Susy and $\mathbb{R C H O}$ Redux

Paul K. Townsend

University of Cambridge

- Why 60? Type "Chris Hull Obituary" into duckduckgo. Ten entries. They made it to $25(2), 30(2), 36,53(2), 56,58,60$.
- What happened to the over 60s? It's all explained (naturally) by the theory of everything, which is not only U-dual (naturally) but intimately connected (some say supernaturally) to $\mathbb{R C H O}$.

Hull@60, 29 April 2017

Overview

(1) $\mathbb{R C H O}$ and $d=3,4,6,10$ susy
(2) $\mathbb{R C H O}$ and Superparticles
(3) $\mathbb{R C H O}$ and $D=4,5,7,11$ sugra

$\mathbb{R C H O}$

Composition algebras

Algebra \mathbb{K} is a composition algebra if
(1) $\forall x \in \mathbb{K}, \quad \exists$ a non-degenerate quadratic form $|x|^{2} \in \mathbb{R}$.
(2) $\forall x, y \in \mathbb{K}, \quad|x y|^{2}=|x|^{2}|y|^{2}$.
\mathbb{K} is a "normed division algebra" if $|x|^{2}$ is positive definite. A theorem of Hurwitz says that there are just four possibilities:

- \mathbb{R}. Real numbers (ordered, commutative, associative)
- \mathbb{C}. Complex numbers (commutative, associative)
- \mathbb{H}. Quaternions (associative)
- © Octonions

Lorentz groups and $S I(2 ; \mathbb{K})$ [Kugo \& PKT, Sudbery]

- $d=3 . S /(2 ; \mathbb{R}) \cong \operatorname{Spin}(1,2)$
- $d=4 . S /(2 ; \mathbb{C}):=S l_{1}(2 ; \mathbb{C}) \cong \operatorname{Spin}(1,3) \times U(1)$
- $d=6 . S /(2 ; \mathbb{H}) \cong \operatorname{Spin}(1,5)$
- $d=10 . S /(2 ; \mathbb{O}) \cong \operatorname{Spin}(1,9)$

Check: $S /(2 ; \mathbb{K})$ has $4 \operatorname{dim} \mathbb{K}-1$ generators for $\mathbb{K}=\mathbb{R}, \mathbb{C}, \mathbb{H}$, but

$$
\operatorname{dim} s(2 ; \mathbb{O}) \neq 4 \times 8-1=31
$$

because of failure of Jacobi identity [Sudbery]:

$$
[A,[B, X]]-[B,[A, X]]=[[A, B], X]+E(A, B) X,
$$

where $E(A, B) \in G_{2}$. Since $\operatorname{dim} G_{2}=14$, the correct count is

$$
\operatorname{dim}[s /(2 ; \mathbb{O})]=31+14=45
$$

The conformal group and $\operatorname{Sp}(4 ; \mathbb{K})$ [Sudbery]

Define $\operatorname{Sp}(4 ; \mathbb{K})$ as group preserving skew-hermitian quadratic form on \mathbb{K}^{4}

- $d=3 . \operatorname{Sp}(4 ; \mathbb{R}) \equiv \operatorname{Spin}(2,3)$
- $d=4 . \operatorname{Sp}(4 ; \mathbb{C}) \equiv \operatorname{Spin}(2,4) \times U(1)$
- $d=6 . \operatorname{Sp}(4 ; \mathbb{H}) \equiv \operatorname{Spin}(2,6)$
- $d=10 \operatorname{Sp}(4 ; \mathbb{O}) \equiv \operatorname{Spin}(2,10)$

These are conformal isometries of Mink $\boldsymbol{k}_{\boldsymbol{d}}$ except extra $U(1)$ for $\mathbb{K}=\mathbb{C}$ For $\mathbb{K}=\mathbb{R} \mathbb{C H}$, we have $\operatorname{dim}[s p(4 ; \mathbb{K})]=6 \operatorname{dim} \mathbb{K}+4$

