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Network* papers on cond-mat
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Multidisciplinary Nature
• Mathematics (Graph Theory,

Dynamical Systems)

• Physics (Statistical Physics)

• Biology (Genes, Proteins,
Disease Spread, Ecology)

• Computing (Search and
ranking algorithms)

For instance the condensed 
matter electronic preprint 

archives have gone from 35 
papers in 1997 with a word 

starting with Network in their title 
to 344 last year, an increase of 

nearly 1000%

http://www.iscom.unimo.it/

• Economics (Knowledge
Exchange in Markets)

• Geography (City Sizes, 
Transport Networks)

• Architecture (“Space Syntax”)

• Anthropology (Social Networks)

• Archaeology (Trade Routes)
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I will focus on Simple Graphs
with multiple edges allowed
(no values or directions on edges, no values for vertices)

• N = Number of vertices in graph
• E = Number of Edges in Graph
• k  = degree of a vertex
• k1 = Maximum degree of graph 

= Degree of rank 1 vertex
• K = <k> = average degree = 2E/N
• Degree Distribution

n(k) = number of vertices with degree k
p(k) = n(k)/N = normalised distribution

Degree k=2

Notation Rank 1
vertex
k1 = 4
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Real Networks
• Short Distance Scales d § O(ln(N))
• Long Degree Distributions k1 > O(ln(N))

Distance
Scale d

Tail of Degree
Distribribution

Maximum
Degree k1

Lattice
Large

d ~ N1/dim
No Tail
d(k-k0)

Fixed
k0

Watts-Strogatz
Small World

Small
d ~ log(N)

No Tail
~ d(k-k0)

V.Small 
~ k0

Erdős-Réyni
Random

Small 
d ~ log(N)

Short Tail
<k>k e-<k> /k!

Poisson

Small
~log(N)

Scale-Free
Small 

d ~ log(N)
Long Tail

~k-g
Large = HUBS

~k1/(g-1)
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Long Tails in Real Data

Degree distribution, eBay Crawl (max 1000)
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N=10^6, K=4 Power Law and Random
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Hubs are vertices of high degree 
• Lattices, WS Small World, 

random networks have no 
hubs,

k § k1 § O(ln(N))

rand.net. N=106, <k>=4 ⇒ k1= 17

• Only a long tailed degree
distribution has hubs

e.g. POWER LAW 
n(k)~ 1/k3

k § k1 = O(N1/2)

has N=106, <k>=4 ⇒ k1 ~2520
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N=200,   <k>~4.0,  vertex size ∂ k
Random Scale-Free 

= Power-Law n(k)

Tight core of large hubsDiffuse centre of small 
degree vertices
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Growth with Preferential Attachment
(Yule 1925, 1944; Simon 1955; Price 1965,1976; 

Barabasi,Albert 1999 )

1. Add new vertex attached to 
one end of  ½<k> new edges

2. Attach other ends to existing 
vertices chosen with 
probability Π proportional to 
their degree

Result: 
Scale-Free 
n(k) ~ k-g

g=3

Π(k) = k / (2E)
Preferential Attachment

“Rich get Richer”

5/(2E)

2/(2E)

4/(2E)

2/(2E)

Π(k)

Equivalent to random edge selection
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• Growth not essential 
– rewiring with reattachment probability P   ⇒ g ~ 1.0
– mixture of rewiring and new edges
– Hamiltonian methods

• Network not essential – k=frequency of previous choices
• Generalised attachment probability

•• BUTBUT if limk→∞ P(k) ∂ ka for any a∫1   then a
power law degree distribution is

not produced!

Scale-Free Growing Model comments

,1
2

)1()(
N

p
E
kpk rr +−=Π ∞<

−
+=<

)2(
212

ε
γ

rp
Preferential
Attachment

Random
Attachment ε = fraction of times 

add new vertex 
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Walking to a Scale-Free Network 
(TSE, Klauke 2002;   Saramäki, Kaski 2004;

TSE, Saramäki 2004)

1. Add a new vertex with ½<k>
new edges

2. Attach to existing vertices, 
found by executing a random 
walk on the network of 
L steps

Start 
Walk 
HereProbability of arriving at a vertex 

∂ number of ways of arriving at vertex
= k,  the degree

⇒ Preferential Attachment  g=3
(Can also mix in random attachment with probability pr)
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Naturalness of the Random Walk algorithm
Automatically gives preferential attachment for any shape 

network and hence tends to a scale-free network

• Uses only LOCALLOCAL information at each vertex
Simon/Barabasi-Albert models use global information in their
normalisation

• Uses structure of Network to produce the networks 
– a self-organising mechanism

e.g. informal requests for work on the film actor’s social network
e.g. finding links to other web pages when writing a new one

Barabasi-Albert do NOT need a network, results and equations known 
from non-network work of Yule 1925; Simon 1955; Parker 1965; … 
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How long 
a walk is 
needed 
for a 
scale-free 
network?

