14th September 2010, UCL Cultural Evolution in Spatially Structured Populations

Imperial College London

Interactions
In The
Aegean
Bronze Age

Tim Evans
Theoretical Physics and IMS,
Imperial College London

- General Approach to Modelling in Archaeology
- Geographical Models without Networks
- Geographical Models with Networks
- Our Model ariadne
- Summary

Modelling Scales

Microscopic - ABM, GIS

Mesoscopic
- Network MC

Macroscopic

- Mean Field PDE

Site-Site Interactions

- Archaeology can be "Site Centric"
 - Regional and global interactions hard to consider

Networks emphasise interactions

Deducing Interactions

- Artefact counts
 - Terrell 2010; Sindbæk 2007
- Texts
 - Isaksen 2006; "Anskar's Vita" Sindbæk 2008
- Geography
 - Terrell 1977; Irwin 1983; Hage & Harary 1991;
 Broodbank 2000; Collar 2007; Bevan 2010

- General Approach to Modelling in Archaeology
- Geographical Models without Networks
- Geographical Models with Networks
- Our Model ariadne
- Summary

Geographical Models Without Networks

- Theissen Polygons
 - equal site sizes
- XTent
 - Theissen with variable site sizes
- Gravity Models

Theissen Polygons

- Boundaries = Midpoint between nearest sites
- All sites equal

Theissen Polygon Example

12 Etrurian Cities [Renfrew 1975]

XTent Model [Renfrew & Level, 1979]

- Thiessen polygons for unequal size sites
- Can set influence of site as function of distance to any suitable function

XTent model examples [Renfrew & Level, 1979]

Neolithic Temples of Malta

Xtent Neopalatial Crete (~1750BC - ~1500BC)

Knossos a) a = 0.5, k = 0.15 / hour b) a = 0.5, k = 0.05 / hourc) a = 0.5, k = 0.02 / hour

Gravity Models

- Models of modern transport systems
- First rigorous use: Casey 1955
 "Applications to traffic engineering of the law of retail gravitation"

Site-to-Site travel costs used to predict flow

Rihll and Wilson Gravity Model Outputs

• Flow F_{ij} from i to j is $F_{ij} = b_i D_i (A_j)^{\alpha} \exp(-\beta c_{ij})$

where α and β are model parameters

- Self consistent departure rate fixes b_i
 - $\Rightarrow \Sigma_j F_{ij} = D_i$
- Departure rate D_i is either:-
 - (a) a fixed input (size of site), or
 - (b) set equal to arrival rate A_i
- Find A_j and interpret as importance of site

Results [Rihll & Wilson 91]

- Variable site sizes
- Exponential fall off
- No network!

Summary of Models So Far

- Increasing sophistication
 - from fixed equal site sizes to variable site sizes
 - Simple crow flies separations to complicated distance metrics

⇒ Still not exploiting advantages a Network Model may provide

- General Approach to Modelling in Archaeology
- Geographical Models without Networks
- Geographical Models with Networks
- Our Model ariadne
- Summary

PPA - Proximal Point Analysis

- Equal sized sites
- Sites connect to k nearest neighbours
- Analyse graph
 - Often without directions on edges
 - Sometimes only local measures used e.g. Degree
 - Sometimes global measures used
 e.g. ranking, centrality, betweenness

Examples: Hage & Harary 1991; Terrell 1977; Irwin 1983; Broodbank 2000; Collar 2007

PPA Example

Connect each site to its k=2 nearest neighbours

PPA Example

- All edges equal
- Network now simply connected

Terrell (1977)

- Solomon Islands (east of Papua New Guinea)
- PPA analysis

Broodbank PPA

Population = # vertices

⇒Low density = connected graph

⇒High density = disconnected graph, clusters on large islands

Broodbank PPA (2)

- EBA Cyclades (Early Bronze Age Aegean)
 - Settlements similar size
 - rowing ~ 10km daily
- ⇒ PPA appropriate
- More analysis is possible but perhaps not useful for such a `simple' era?
 - e.g. use inherent directionality of edges

Limitations of Early Network Models

- Fixed and equal site sizes
- Edges only on or off (simple graphs)
- PPA still only considers nearest geographical neighbours
- ⇒Little exploitation of network structure in creating network
- ⇒ Global properties of networks and role of sites in wider network rarely studied

Beyond these archaeological models

- The sizes of sites and their interactions never both variable and interlinked
 - Not all sites are equal
 - Not all edges are equal
- Surely the regional network influences the sizes of sites and the site sizes determine the nature of the network?