For $\mathbb{K}=\mathbb{O}$ the add 14 rule again applies [Chung \& Sudbery] $\operatorname{dim} \operatorname{sp}(4 ; \mathbb{O})=6 \times 8+4+14=66$

Rotation subgroups and $S O(2 ; \mathbb{K})$

Define $S O(k ; \mathbb{K})$ as group preserving Hermitian quadratic form on \mathbb{K}^{k} Then:

```
- \(d=3 . S O(2 ; \mathbb{R}) \equiv U(1) \cong \operatorname{Spin}(2)\)
- \(d=4 . S O(2 ; \mathbb{C}) \equiv U(2) \cong \operatorname{Spin}(3) \times U(1)\)
- \(d=6 . S O(2 ; \mathbb{H}) \cong S U^{*}(4) \cong \operatorname{Spin}(5)\)
- \(d=10 . S O(2 ; \mathbb{O}) \cong \operatorname{Spin}(9)\)
```

These are rotation subgroups except extra $U(1)$ for $\mathbb{K}=\mathbb{C}$. For $\mathbb{K}=\mathbb{R} \mathbb{C} \mathbb{H}$, we have $\operatorname{dim}[s o(2 ; \mathbb{K})]=3 \operatorname{dim} \mathbb{K}-2$

For $\mathbb{K}=\mathbb{O}$ apply add 14 rule $\operatorname{dim}[s o(2 ; \mathbb{O})]=(3 \times 8-2)+14=36$

Super-Yang-Mills and $\mathbb{R C H O}$

Construction of SYM requires a Dirac Matrix Identity valid only for $d=3,4,6,10$ [Brink,Scherk \& Schwarz] and DMI converts "transverse" \mathbb{R}^{d-2} into $\mathbb{K}=\mathbb{R}, \mathbb{C}, \mathbb{H}, \mathbb{O}$ [Evans, Schray, Baez \& Huerta]

Same DMI needed for GS superstring [Green \& Schwarz]

N.B. DMI is equivalent to existence of Jordan algebra of 3×3 Hermitian matrices over $\mathbb{K}=\mathbb{R}, \mathbb{C}, \mathbb{H}, \mathbb{O}$ [Sierra, Fairlie \& Manogue]

Super-Maxwell equations and $\mathbb{K}=\mathbb{R C H O}$ [Galperin, Howe \& PKT]
For $d=3,4,6,10$, super-Maxwell equations are equivalent (via
"twistor-type" transform) to \mathbb{K}-chirality constraint on a \mathbb{K}-valued worldline scalar superfield

Lorentz vectors and $\mathbb{R C H O}$

For spacetime dimension $d=3,4,6,10$ we can represent position in Minkowski spactime by a 2×2 Hermitian matrix \mathbb{X} over $\mathbb{R}, \mathbb{C}, \mathbb{H}, \mathbb{O}$:

$$
\mathbb{X}=\left(\begin{array}{cc}
-X^{0}+X^{1} & \mathbf{X} \\
\overline{\mathbf{X}} & -X^{0}-X^{1}
\end{array}\right) \quad(\mathbf{X} \in \mathbb{K})
$$

For $\mathbb{K}=\mathbb{R}, \mathbb{C}, \mathbb{H}$, Lorentz transformation is

$$
\mathbb{X} \rightarrow \mathbb{L} \mathbb{X} \mathbb{L}^{\dagger}, \quad \operatorname{det}\left(\mathbb{L} \mathbb{L}^{\dagger}\right)=1 \quad \Rightarrow \quad \mathbb{L} \in S I(2 ; \mathbb{K})
$$

Hermitian $n \times n$ matrices over \mathbb{H} have well-defined (real) determinant, as do hermitian matrices over \mathbb{O} if $n \leq 3$.

$$
\begin{aligned}
& \mathbb{K}=\mathbb{O}: \mathbb{X} \rightarrow \mathbb{L} \mathbb{X} \mathbb{L}^{\dagger} \text { for } \mathbb{L} \approx \mathbb{I} \text { [Sudbery] but finite Lorentz transformation } \\
& \text { is more complicated [Manogue \& Schray] }
\end{aligned}
$$