• Walks of length ONE are usually sufficient to generate 
reasonable scale-free networks

fl Degree Correlation Length  < 1 < d  (any distance scale)
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Does the 
average 
degree 
<k> 
matter?

except for <k>=2 where a tree graph is generated
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Is the Walk Algorithm
Robust?

YES
• Different starting points
• Vary length of walks per 

edge keep L=<L> fixed
• Vary edges added per 

vertex keep <k> fixed
• Allow multiple edges

Good Power Laws 
but power varies by 
10% or 20%
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Finite Size Effects for pure preferential attachment
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Mean Field Exact Finite Size Scaling
Function Fs
(pure pref.attach.)

Can calculate the finite 
size effects in the 
mean field 
approximation to find
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Walk Data & Finite Size Scaling Function Fs
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• Best data is for k<kcont = O(N1/3)

• Finite N effects irrelevant to real data
Fs ≠0 only for largest degree vertex   

k > k1 ~ O(N1/2) 
• Power law only ever for large k ⇒ corrections for small k

• Large networks are only mesoscopic systems, 
⇒ k never large e.g. N=106 γ=3 network  kcont ~ 250,  k1 ~ 2500

⇒ Small k deviations vital for all known networks

• Simple power law fits underestimate asymptotic power by
O(10%)

Powers and 
Finite Size Effects
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Random Walks as a SearchTool

Sample Networks via Random Walk
flvisit vertices with probability

pvisit(k) = k p(k) / (2E)
so visit Hubs much more often, 

flfind them very quickly
• Estimate tail of degree distribution very quickly
• Estimates of size of graph possible
• Other biased walks possible 

e.g. can sample vertices equally if slowly 
(Orponen, Schaeffer, 2004)
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Random Walks as Diffusion

j

ij
ij k

A
P =

i

Probability of going 
from vertex j to vertex i

j

kj

1
2

Adjacency
matrix

Number of random walkers 
at vertex i at time t vi(t)

ï Solve Matrix Equation   
v(t) = [P]t v(0) Markov process

Aij = 1 if edge from i to j, 
= 0 otherwise
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Simple Graph Diffusion Solution
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Simple Graph Diffusion Solution

K++⎟
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Eigenvectors u(n) of largest eigenvalues tell us 
about small regions poorly connected to main 
component                                 (Eriksen et al 2003)

Main Component, 
ui ~ 0

Small Region
ui ~1

Hard to find single 
route in or out  = slow equilibrium, 

l ~ 1

K≥>= 211 λλ
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Diffusion as Ranking

• Long time solution gives a ranking of vertices
Rank of vertex i = entry i of eigenvector of 

largest eigenvalue u(1)
I

• Other types of walk
= other types of diffusion
= new weighted edges
= new ranking scheme
e.g. PageRank® (Google)

N
p

k
A

pP vout
j

ij
vij

1)1( )( +−=

Jump to random 
vertex with 
probability pv
or use other 
constant vector

E
k in

i
)(

?
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Conclusions

• Random Walk probes global structure of 
network but uses only local information
ï A Naturally Occurring Mechanism
ï Can lead to Self-Organisation
ï Useful Tool

• Used to grow network long power-law tails are a 
robust outcome with a wide variety of powers
e.g. N=106 <k>=4 

ï g=3 as N,kö∞ in Simon/BA models
Random Walk produces 2.4 < g < 5
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More Information

Following slides provide additional 
information.
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More Information

Following slides provide additional 
information.
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Network* papers on cond-mat
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Explosion of interest – WHY?

Since 1997 there has been an explosion of interest in 
networks by physicists.

For instance the 
condensed matter 
electronic preprint 
archives have gone 
from 35 papers in 1997 
with a word starting 
with Network in their 
title to 344 last year, an 
increase of nearly 
1000%

WHY?
Updated from T.S.Evans, Contemporary Physics
45 (2004) 455 – 474 [cond-mat/0405123]
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Basic Definitions

A Network or Graph is a 
collection of 

N Vertices (nodes),
pairs of which are  
connected by E Edges

This is a SIMPLE graph, it has no other information.
In particular the same network can be shown in several identical ways.

N=5    
E=6

In general networks may have arrows on the edges (directed graphs), different 
values on edges (weighted graphs)  or values to the vertices (coloured graphs).

=
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Degree (connectivity)
• The Degree k of a vertex is the number of edges 

attached to it.

