25th March 2012, Southampton The Connected Past symposium

Imperial College London

Which Network Model Should ²⁸ I Use?

TOWARDS a Quantitative Comparison of Spatial Network Models in Archaeology

Tim Evans, Physics Dept & Complexity and Networks Group

© Imperial College London

The Problem

- Archaeology can be "Site Centric"
 Regional and global interactions hard to consider
- Networks emphasise interactions

Given a set of sites and their locations can we understand their interactions by creating a network of edges? Island Archipelagos as an Ideal Network

- Vertices = Major Population or Resource Sites
- Edges = Exchange between sites
 - physical trade of goods or transmission of culture
 - direct contact or island hopping links
- Sea isolates communities → Natural Vertices
- Interactions controlled by physical limitations of ancient sea travel → Simple Links
- Coastal Sites often isolated like islands due to geography and difficulty of ancient land travel

Different Spaces

- We shall consider our sites to lie in two-dimensional geographical space
- Alternative is to consider sites located in some artefact space
 - Frequency counts of objects found at a site define a vector in a large-dimensional space

An edge model generates a set of edges between a given set of edges

Note a different type of model defines 'Spatial Influence' e.g. Theissen Polygons, XTent

Deducing Interactions

- Geography controls interactions in models discussed here
 - As the crow flies
 - Accounting for geography by hand estimation
 - Accounting for geography computionally GIS
 [Terrell 1977; Irwin 1983; Hage & Harary 1991; Broodbank 2000; Collar 2007; Bevan 2010]
- Artefact counts [Terrell 2010; Sindbæk 2007]
- Texts [Isaksen 2006; "Anskar's Vita" Sindbæk 2008]

Examples

- PPA Principal Point Analysis
- MDN Maximum Distance Network
- Gravity Models
 - Doubly Self-Consistent Models
 - Rhill and Wilson
- Stochastic Models
 - ariadne

PPA - Proximal Point Analysis

- Equal sized sites
- Sites connect to **k** nearest neighbours
- Analyse graph
 - Often without directions on edges
 - Sometimes only local measures used *e.g. Degree*
 - Sometimes global measures used
 e.g. ranking, centrality, betweenness

Examples: Hage & Harary 1991; Terrell 1977; Irwin 1983; Broodbank 2000; Collar 2007

DPPA Example (Directed PPA)

Connect each site to its **k=2** nearest neighbours

Network now simply connected

MDN – Maximum Distance Network

Just connect each site to all sites lying within distance **D**.

- Used as model for ad-hoc wireless models
 [e.g. Srinivasa & Haenggi 2010]
- Mathematical analysis possible as
 Random Geometric Graphs [e.g.Penrose 2003]
- Not much used in archaeology

Doubly Self-Consistent Gravity Model

- Edge from *i* to *j* is flow F_{ij} $F_{ij} = a_i A_i b_j B_j V(d_{ij}/D)$
- Inputs
 - arrival and departure rates A_i and B_i
 - Distance cost function V and distance scale D.
- Solve by demanding self-consistent arrival and departure rates to fix a_i and b_j $\Rightarrow \Sigma_j F_{ij} = A_i$ and $\Sigma_i F_{ij} = B_i$
- Equivalent to optimising a cost function

Doubly Self-Consistent Gravity Model Example Distance scale **D** as before

Rihll and Wilson Gravity Model

• Edge from *i* to *j* is flow F_{ij} $F_{ij} = b_i B_i (A_j)^{\alpha} V(d_{ij}/D)$

where α is an additional model parameter

Self consistent departure rate fixes b_i

$$\Rightarrow \Sigma_j F_{ij} = D_i$$

- Departure rate D_i is either: (a) a fixed input (size of site), or
 (b) set equal to arrival rate A_j
- Find **A**_j and interpret as importance of site

Rihll and Wilson Gravity Model Example Same **D** as before, closest two sites have most connections

Stochastic Model – ariadne

[Evans, Knappett and Rivers 2008-2012]

- Has intrinsic volatility set by `temperature' parameter
- Allows sites to vary in size in response to network connections
- Network will give an low value of a `cost' function
 - includes costs for sites and edges sizes and ascribes benefits to interactions

ariadne Example

Bigger **D**, 3 other parameters, one solution has the closest two sites large with most connections

Comparing Networks

- Same arrangement of sites gives different networks
- How can we compare them?