The relativistic particle and $\mathbb{R C H}(\mathbb{O}$

A particle has position d-vector \mathbb{X} and momentum d-covector \mathbb{P}

$$
\mathbb{P} \rightarrow\left(\mathbb{L}^{\dagger}\right)^{-1} \mathbb{P L} \mathbb{L}^{-1}, \quad \operatorname{det} \mathbb{P}=m^{2}
$$

Lorentz invariant action is

$$
S=\int d t\left\{\frac{1}{2} \operatorname{tr}_{\mathbb{R}}(\dot{\mathbb{X}} \mathbb{P})+\frac{1}{2} e\left(\operatorname{det} \mathbb{P}-m^{2}\right)\right\}
$$

\leadsto Real-trace satisfies $\operatorname{tr}_{\mathbb{R}}(\mathbb{A} \mathbb{B})=\operatorname{tr}_{\mathbb{R}}(\mathbb{B} \mathbb{A})$.

Trace reversal [Schray]

If hermitian \mathbb{V} is d-vector then $\widetilde{\mathbb{V}}=\mathbb{V}-\operatorname{tr} \mathbb{V}$ is d-covector, and

$$
\tilde{\tilde{\mathbb{V}}}=\mathbb{V}, \quad \mathbb{V} \tilde{\mathbb{V}}=-(\operatorname{det} \mathbb{V}) \mathbb{I}_{2}
$$

Bi-spinor formulation and spin-shell constaints

Write $\quad \mathbb{P}=\mp \mathbb{U} \mathbb{U}^{\dagger}, \quad \mathbb{U} \rightarrow\left(\mathbb{L}^{\dagger}\right)^{-1} \mathbb{U} \mathbb{R} \quad \mathbb{R} \in S O(2 ; \mathbb{K})_{\text {local }}$
cf. vielbein formulation of $G R$; expect local $S O(2 ; \mathbb{K})$ invariance

Substitute: $\frac{1}{2} \operatorname{tr}_{\mathbb{R}}(\dot{\mathbb{X}} \mathbb{P})=\operatorname{tr}_{\mathbb{R}}\left(\dot{\mathbb{U}} \mathbb{W}^{\dagger}\right)+d_{t}(\cdots)$, where

$$
\frac{W= \pm \mathbb{X} \mathbb{U}}{\text { Incidence relation }} \quad \Rightarrow \quad 0 \equiv \mathbb{U}^{\dagger} \mathbb{W}-\mathbb{W}^{\dagger} \mathbb{U}:=\mathbb{G}
$$

View \mathbb{W} as independent by imposing $\mathbb{G}=0$ as a "spin-shell" constraint
Why "spin-shell"? For $d=3,4,6$ [Arvanitakis, Mezincescu, PKT]
Pauli Lubanski 3-form (self-dual for $d=6$) is $\mathbb{U} \mathbb{G} \mathbb{U}^{\dagger}$.
So, $\mathbb{G}=0 \Rightarrow$ zero spin.

Bi-twistor action [Arvanitakis, Barns-Graham \& PKT]

Now have equivalent "bi-twistor" action

$$
S=\int d t\left\{\operatorname{tr}_{\mathbb{R}}\left(\underset{\mathbb{U}}{\mathbb{W}^{\dagger}}\right)-\operatorname{tr}_{\mathbb{R}}(\mathbb{S} \mathbb{G})-\frac{1}{2} e\left(\operatorname{det}\left(\mathbb{U} \mathbb{U}^{\dagger}\right)-m^{2}\right)\right\}
$$