- General Approach to Modelling in Archaeology
- Geographical Models without Networks
- Geographical Models with Networks
- Our Model ariadne
- Summary

Island Archipelagos as an Ideal Network

- Vertices = Major Population or Resource Sites
- Edges = Exchange between sites
 - physical trade of goods or transmission of culture
 - direct contact or island hopping links
- Sea isolates communities → Natural Vertices
- Interactions controlled by physical limitations of ancient sea travel → Simple Links
- Coastal Sites often isolated like islands due to geography and difficulty of ancient land travel

Focus: Middle Bronze Age (MBA) Aegean

- Clear temporal delineation clear gaps (`dark ages') or shifts in record
 - c.2000BC distinct Minoan culture starts, sail replaces oar
 - c.1500BC end of Minoan cultural dominance

- Physically largely self contained
 - questions regarding relationship to Egyptian culture

Our 39 Sites

3 sizes – S, M or L

Some Possible Questions

The Knossos Question

The palace at Knossos does not have the best local environment

Minoanisation

Spread of Minoan influence

Eruption of Thera

Relation to Minoan collapse

Network Description – Fixed Network Parameters

Network values fixed using the archaeological record are:-

- d_{ii} Fixed travel time between sites
 - Measured in km travelled by boat on open sea
- S_i Fixed site capacity (includes hinterland)
 - = maximum local resources

Network Description – Variables, relative values

$$S_{i}$$
, V_{i} i d_{ij} , e_{ij} j

Variables whose values are found stochastically:-

- v_i Variable site occupation fraction
 ⇒ Site Weight (S_i v_i) = Site `population'
- e_{ij} Fractional Edge values $0 \le \Sigma_j e_{ij} \le 1$ \Rightarrow Edge Weights $(S_i v_i e_{ij})$ = Interaction ('trade') from site i to site j

Optimisation of what?

`Energy', resources

Isolated sites have optimal size $v_i = 0.5$

Interactions (trade) bring benefits

Increasing 'population' has a cost

Each trade link has a cost

$$H =$$

$$-\kappa \sum_{i} 4S_{i} v_{i} (1 - v_{i})$$

$$-\lambda \sum_{i,j} (S_i v_i) \cdot e_{ij} V(d_{ij}/D) \cdot (S_j v_j)$$

$$+j\sum_{i}S_{i}v_{i}$$

$$+\mu\sum_{i,j}S_{i}v_{i}e_{ij}$$

$$0 \le \sum_{i} e_{ij} \le 1$$

Supply and Demand

Interaction depends on both source and target vertices

Interaction Potential

$$V(x) = \frac{\Theta(x - 0.1)}{1 + x^4}$$

- D=100 km for sail (after 2000BC)
- *D*=10 km for rowing (pre 2000BC)
- Friction 3x penalty for land travel

Coarse Graining

This model is independent of small scale details

If split a site into two pieces within 10km results are exactly the same

So what does our model give us?

- Site hierarchies
- Interdependent site sizes and network edges
- Geography important but not simply nearest neighbour interactions
- Coarse graining over 10km scale

⇒ Compare with PPA ...

Our Sites in PPA ($k_{out}=3$)

3 strongly connected regions

6 weakly connected regions

ariadne

 $Vertex size = S_i v_i$

Stochastic Variation

Same values

$$\lambda$$
= 4.0, κ = 1.0, μ = 0.1, j = -2.0, D = 110 km

Analysis

- Can not assign parameter values in model from physical data so make comparisons between different data sets
 - e.g. vary one parameter, hold rest fixed.
- For any given set of (reasonable) values:
 a) can analyse intrinsic network measures
 e.g. degree of vertices
 - b) can perform further `games' to analyse properties
 - e.g. diffusion, apply cultural transmission models, ABM on this substrate.