© Imperial College London

Comparing networks (I)

Measure a quantity associated with vertices

- Integer valued quantities poor *e.g. degree*
- Avoid quantities defined for simple networks e.g. average shortest path
- ⇒ Work with quantities defined on weighted networks e.g. PageRank, clustering, betweenness'

Comparing networks (II)

Measure similarity of each pair of vectors

- Pearson correlation coefficient if gaussian
- Rank values then compare ranks (largest value 1st, smallest last, then use Kendal's tau or Spearman) if have outliers
- Other less traditional schemes

Comparing Networks (III)

	Page	Page			
	Rank	Rank	Rank	Rank	
Vertex	DPPA	ariadne	DPPA	ariadne	
1	0.35	0.35	1.5	1.5	
2	0.35	0.35	1.5	1.5	0.70
3	0.25	0.10	3	4	0.70
4	0.05	0.20	4	3	

Example Networks e.g. PageRank of vertices (use averages for ties)

Vertex	PPA	DPPA	MDN	DCGM	RWGM	MC
1	1.5	1.5	2	2.5	1.5	1.5
2	1.5	1.5	2	2.5	1.5	1.5
3	3	3	2	2.5	3.5	4
4	4	4	4	2.5	3.5	3

PageRank Correlation Matrix (Kendal method)

	PPA	DPPA	MDN	DCGM	RWGM	MC
PPA	1	1	0.82	NA	0.94	0.78
DPPA	1	1	0.82	NA	0.94	0.78
MDN	0.82	0.82	1	NA	0.58	0.27
DCGM	NA	NA	NA	1	NA	NA
RWGM	0.94	0.94	0.58	NA	1	0.94
MC	0.78	0.78	0.27	NA	0.94	1

Test Data

- Use real data sets
 - 39 Minoan Aegean sites
 [Knappett et al]
 - 110 Geometric Greek
 Sites [Rihll & Wilson]

Use artificial datasets

 Random sprinkling of points constant probability density

Test Data

More realistic:-

- 40 sites
- In 4 groups centred at points of compass
- 10 points per group scattered around centre

Every model has some parameters

How do we choose values for different networks when we want to make a comparison?

e.g. is a k=4 PPA to be compared to a D=100km MDN network?

Look for models with same `physical' characteristic:-

- Average Distance

 usual definition does not apply to weighted networks
- Time scale to visit all nodes
 - use random walkers
- Others...?

PPA and MDN: Distance vs Degree

Physical Characteristic

Measures of distance (time scales etc) still transformed (renormalised) from model to model

? Use network topological characteristics ? e.g. choose parameter such that there is one distance/time is roughly proportional to geographical separation

MDN for Distance 61.0 vs 62.0

PPA
$$k_{out} = 2$$

PPA
$$k_{out} = 3$$

$$\mathsf{PPA} \ \mathbf{k}_{out} = \mathbf{4}$$

MDN – first global cycle **D=82km**

TOWARDS a Quantitative Comparison of Spatial Network Models in Archaeology

- Still work on going, no good recommendation as yet but basic ideas are
- Measure (several) vertex properties in each model
- Similarity of model defined through similarity of vertex properties
 e.g.Pearson, Kendal tau, Spearman coefficients
- Need criteria to fix parameters

Acknowledgements

- All work done with
 - Carl Knappett (Toronto)
 - Ray Rivers (Imperial)
 some work also with
 Edmund Hunt (Imperial) and
 Eric Beales (Toronto)
- Publications
 http://theory.ic.ac.uk/~time
 or google "Tim Evans archaeology"

Bibliography

- Bevan, A., Political Geography and Palatial Crete, Journal of Mediterranean Archaeology, 2010, 23.
- RIHLL, T.E. & A.G. WILSON, 1987. Spatial interaction and structural models in historical analysis: some possibilities and an example, *Histoire & Mesure* 2: 5-32.
- RIHLL, T.E. & A.G. WILSON, 1991. Modelling settlement structures in ancient Greece: new approaches to the polis, in J. Rich & A. Wallace-Hadrill (eds.), *City and country in the ancient world:* 59-95. London: Routledge.
- EVANS, T.S., KNAPPETT, C., & R.J. RIVERS, 2011. Interactions in Space for Archaeological Models, *Advances in Complex Systems* (to appear).
- EVANS, T., KNAPPETT, C., & R. RIVERS, 2009. Using statistical physics to understand relational space: a case study from Mediterranean prehistory, in D. Lane, S. van der Leeuw, D. Pumain & G. West (eds.), *Complexity perspectives in innovation and social change*: 451-79. Berlin: Springer Methodos Series.
- KNAPPETT, C., EVANS, T. & R. RIVERS, 2008. Modelling maritime interaction in the Aegean Bronze Age, *Antiquity* 82: 1009-24.
- Knappett, C.; Evans, T. & Rivers, R., The Theran eruption and Minoan palatial collapse: new interpretations gained from modelling the maritime network, *Antiquity*, **2011**, *85*, 1008-1023
- Rivers, R.; Knappett, C. & Evans, T., Network Models and Archaeological Spaces in *Computational Approaches to Archaeological Spaces*, A.Bevan & Lake, M. (*Eds.*), *Left Coast Press*, **2011**
- Collar, A., Network Theory and Religious Innovation, *Mediterranean Historical Review, Routledge*, **2007**, *22*, 149-162