between the eight functions of
the real time calculations and the six retarded functions. The eight real time connected
three-point vertex functions are

Γµ1µ2µ3

T (t1, t2, t3) = ⟨⟨TCϕ
µ1
1 (t1)ϕ

µ2
2 (t2)ϕ

µ3
3 (t3)⟩⟩ (17)
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where {ϕµ
a} a = 1, 2, 3 are any three fields with spin and other indices suppressed except

for the thermal index, µ, defined as in (2). Throughout this paper we let subscripts a, b, c
be any permutation of 1, 2, 3. These subscripts indicate with which field a quantity is
associated with, e.g. na = n2 and tb = t3 when we look at the (abc) = (231) permutation.
The three different expectation values of retarded three-point functions, Ra, and the three
advanced functions, R̄a, are defined through the (anti-)commutators [6]

Ra(t1, t2, t3) = R(ϕa(ta) | ϕb(tb)ϕc(tc))

= θ(ta − tb)θ(tb − tc)[Γabc − Γbac − Γcab + Γcba] +

θ(ta − tc)θ(tc − tb)[Γacb − Γcab − Γbac + Γbca],

R̄a(t1, t2, t3) = R(ϕb(tb)ϕc(tc) | ϕa(ta))

= θ(tc − tb)θ(tb − ta)[Γabc − Γbac − Γcab + Γcba] +

θ(tb − tc)θ(tc − ta)[Γacb − Γcab − Γbac + Γbca], (18)

where

Γabc = Γabc(t1, t2, t3)

= (−1)p⟨⟨ϕa(ta)ϕb(tb)ϕc(tc)⟩⟩ (19)

In (19), p is the number of times one has to swap fermion fields in going from a 123
ordering to the abc ordering of Γabc of (19). Note that it was shown in [7] that the
six Ra,R̄a are indeed the results obtained from the usual Imaginary-Time formalism
calculation of the three point functions where the the simplest analytic continuation of
the external energies is used.

In (17), Γ111
T is the time ordered expectation value of the fields at real times that was

calculated in [7] in terms of the retarded and advanced functions (18). The other elements
of Γµ1µ2µ3

T can be calculated in the same manner, that is we use the definitions (17) and
(18), the boundary condition that equilibrium fields must satisfy, the KMS condition [1],
and work in Fourier space. We define the Fourier transforms of our three-point functions
through

g(k1, k2, k3) =
∫

dt1dt2dt3 e
ı(k1t1+k2t2+k3t3) g(t1, t2, t3). (20)

The KMS condition in our notation is

Γabc(k1, k2, k3) = Γcab(k1, k2, k3).fc, (21)

where

fa = σae
−βka . (22)

Comparing (17) with (18) in Fourier space and using (21), we find after some algebra
that

Γ111
T (k1, k2, k3) =

3∑
a=1

a ̸=b,c;b<c

σanbnc(Ra + R̄afa)
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Γµ1µ2µ3

T (k1, k2, k3)| µa=2
µb,c=1

= (σafa)
ᾱ
{
Ranbncσa +Rbnancσbf

−1
a

+Rcnanbσcf
−1
a + R̄anbncσa

+R̄bnancσbfb + R̄cnanbσcfc
}

Γµ1µ2µ3

T (k1, k2, k3)| µa=1
µb,c=2

= (σafa)
−ᾱfa {Ranbncσa +Rbnancσbfb

+Rcnanbσcfc + R̄anbncσa

+R̄bnancσbf
−1
a + R̄cnanbσcf

−1
a

}
Γ222
T (k1, k2, k3) =

3∑
a=1

a ̸=b,c;b<c

σanbnc(Rafa + R̄a) (23)

where na = na(ka) of (11) and here we always choose b < c and a ̸= b, c. The Ra and R̄a

are the six different expectation values of retarded and advanced three-point functions
(18) in Fourier space,