$\leadsto \mathbb{G}$ generates expected $S O(2 ; \mathbb{K})_{\text {local }}$ gauge transformations

$$
\begin{aligned}
& \text { Why "bi-twistor"? Because } \\
& \qquad \begin{array}{cc}
\operatorname{tr}_{\mathbb{R}}\left(\dot{U} \mathbb{W}^{\dagger}\right) & = \\
\left.\begin{array}{cc}
\frac{1}{2} \operatorname{tr}_{\mathbb{R}}\left(\mathbb{Z}^{\dagger} \Omega \dot{\mathbb{Z}}\right) \\
\mathbb{G} & = \\
-\operatorname{tr}_{\mathbb{R}}\left(\mathbb{Z}^{\dagger} \Omega \dot{\mathbb{Z}}\right)
\end{array}\right\} \text { for } \mathbb{Z}=\binom{\mathbb{U}}{\mathbb{W}} \& \quad \Omega=\left(\begin{array}{cc}
0 & -\mathbb{I}_{2} \\
\mathbb{I}_{2} & 0
\end{array}\right)
\end{array}
\end{aligned}
$$

and these expressions are unchanged if $\mathbb{Z} \rightarrow \mathbb{M} \mathbb{Z} \mathbb{R}$ for $\mathbb{M}^{\dagger} \Omega \mathbb{M}=\Omega$, which defines the conformal group $\operatorname{Sp}(4 ; \mathbb{K})$.
$\boldsymbol{\Delta}$ Only the mass-shell constraint breaks conformal invariance

Massless particle in $\mathrm{AdS}_{D}, D=4,5,7$

Omit the mass-shell constraint to get $S p(4 ; \mathbb{K})$-invariant action

$$
S=\int d t\left\{\frac{1}{2} \operatorname{tr}_{\mathbb{R}}\left(\mathbb{Z}^{\dagger} \Omega D_{t} \mathbb{Z}\right)\right\}, \quad D_{t} \mathbb{Z}=\dot{\mathbb{Z}}+\mathbb{S} \mathbb{Z}
$$

- Phase-space dimension has increased by 2, so spacetime dimension is now $D=d+1$. What is this spacetime?
- For $\mathbb{K}=\mathbb{R}, \mathbb{C}, \mathbb{H}$ it is AdS_{D}, and for zero mass $\operatorname{Sp}(4 ; \mathbb{K})$ is its isometry group [Arvanitakis, Barns-Graham \& PKT]

Non-zero mass

For particle of mass m in AdS_{5} of radius R, a complex field redefinition yields action of Claus, Rahmfeld \& Zunger with $\mathbb{G}=i m R \mathbb{I}$.
For $\mathbb{K} \neq \mathbb{C}$ need quadri-twistor variables [Cederwall]

Superparticle and $\mathbb{K}=\mathbb{R C H O}$

N-extended superparticle in Mink ${ }_{d}$: make replacement

$$
\dot{\mathbb{X}} \rightarrow \dot{\mathbb{X}}+\Theta^{\dagger} \overleftrightarrow{d_{t}} \Theta, \quad \Theta \rightarrow \mathbb{N} \Theta \mathbb{L}^{\dagger}, \quad \mathbb{N} \in S O(N ; \mathbb{K})
$$

for anticommuting $S /(2 ; \mathbb{K})$ spinors $\Theta \Rightarrow 2 N$ dimK susy charges
Proceeding as before, for $\mathbb{K}=\mathbb{R C H}$ we get

$$
S=\int d t\left\{\frac{1}{2} \operatorname{tr}_{\mathbb{R}}\left(\mathbb{Z}^{\dagger} \Omega D_{t} \mathbb{Z} \mp \Xi^{\dagger} D_{t} \equiv\right)-\frac{1}{2} e\left(\operatorname{det}\left(\mathbb{U} \mathbb{U}^{\dagger}\right)-m^{2}\right)\right\}
$$

where $\equiv=\ominus \mathbb{U}$ are anticommuting Lorentz scalars:

$$
\equiv \rightarrow \mathbb{N} \equiv \mathbb{R}^{\dagger} \quad \mathbb{R} \in S O(2 ; \mathbb{K})_{\text {gauge }}
$$