Path Analysis

- Shortest Paths on weighted graphs?
 - betweenness
- Long Time Diffusion
 - PageRank
- Short Time Diffusion
 - Clustering via modularity if undirected
 - `Influence' (see sequence)
- Paths all equal
 - Biased random walks

Aegean Middle Bronze Age Chronology

Before and After the Eruption

- Total population largely unchanged
- Total interaction largely unchanged

For same parameter values

$$\lambda$$
= 4.0, κ = 1.0, μ = 0.1, j = -2.0, D = 110 km

Increasing Interaction Cost post Eruption

- Fewer but stronger links
- Shorter distances

- General Approach to Modelling in Archaeology
- Geographical Models without Networks
- Geographical Models with Networks
- Our Model ariadne
- Summary

Summary

- Very limited use of networks so far in archaeology
- Many models very simple
- Some recent studies are exploiting network analysis
- Role of geography relatively easy to study
- Comparing against finds much harder
- Many options remain to be explored

Acknowledgements

- All work done with
 - Carl Knappett (Toronto)
 - Ray Rivers (Imperial)
 some work also with
 Edmund Hunt (Imperial) and
 Eric Beales (Toronto)
- Publications google "Tim Evans archaeology"

Other Material

Other Material

XTent model examples [Renfrew & Level, 1979]

European Cities 1960

Neolithic Temples of Malta

Rihll and Wilson Gravity Model

• Flow F_{ij} from i to j is $F_{ij} = b_i D_i (A_j)^{\alpha} \exp(-\beta c_{ij})$ where α and β are model parameters

Hypsistos Cult Inscriptions (1-4c.AD) PPA graph [Collar, 2007]

Broodbank (2000) - Early Bronze Age Cyclades

- # vertices per island proportional to cultivable area
- k outgoing edges per site connect to nearest k neighbours

Networks Based on Texts

Link sites mentioned in texts

- Isaksen (2006) linked towns on the Via Augusta and river/road network based on Roman texts
- Sindbæk (2008) used travelogue "Anskar's Vita" but also uses data from finds, Viking Baltic 9th c. AD.

Isaksen (2006)

[Sindbæk, 2008] Anskar's Vita + data from finds, 9thc. AD

- More sophisticated graphs constructed from texts and finds, not a model
- Some global network analysis

Artefacts and Anthropology:- The Kula Ring

Malinowski (1922)

Hage and Harary (1991)

- Edges are exchange relations
- Random walkers probe global network properties

Lambrou-Phillipson, 1990

Terrell (1977)

- Solomon Islands (east of Papua New Guinea)
- PPA analysis

"Networks and religious innovation:
an approach to understanding the
transmission of pagan monotheism"
Collar, Exeter Univ. (in prep)

Hypsistos cult inscriptions (1-4c.AD), PPA graph

Fluctuations

- Model is not deterministic but stochastic
 - Size of fluctuations set by a 'temperature parameter'
 - Never find the same result twice, but usually results will be similar
 - Need to interpret results in this light
 e.g. look at averages and variances

Typical Run

© Imperial College London

Atypical Run - Network

Unusually strongly connected subgraph formed outside Crete on one run out of ~40 for same parameters

Analysis of Single Network

The new few slides show the analysis of one result of our model

- Look for sites which are off any general trends
- Rank = probability of random walker arriving at location, c.f. Hage & Harary 1991, Google PageRank
- Total Site Size (Weight) = $(S_i v_i)$

$$j=0, \mu=0.5, \kappa=1.0, \lambda=4.0$$

Rank vs. Size shows Crete's is more important to the global network that its size suggests, not so for Dodecanese

Local properties often scale closely with site size (weight)