• The Degree Distribution n(k) is the number of 
vertices with degree k

Degree
k=4

k=2 3

3

1

3

0

1

2

3

1 2 3 4

Degree k
n(

k)
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Network Distance
• Counting one for each edge traversed, we 

can find the shortest path between any two 
vertices, giving a distance between the two.

• The longest of these shortest paths is the 
diameter.

1 1

10
Distances from red vertex

2

Diameter is 3, between red vertices
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Cluster Coefficient

• Clustering coefficient c: 
Fraction of the neighbours which are 
themselves connected
Simple measure of how much local structure 
there is in a network

C=1/3

1

(2)

(3)
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• Take N vertices then consider every pair of 
vertices and connect each with probability p
Erdős-Reyní (1959).

This is the opposite of the perfectly ordered lattice.

• Degree distribution is Poisson – short tailed
Maximum Degree  k1 ~ ln(N)

• Little local structure       c~1/N
• Short distances            <d>~ln(N)

Random Networks

(1-p)

p

pN=3
p~2/3

N=10^6, K=4 Random Graph
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10
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))

5 10 15 20
k

Random
Data &
Poisson

N=106, <k>=4, k<17
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Watts and Strogatz’s Small World Network (1998)

• Start with lattice, pick random edge and rewire it
– move ends to two new vertices chosen at random.

1 dim Lattice Small World Random

Number of rewirings0

5

N=20, E=40,
k=4

200
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•As you rewire, distance drops very quickly, clustering does not
Find SMALL WORLD NETWORKS with short distances of
random network, large clustering and local structure like a

lattice

Clustering and Length Scale in WS network

Small World
Lattice Random

N=100, 
<k>=4,
1-Dim lattice
start, 
100 runs
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Network Comparison

Distance
d

Degree
Distrib. n(k)

Maximum
Degree k1

Cluster
Coef. c

Lattice
Large

d ~ N1/dim
No Tail
d(k-k0)

Fixed
k0 ~O(1)

Watts-Strogatz
Small World

Small
d ~ log(N)

No Tail
~ d(k-k0)

V.Small 
~ k0 ~ O(1/N)

Erdős-Reyní
Random

Small 
d ~ log(N)

Short Tail
Poisson

<k>k e-<k> /k!

Small
~log(N) ~ O(1/N)

Scale-Free
Small 

d ~ log(N)
Long Tail

~k-g
Large = HUBS

~k1/(g-1) ~ O(1/N)
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Scaling in Social Sciences
• Zipf law (1949) – City Sizes, Text Frequencies,…
• Pareto’s 80:20 rule (1890’s)

Ranked US City Size

Housing Density
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From T.S.Evans, Contemporary Physics
45 (2004) 455 – 474 [cond-mat/0405123]
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• Every web page is a 
vertex, every link is 
an edge

• A few pages have a 
tremendous amount 
of links to them e.g. 
college home page, 
eBay, Google
These are Hubs and 
they are a key aspect 
of how we navigate 
and use the web

The World Wide Web
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(Barabasi, Albert, Jeong 1999)
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eBay

• Network from 
buyer/seller 
feedback links

• eBay is dominated 
by a few very large 
hubs.

• The slight curvature due to 
crawling method.

• Fetched 5,000 pages and built 
up a network of 318,000 nodes 
and 670,000 edges

• γ ≈ 2.3

Degree distribution, eBay Crawl (max 1000)
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Imperial Library

• Used to detect groups from 
lending patterns

Period 2 (excluding Haldane), degree distribution
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N=10^6, K=4 Power Law and Random
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• Lattices, WS (Watts-
Strogatz) Small World 
and random networks 
have no hubs, e.g. the 
largest degree is 17
for a random network with 
N=106, <k>=4

• Want a network with a 
long tailed degree 
distribution 
e.g. power law ~ k-3

has max. degree ~2520
for N=106 <k>=4

From T.S.Evans, Contemporary Physics
45 (2004) 455 – 474 [cond-mat/0405123]
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Long Tails Description
• Most data sets have “long” tails for degree 

distribution
Characterised by a few vertices with many edges - HUBS
e.g. maximum degree

kmax = O(Nn) >> O(log(N)) n>0
Power Law: n=½ Poisson

• These can often be reasonably described by a 
power-law 

n(k) ~ k-g ( 2<g<¶ if  N→¶, K< ¶)

BUT note that many other functions give 
reasonable fits too!
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Models
• Short Exponential Tails 
limk→∞ [n(k)] ~ exp(k/kscale)

e.g.N=106, <k>=4  ï kmax=17 = O(log(N))

-Random Graph Erdős-Reyní (1959) (Poisson)
-Watts-Strogatz Small World (1998)
-Growing with Random Attachment