$\mathbb{K}=\mathbb{O}$: massless $S /(2 ; \mathbb{O})$ superparticle known [Oda, Kimura \& Nakamura]

Superparticle in $\mathrm{AdS}_{4,5,7}$

Omitting mass-shell constraint, we get bi-supertwistor action

$$
S=\int d t\left\{\frac{1}{2} \operatorname{tr}_{\mathbb{R}}\left(\mathscr{Z}^{\dagger} \Omega D_{t} \mathscr{Z}\right\} \quad \mathscr{Z}=\binom{\mathbb{Z}}{\bar{三}}, \quad \Omega=\left(\begin{array}{cc}
\Omega & 0 \\
0 & \pm 2 \mathbb{I}_{N}
\end{array}\right)\right.
$$

This is $\operatorname{OSp}(N \mid 4 ; \mathbb{K})$-invariant.
It describes a massless superparticle in AdS_{D} for $D=3+\operatorname{dim} \mathbb{K}$ [Arvanitakis, Barns-Graham \& PKT]

Quantum Theory: $\equiv \rightarrow$ NdimK fermi oscillators
\Rightarrow Supermultiplet of $2^{N \text { dimK }}$ polarization states

M-theory supergravitons and $\mathbb{R C H O}$

The M2, D3 \& M5 branes interpolate between the Minkowski vacuum and the maximally supersymmetric "AdS $\times S^{\prime \prime}$ vacuum [Gibbons \& PKT]. The isometry supergroups of these near-horizon vacua are as follows:

$$
\begin{array}{rccc}
M 2 & : & A d S_{4} \times S^{7} & : \\
\operatorname{OSp}(8 \mid 4 ; \mathbb{R}) \supset \operatorname{Spin}(8) \times \operatorname{Sp}(4 ; \mathbb{R}) \\
D 3 & : & A d S_{5} \times S^{5} & : \\
M 5 & : & A d S_{7} \times S^{4} & : \\
\operatorname{OSp}(4 \mid 4 ; \mathbb{C}) \supset \mathrm{U}(4 \mid 4 ; \mathbb{H}) \supset \operatorname{USp}(4 ; \mathbb{C}) \\
M p(4 ; \mathbb{H})
\end{array}
$$

Isometry supergroup is $\operatorname{OSp}(N \mid 4 ; \mathbb{K})$ with $N \operatorname{dim} \mathbb{K}=8$

$$
\Rightarrow \quad 2^{8}=128+128 \text { polarization states }
$$

$\Rightarrow \quad$ Massless superparticle is a supergraviton

Speculations

According to Nahm, \exists supergroup for $D=11$, but the $\mathbb{K}=\mathbb{O}$ case of $M 2, D 3, M 5$ sequence yields the "soft" Lie supergroup $\operatorname{OSp}(1 \mid 4 ; \mathbb{O})$ [Hasiewicz \& Lukierski]

This should corresponds to some "M9-brane", but only candidate is a Horava-Witten Mink ${ }_{10}$ boundary of $D=11$ spacetime.

- Do higher-deriv. corrections to $D=11$ sugra allow AdS_{11} vacuum?
- If so, is there a M9-brane solution of the corrected equations?
- If so, is the M9-brane worldvolume action an E_{8} SYM theory.
- If so, is this holographic dual of M-theory?
in short, Is M - theory octonionic?

Why 60? Redux

Question: Does the afterlife really begin at 60 for those individuals unfortunate enough to be called "Chris Hull"?
Answer: Let's investigate using $\mathbb{R C H}(1)$

- Sergeant Pepper's theorem [Beatles, 1967] states that

$$
(\operatorname{dim} \mathbb{R})(\operatorname{dim} \mathbb{C})(\operatorname{dim} \mathbb{H})(\operatorname{dim} \mathbb{O})=64
$$

- And let's not forget the add 14 rule: $64+14=78$

So Chris, no need to panic! Welcome to the >60 club.