Ra = Ra(k1, k2, k3), (24)

and likewise for R̄a.
Now we can try to write the three-point function as

Γµ1µ2µ3

T (k1, k2, k3) = (
3∏

a=1

Ua(ka)
µaνa)Γ̄ν1ν2ν3(k1, k2, k3) (25)

in analogy with (6). It is then straightforward to show that

Γ̄111(k1, k2, k3) = 0,

Γ̄ν1ν2ν3(k1, k2, k3)| νa=2
νb,c=1

= R̄a
n
1/2
b n1/2

c

(1 + σana)1/2
σa.

bLbbLc
bLa

Γ̄ν1ν2ν3(k1, k2, k3)| νa=1
νb,c=2

= Ra
n
1/2
b n1/2

c

(1 + σana)1/2
.
bLa

bLbbLc

Γ̄222(k1, k2, k3) = 0. (26)

Thus the three-point spectral function can be written in an way analogous to the
two-point spectral function. There is an appropriate Bogoliubov transformation for each
leg and a core function Γ̄. The core matrix has two zero entries, one for each of the
two algebraic identities noted by Kobes and Semenoff [5, 3], their largest and smallest
time equations. Each of the remaining entries is proportional to one of the retarded or
advanced functions and corresponds to expressing each retarded and advanced function in
terms of the various functions of the real time formalism, Γµ1µ2µ3

T of (17). It is then simple
to express each retarded function in terms of the real-time functions by pre-multiplying
(25) by inverse Bogoliubov matrices and using (26).

The generalisation of the results of Kobes [3] can easily be extracted from (25). First
we must go from the connected functions considered here to the 1PI case of Kobes. We
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merely remove the full propagators from each leg using the form (6) for the propagators
and we find

Γµ1µ2µ3

1PI (k1, k2, k3) = (
3∏

a=1

Ūa(ka)
µaνa)Γ̄ν1ν2ν3

1PI (27)

where

Γ̄ν1ν2ν3
1PI =

(
3∏

a=1

Π̄−1
a (ka)

νaνa

)
Γ̄ν1ν2ν3 . (28)

One identifies Γ112
1PI − Γ221

1PI (Γ112
1PI + Γ221

1PI) etc. with the real (imaginary) parts of Kobes’
functions.

The results given in (25) and (27) are very general as they apply to three-point
functions of any theory, whatever its interactions (provided there is an even number of
fermions). This is because it relies on the usual equilibrium boundary condition, the KMS
condition (21), that all fields must satisfy in equilibrium. Further, (25) and (27) will also
be satisfied by any field or any approximation to a field that respects the KMS condition.
Thus the equations in (25) apply both to full connected three-point functions and to any
one diagram in the Feynman expansion of full connected three-point functions. Likewise
(27) applies to both full 1PI functions and to any individual 1PI diagram.

One use of these relations lies in the fact that, as was shown in [7], the usual analytic
continuation of external energies in ITF (Imaginary-Time Formalism) [1, 8] means one
obtains the retarded functions in ITF, while it is simplest to extract the time-ordered
function from RTF (Real Time Formalisms) [1]. Thus (25) and (27) relate all the results
of the usual RTF calculations to the usual ITF three-point results, and vice versa. Note
that this means that ITF and RTF as usually used give different results but that this
is because they are being used to calculate different types of function and it is these
functions that are unequal not that the formalisms are giving different answers for the
same functions [7]. Since it is possible to use ITF and RTF in ways other than are
standard in the literature in order to extract other functions, we must always note how
each formalism is being used. Overall then ITF and RTF differ only in the relative ease
with which each formalism can calculate a given quantity. As discussed in [7], the choice
between ITF and RTF is merely one of computational convenience, not fundamental
difference in the physics. The real question is not whether ITF or RTF is ‘correct’ but
whether we need retarded or time-ordered functions, and this will be decided by the
physical context of any given problem.

Beyond this use in comparing the results obtained most easily from ITF and RTF
calculations, knowing the form of the three-point spectral function may be as useful
as that of the two-point function in studying the structure of the real-time theory to
arbitrarily high orders, c.f. the use of the two-point spectral function in checking that
the theory is free of certain singularities [1].

I would like to thank I. Hardman, H. Umezawa and Y.Yamanaka for useful discussions.
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