• Scale-Free = Long Power-Law Tails  
limk→∞ [n(k)] ~ k-g 2<g<∞

e.g. N=106, <k>=4  ï kmax=2520 = O(N1/2)

-Simon (1955) [graph can be added easily]
-Barabasi-Alberts (1999) [graph not required]
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Scale Free Networks

• Any network with a power law degree distribution
for large degrees

• Always have many large Hubs nodes with many 
edges attached – e.g. routers in the internet

• Scale Free means the number of vertices of degree 
2k with those of degree k, always the same whatever 
k , that is there is no scale for degree

• In practice there are at least two scales for finite N:
O(1) ~ kmin ≤ k ≤ kmax ~  O( N1/(g-1) )

constant
)(
)2(

=
kn
kn

[ ] γ−
∞→ ∝ kknk )(lim
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• 2nd Order Phase Transitions 
(e.g. superconductors, superfluids,…)
Long range order = no scale = physical insight
Critical Phenomena – Renormalisation Group

• Scaling in Particle Physics
• Biology 

– Kleiber’s Law (1930’s) metabolic rate r μ m3/4 body mass, 
explained (West, Brown, Enqvist 1997)

• Social Sciences 
– Zipf’s Law (1949) 

City sizes, 
Word frequency, …

file compression

Power Laws in the Real World

This Text’s Word Frequency by Rank
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From T.S.Evans, 
Contemporary 
Physics
45 (2004) 455 – 474 
[cond-mat/0405123]
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• Earthquakes
(Gutenberg-Richter Law),

forest fires, 
rice piles, 
rainfall distributions, 
etc etc

Self-Organised 
Criticality

• Still leading to 
further physical 
insights

Scaling in Complex Systems

(Peters, Hertlein, Christensen 2002)
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Scaling in Social Sciences
• Zipf law (1949) – City Sizes, Text Frequencies,…
• Pareto’s 80:20 rule (1890’s)

Ranked US City Size

Housing Density
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Water Area

Total Area

Housing Units

Population

1e+06

1e+07

1e+08

1e+09

S
iz

e 
(s

ca
le

d)

1. .1e2 .1e3

Rank

This Text’s Word Frequency by Rank

network

in
is

and

to
a

of

the

1.

.1e2

.1e3

F
re

qu
en

cy

1. .1e2 .1e3 .1e4

Rank

US cities My review’s 
text frequency

Rank

Fr
eq

ue
nc

y

Rank

Fr
eq

ue
nc

y

From T.S.Evans, Contemporary Physics 
45 (2004) 455 – 474 [cond-mat/0405123]
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Scaling with every network
• Friendship networks -

Kevin Bacon game
• Scientific Collaboration 

Networks -
Erdős number

• Scientific Citation 
Networks

• Word Wide Web
• Internet
• Food Webs
• Language Networks

• Protein Interaction 
Networks

• Power Distribution 
Networks

• Imperial Library 
Lending Data
(Laloe, Lunkes, Sooman, 
Warren, Hook, TSE)

• eBay relationships
(Sooman, Warren, TSE)

• Greek Gods
• Marvel Comic Heroes
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Scaling – a health warning

Almost every network is scale free if you believe 
the literature but

• Not many decades of data
e.g. 106 vertex scale free network has largest 
vertex about 1000 so at most two decades of 
large degree scaling

• Data often a single data set no repeats
• Errors unknown in much social science data
• Other long tailed distributions have hubs too
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Applications:  Archaeological Networks

• Ceremonial Pig exchange networks in Polynesia 
(Hage & Harary)

• Central role of Delos in ancient Greek culture (Davis)

• Spread of Minoan influence as seen through early 
bronze age pottery record (TSE, Knappett, Rivers)
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What is the power?
• Local power always 

below asymptotic 
value of 3
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• However long walks fit
mean field asymptotic

solution very well

)1(
)()()(

−
−

=
rk

knkrnkγ (r=1.1)

From T.S.Evans, J.P.Saramäki Phys.Rev.E 72 (2005) 1 [cond-mat/0411390]
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Mean Field Solutions

• Assume behaviour of the 
average number of vertices 
of degree k given by the 
average properties of the 
network

• These are excellent for 
pure preferential 
attachment (Simon/BA)
‹
correlations in degrees of 
neighbouring vertices 
insignificant
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Limit of good data

257 2520

Fractional deviation of data from
one run of pure pref. attachment
model against mean field solution

From T.S.Evans, J.P.Saramäki Phys.Rev.E 72 (2005) 1 [cond-mat/0411390]
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Finite Size Effects for pure preferential attachment

Scaling Function Fs
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preferential attachment
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100 runs to get enough data near k1
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From T.S.Evans, J.P.Saramäki
Phys.Rev.E 72 (2005) 1 [cond-mat/0411390]
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